시장보고서
상품코드
1847652

무선 데이터 무선 모뎀 시장 : 설치, 컴포넌트, 주파수대역, 네트워크 유형, 데이터 레이트, 최종사용자별 - 세계 예측(2025-2032년)

Wireless Data Radio Modem Market by Installation, Component, Frequency Band, Network Type, Data Rate, End User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 197 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

무선 데이터 무선 모뎀 시장은 2032년까지 연평균 복합 성장률(CAGR) 5.03%로 15억 5,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 10억 5,000만 달러
추정 연도 : 2025년 11억 달러
예측 연도 : 2032년 15억 5,000만 달러
CAGR(%) 5.03%

무선 엔지니어링, 임베디드 소프트웨어, 네트워크 아키텍처의 융합이 차세대 무선 데이터 모뎀의 도입을 형성하고 있음을 간략하게 소개합니다.

무선 데이터 무선 모뎀의 상황은 레거시 무선 엔지니어링과 신흥 디지털 네트워킹의 교차로에서 산업, 상업 및 소비자 환경에서의 연결을 가능하게 하고 있습니다. 이 주요 요약에서는 구성 요소 아키텍처, 주파수 할당 패턴, 하드웨어, 임베디드 소프트웨어, 클라우드 네이티브 관리 도구 간의 상호 작용의 진화에 주목하면서 모뎀 배포를 형성하는 기술적, 규제적, 상업적 역학을 추출합니다.

고정 링크가 백홀과 지점 간 연결을 계속 지원하는 반면, 모바일 모뎀은 자산 추적, 원격 측정, 이동 중 통신을 가능하게 합니다. 실리콘 집적화, 전력 효율, 프로토콜 최적화의 발전으로 데이터 무선 모뎀의 역할은 단순한 원격 측정 엔드포인트에서 통합 관리 소프트웨어와 프로토콜 스택을 통해 로컬 처리, 적응형 주파수 사용, 수명주기 관리가 가능한 지능형 노드로 확장되었습니다.

중요한 것은 최신 모뎀 전략은 다층적인 고려사항의 영향을 받는다는 것입니다. 규제와 주파수 가용성은 주파수 선택과 라이선스 모델을 형성합니다. 부품 조달과 펌웨어 공급망은 제조의 탄력성과 시장 출시 시간을 결정합니다. 네트워크 아키텍처는 셀룰러, 위성, 지상무선 등 상호운용성 요구사항을 결정하고, 최종 사용자의 업종에 따라 성능 및 환경 사양을 조정합니다. 이 소개에서는 구조적 변화, 관세의 영향, 세분화 고찰, 지역 역학, 경쟁 동향, 권장 조치, 그리고 이러한 조사 결과를 종합하는 데 사용된 조사 방법에 초점을 맞춘 분석의 무대를 마련합니다.

주파수 대역의 진화, 소프트웨어 정의 기능, 공급망 복원력, 멀티모달 네트워크가 무선 모뎀의 설계 및 배포 전략을 재구성하는 방법을 살펴봅니다.

무선 데이터 무선 모뎀 영역은 기술적 성숙, 진화하는 주파수 패러다임, 최종 사용자의 기대치 변화로 인해 혁신적인 변화를 겪고 있습니다. 첫째, 더 높은 주파수 대역과 더 유연한 라이선스 프레임워크의 등장으로 고밀도, 고처리량 링크가 가능해졌지만, 서브 기가헤르츠 대역과 무면허 대역은 장거리, 저전력 이용 사례에 여전히 필수적입니다. 그 결과, 모뎀 설계는 광범위한 주파수 민첩성에 대한 요구와 비용 및 전력 제약과 조화를 이루어야 하며, 멀티밴드 무선 프론트엔드 통합 및 소프트웨어 정의 무선 기술이 가속화되고 있습니다.

둘째, 소프트웨어는 모뎀의 가치에 있어 점점 더 중심이 되고 있으며, 기본 펌웨어를 넘어 오케스트레이션, 무선 업데이트, 고급 보안을 용이하게 하는 통합 관리 소프트웨어 및 프로토콜 스택으로 이동하고 있습니다. 이러한 변화를 통해 사업자와 시스템 통합사업자는 설치 후 기능 개선 및 보안 패치를 도입할 수 있게 되어 라이프사이클 비용을 절감하고 서비스 차별화를 가능하게 합니다. 셋째, 공급망과 지정학적 역학관계로 인해 제조업체와 구매자는 조달 전략을 재평가하고, 부품 다양화에 투자하고, 현지 조립 또는 인증 프로그램을 검토하여 혼란의 위험을 줄일 수 있습니다.

4G LTE, 5G, LPWAN과 같은 셀룰러 기술이 위성 및 지상파 무선 옵션과 공존하여 신뢰성과 비용 최적화를 위한 멀티모달 연결 전략을 창출하고 있습니다. 즉, 상호운용성, 안전한 라이프사이클 관리, 고정 및 모바일 환경에서의 유연한 배치에 중점을 둔 모듈식 소프트웨어 지원 모뎀 플랫폼으로 이동하고 있는 것입니다.

2025년 미국 관세 조치가 부품 조달, 제품 설계, 조달 시기, 공급업체 다변화 전략에 미치는 다면적이고 지속적인 영향 평가

미국이 2025년에 도입한 관세 조치는 무선 데이터 무선 모뎀 생태계 전체에 누적 영향을 미치고 있으며, 부품 조달, 가격 구조, 공급업체 조달 전략에 영향을 미치고 있습니다. 특정 전자 부품 및 완제품에 대한 관세 인상은 국제 공급망에 의존하는 제조업체의 육지 운송 비용을 증가시키고, 엔지니어링 팀이 재료비 선택을 재검토하고, 대체 부품의 변형 및 가능하면 현지 공급업체를 찾도록 유도하고 있습니다. 이에 따라 부품의 가용성과 가격 노출을 안정화하기 위해 이중 소싱 전략과 장기 공급업체 계약이 다시 한 번 강조되고 있습니다.

제조업체들은 성능과 컴플라이언스를 유지하면서 제품 마진을 확보하기 위해 가치 엔지니어링을 가속화하는 방식으로 대응하고 있습니다. 재설계 주기에서는 대체 가능한 부품, RF 프론트엔드 모듈화, 국내 조달 부품 및 관세 면제 부품의 사용을 단순화하기 위한 패키징 조정이 우선적으로 고려되었습니다. 시스템 통합사업자와 기업 구매자는 대체 공급업체를 수용하고, 대체 부품 간의 상호운용성을 검증하기 위해 조달 창구를 재검토하고, 인증 주기를 연장하는 방식으로 대응해 왔습니다.

관세는 직접적인 비용 영향뿐만 아니라 니어쇼어링, 위탁생산, 재고관리와 관련된 전략적 결정에도 영향을 미치고 있습니다. 일부 공급업체는 연속성을 유지하기 위해 재고 버퍼를 늘리거나 유리한 무역 협정이 있는 지역으로 조립을 옮기기도 합니다. 관공서, 국방 등 영향을 받기 쉬운 업종의 네트워크 사업자와 최종 사용자들은 관세 중심공급 역학이 벤더 다변화를 가속화하고 감사 가능한 공급망을 갖춘 모뎀을 우선시하는 정당한 이유로 활용하고 있습니다. 앞으로도 관세의 영향은 상업적 협상, 가격 조정과 관련된 계약 조건, 그리고 특정 구성 요소의 가격 변동에 따른 영향을 최소화하는 모듈식 아키텍처의 우선순위에 영향을 미칠 것으로 보입니다.

설치 상황, 구성 요소 아키텍처, 주파수 할당, 네트워크 방식, 데이터 속도, 최종 사용자 요구사항이 모뎀의 우선순위를 결정하는 방법, 심층 세분화 주도형 인텔리전스를 파악

세분화에 대한 통찰력을 통해 제품 전략과 상업적 포지셔닝이 설치 배경, 구성 요소의 초점, 주파수 선택, 네트워크 유형, 데이터 속도 요구, 최종 사용자 요구 사항과 어떻게 일치해야 하는지를 파악할 수 있습니다. 처리량, 지연시간, 장기 신뢰성이 우선시되는 고정형 용도과 크기, 전력 소비, 동적 핸드오프가 중요한 모바일 애플리케이션는 시장 역학이 크게 다르기 때문에 제품 로드맵은 서로 다른 인증 제도뿐만 아니라 기계적 및 열적 설계 제약에도 대응해야 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 무선 데이터 무선 모뎀 시장 : 설비별

  • 고정
  • 모바일

제9장 무선 데이터 무선 모뎀 시장 : 컴포넌트별

  • 하드웨어
  • 서비스
  • 소프트웨어
    • 관리 소프트웨어
    • 프로토콜 스택

제10장 무선 데이터 무선 모뎀 시장 : 주파수대역별

  • 라이선스
    • 1-6GHz
    • 밀리미터파
    • 1GHz 미만
  • 무면허
    • 2.4GHz
    • 5GHz

제11장 무선 데이터 무선 모뎀 시장 : 네트워크 유형별

  • 셀룰러
    • 4G LTE
    • 5G
    • LPWAN
      • LoRaWAN
      • NB-IoT
  • 위성
  • 지상파 라디오

제12장 무선 데이터 무선 모뎀 시장 : 데이터 속도별

  • 고속
  • 저속
  • 중속

제13장 무선 데이터 무선 모뎀 시장 : 최종사용자별

  • 가전
  • 에너지 및 유틸리티
  • 정부 및 방위
  • 제조업
  • 석유 및 가스
  • 통신
  • 운송 및 물류

제14장 무선 데이터 무선 모뎀 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제15장 무선 데이터 무선 모뎀 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제16장 무선 데이터 무선 모뎀 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Quectel Wireless Solutions Co., Ltd.
    • Fibocom Wireless Inc.
    • Sierra Wireless, Inc.
    • u-blox Holding AG
    • Thales S.A.
    • Digi International Inc.
    • CalAmp Corp.
    • Huawei Technologies Co., Ltd.
    • Advantech Co., Ltd.
    • Multi-Tech Systems, Inc.
LSH 25.10.29

The Wireless Data Radio Modem Market is projected to grow by USD 1.55 billion at a CAGR of 5.03% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.05 billion
Estimated Year [2025] USD 1.10 billion
Forecast Year [2032] USD 1.55 billion
CAGR (%) 5.03%

A concise introduction outlining the convergence of radio engineering, embedded software, and network architectures shaping next-generation wireless data modem deployments

The wireless data radio modem landscape is an intersection of legacy radio engineering and emergent digital networking, enabling connectivity across industrial, commercial, and consumer environments. This executive summary distills technological, regulatory, and commercial dynamics shaping modem deployments, with attention to component architectures, frequency allocation patterns, and the evolving interplay between hardware, embedded software, and cloud-native management tools.

Adoption trends reflect a broadening set of use cases: fixed links continue to underpin backhaul and point-to-point connectivity while mobile modems enable asset tracking, telemetry, and on-the-move communications. Advances in silicon integration, power efficiency, and protocol optimization have expanded the role of data radio modems from simple telemetry endpoints to intelligent nodes capable of local processing, adaptive spectrum use, and lifecycle management through integrated management software and protocol stacks.

Importantly, modern modem strategies are influenced by multi-layer considerations. Regulation and spectrum availability shape frequency choices and licensing models. Component sourcing and firmware supply chains determine manufacturing resilience and time-to-market. Network architectures-whether cellular, satellite, or terrestrial radio-define interoperability requirements, while end-user verticals drive tailored performance and environmental specifications. This introduction sets the stage for a focused analysis of structural shifts, tariff impacts, segmentation insights, regional dynamics, competitive behavior, recommended actions, and the research approach used to compile these findings.

Exploring how spectrum evolution, software-defined capabilities, supply chain resilience, and multi-modal networks are reshaping wireless modem design and deployment strategies

The wireless data radio modem domain is undergoing transformative shifts driven by technological maturation, evolving spectrum paradigms, and changing end-user expectations. First, the rise of higher-frequency bands and more flexible licensing frameworks is enabling denser, higher-throughput links, while at the same time sub-gigahertz and unlicensed bands remain essential for long-range, low-power use cases. Consequently, modem designs must reconcile demands for broad frequency agility with cost and power constraints, accelerating multi-band radio front end integration and software-defined radio techniques.

Second, software is increasingly central to modem value, moving beyond baseline firmware to integrated management software and protocol stacks that facilitate orchestration, over-the-air updates, and advanced security. This shift allows operators and system integrators to deploy feature improvements and security patches post-installation, reducing lifecycle costs and enabling service differentiation. Third, supply chain and geopolitical dynamics are prompting manufacturers and buyers to reevaluate sourcing strategies, invest in component diversification, and consider local assembly or qualification programs to mitigate disruption risk.

Finally, network convergence is reshaping deployment models: cellular technologies such as 4G LTE, 5G, and LPWAN coexist with satellite and terrestrial radio options, creating multi-modal connectivity strategies for reliability and cost optimization. In sum, the landscape is migrating toward modular, software-enabled modem platforms that emphasize interoperability, secure lifecycle management, and flexible deployment across fixed and mobile environments.

Assessing the multifaceted and ongoing effects of the 2025 United States tariff measures on component sourcing, product design, procurement timing, and supplier diversification strategies

Tariff measures introduced by the United States in 2025 have exerted a cumulative influence across the wireless data radio modem ecosystem, affecting component procurement, pricing structures, and vendor sourcing strategies. Increased duties on certain electronic components and finished goods have raised landed costs for manufacturers that rely on international supply chains, prompting engineering teams to reassess bill-of-material choices and to seek alternative component variants or local suppliers where feasible. This response has created a renewed emphasis on dual-sourcing strategies and longer-term supplier agreements to stabilize component availability and price exposure.

Manufacturers have reacted by accelerating value engineering efforts to preserve product margins while maintaining performance and compliance. Redesign cycles have prioritized substitutable components, greater modularity in RF front ends, and packaging adjustments that simplify the use of domestically sourced or tariff-exempt parts. Systems integrators and enterprise buyers have responded by revising procurement windows and extending qualification cycles to accommodate alternative suppliers and to validate interoperability across substituted components.

Beyond direct cost implications, tariffs have influenced strategic decisions regarding nearshoring, contract manufacturing, and inventory management. Some vendors have increased inventory buffers or shifted assembly to regions with favorable trade arrangements to maintain continuity. Network operators and end users in sensitive verticals, such as government and defense, have used tariff-driven supply dynamics as justification to accelerate vendor diversification and to prioritize modems with auditable supply chains. Looking forward, tariff impacts will continue to inform commercial negotiations, contractual terms related to price adjustments, and the prioritization of modular architectures that minimize exposure to specific component price volatility.

Deep segmentation-driven intelligence revealing how installation contexts, component architectures, spectrum allocation, network modalities, data rates, and end-user demands determine modem priorities

Segmentation insights reveal how product strategy and commercial positioning must align with installation contexts, component focus, frequency choices, network types, data-rate needs, and end-user requirements. Based on Installation, market considerations differ markedly between Fixed deployments where throughput, latency, and long-term reliability are prioritized and Mobile use cases where size, power consumption, and dynamic handoff are critical; product roadmaps must therefore address divergent mechanical and thermal design constraints as well as distinct certification regimes.

Based on Component, competitive differentiation often arises from hardware optimization, the quality and scope of services, and the sophistication of software bundles; the Software element-particularly management software and protocol stacks-has emerged as a key area for unlocking operational value through lifecycle management, security updates, and integration with operator OSS/BSS systems. Based on Frequency Band, engineering choices vary between Licensed bands requiring coordination and adherence to 1-6GHz allocations or higher-capacity MmWave and targeted Sub-1GHz allocations, and Unlicensed options where 2.4GHz and 5GHz segments offer cost-effective deployment but require robust coexistence strategies.

Based on Network Type, modem feature sets and compliance demands shift according to whether devices are designed for Cellular networks-encompassing 4G LTE, 5G, and LPWAN technologies such as LoRaWAN and NB-IoT-or for Satellite and Terrestrial Radio use cases where link budgets, antenna design, and latency considerations diverge. Based on Data Rate, different verticals demand High Speed, Medium Speed, or Low Speed capabilities, driving trade-offs in radio complexity and power management. Based on End User, tailored performance, ruggedization, certification, and lifecycle services are essential for segments ranging from Consumer Electronics and Telecommunications to Energy & Utilities, Government & Defense, Manufacturing, Oil & Gas, and Transportation & Logistics, shaping product roadmaps, pricing models, and support offerings.

Regional dynamics and regulatory nuances across the Americas, Europe Middle East & Africa, and Asia-Pacific that influence certification, partner strategies, and deployment priorities

Regional dynamics shape deployment strategies, regulatory engagement, and partner ecosystems across the Americas, Europe, Middle East & Africa, and Asia-Pacific, each presenting distinct opportunities and constraints. In the Americas, commercial adoption is driven by a mix of advanced cellular infrastructure investments and a high concentration of enterprise-grade use cases; this region emphasizes rapid product certification, operator partnerships, and strong after-sales services to support industrial and commercial customers.

In Europe, Middle East & Africa, regulatory fragmentation and diverse spectrum allocation approaches require modem vendors to maintain flexible firmware and certification processes, while significant demand for resilient connectivity in energy, utilities, and transport promotes uptake of hybrid connectivity strategies including satellite augmentation and terrestrial redundancy. In the Asia-Pacific region, a combination of high-volume consumer deployments, aggressive 5G rollouts, and expansive manufacturing capacity creates pressure for cost-effective designs and rapid feature iteration, with regional device ecosystems favoring tight integration with local chipset suppliers and contract manufacturers.

Across all regions, regulatory compliance, spectrum harmonization efforts, and local procurement preferences shape go-to-market choices. Vendors must therefore balance global platform strategies with local market adaptations, partnering with regional system integrators and certification bodies to accelerate deployments and to ensure that device firmware and management software meet local security and regulatory standards.

Insight into competitive strategies, partnerships, platform differentiation, and supply chain maneuvers that define leading companies in the wireless modem ecosystem

Competitive behavior among modem vendors reflects divergent strategies focused on vertical specialization, platform breadth, and services orientation. Some firms emphasize integrated hardware and software stacks to offer turnkey solutions that reduce integration burden for enterprise and operator customers, while others compete on component optimization and price-performance ratios to capture volume-driven segments. Strategic partnerships with chipset suppliers, antenna specialists, and systems integrators are common, as vendors seek to accelerate feature roadmaps and to de-risk RF and protocol interoperability.

In addition to product differentiation, companies are increasingly investing in management software and cloud-based services to expand recurring revenue streams and to strengthen customer lock-in through device lifecycle capabilities. This shift is accompanied by strategic alliances with network operators and cloud providers that facilitate end-to-end service delivery and joint go-to-market initiatives. Mergers, acquisitions, and partnerships are also visible as firms look to fill technology gaps-such as in advanced protocol stacks, edge compute integration, and satellite connectivity-and to achieve geographic scale.

Supply chain strategies are a competitive lever, with leading companies pursuing diversified sourcing, regional assembly, and long-term supplier agreements to mitigate tariff and logistics volatility. Finally, emphasis on standards compliance, security certifications, and industry-specific ruggedization programs distinguishes serious contenders in regulated verticals like Government & Defense and Energy & Utilities, enabling access to high-value, mission-critical deployments.

Actionable and prioritized strategic moves for vendors and buyers to enhance resilience, unlock software-driven value, diversify supply chains, and accelerate multi-modal connectivity offerings

Industry leaders should pursue a set of pragmatic, prioritized actions to preserve agility, reduce risk exposure, and capture demand in emerging use cases. First, invest in modular hardware platforms that accommodate a wide frequency range and allow rapid substitution of RF front-end or baseband modules; this reduces redesign costs and enables quicker responses to tariff-driven component shifts. Second, elevate software as a strategic asset by developing robust management software and protocol stacks that support remote provisioning, security patching, and analytics-driven device lifecycle management, thereby creating recurring revenue opportunities.

Third, diversify supplier portfolios and consider regional assembly or contract manufacturing arrangements to shorten supply chains and mitigate tariff impacts. Fourth, build multi-modal connectivity offerings that combine cellular, satellite, and terrestrial radio pathways to maximize service resilience and to address vertical-specific reliability requirements. Fifth, strengthen partnerships with operators and cloud providers to integrate modems into managed connectivity services and to accelerate certification and deployment cycles.

Finally, prioritize security and compliance as differentiators for regulated markets by investing in certifications, secure boot, and auditable supply chain practices. By sequencing these initiatives-beginning with modular design and software enablement, followed by supply chain adjustments and strategic partnerships-companies can enhance competitiveness while limiting exposure to macroeconomic and regulatory disruptions.

A rigorous mixed-methods research methodology combining expert interviews, technical validation, regulatory review, and triangulation to produce robust insights and actionable recommendations

The research approach underpinning this executive summary combined structured primary and secondary inquiry, expert validation, and iterative triangulation to ensure robust, defensible conclusions. Primary research included in-depth interviews with product managers, RF engineers, procurement leads, and network operators to capture real-world constraints around certification, sourcing, and field performance. These discussions were oriented around deployment scenarios spanning fixed and mobile installations and explored trade-offs among hardware, services, and software elements.

Secondary research built a comprehensive understanding of spectrum allocations, technology roadmaps, and standards developments by analyzing public regulatory filings, standards body releases, and technical white papers. Where possible, technical specifications and interoperability reports were used to validate assertions regarding frequency band behavior, RF front-end architecture, and protocol stack capabilities. Insights from supply chain and trade policy analysis informed the assessment of tariff impacts and supplier strategies.

Data points and qualitative inputs were triangulated to reconcile differing perspectives and to highlight areas of consensus versus ongoing debate. Finally, the research incorporates an explicit validation step with industry experts to ensure that recommendations are practicable and aligned with commercial realities. Methodological limitations include rapidly evolving standards and the potential for near-term policy shifts; these are addressed by situating recommendations in flexible, modular strategies that can adapt to changing conditions.

Concluding synthesis emphasizing modular hardware, software-enabled lifecycle management, and supply chain flexibility as the pillars for future modem success

In conclusion, the wireless data radio modem landscape is entering a period characterized by software-centric differentiation, multi-band RF complexity, and supply chain sensitivity shaped by policy actions. Successful players will be those that harmonize hardware modularity with sophisticated management software and industry-grade protocol stacks, enabling rapid response to regional regulatory differences and to vertical-specific performance requirements.

Tariff dynamics underscore the need for flexible sourcing and regional manufacturing strategies, while the coexistence of cellular, satellite, and terrestrial radio options creates opportunities for multi-modal products that deliver differentiated reliability and cost profiles. End-user segmentation-from consumer electronics to energy, government, manufacturing, oil and gas, telecommunications, and transportation-continues to drive tailored feature sets, certification requirements, and support expectations.

Ultimately, vendors and buyers who prioritize modular design, software-enabled lifecycle management, and strategic partnerships with chipset and cloud providers will be best positioned to capitalize on emerging applications and to mitigate commercial and operational risk. The recommendations outlined above provide a practical roadmap for leaders intent on converting these strategic observations into concrete initiatives and measurable outcomes.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Increasing integration of 5G cellular modules for high-speed industrial automation and remote monitoring
  • 5.2. Growing demand for ruggedized wireless data radio modems in harsh environmental and defense applications
  • 5.3. Adoption of software-defined radio capabilities for flexible spectrum management and future proof connectivity
  • 5.4. Emergence of edge computing enabled modems to reduce latency and support real time data analytics at the network edge
  • 5.5. Shift towards integrated satellite and terrestrial wireless modems for global coverage in maritime and remote operations
  • 5.6. Increasing focus on cybersecurity hardened modems with built-in encryption and intrusion detection features for critical infrastructure

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Wireless Data Radio Modem Market, by Installation

  • 8.1. Fixed
  • 8.2. Mobile

9. Wireless Data Radio Modem Market, by Component

  • 9.1. Hardware
  • 9.2. Services
  • 9.3. Software
    • 9.3.1. Management Software
    • 9.3.2. Protocol Stacks

10. Wireless Data Radio Modem Market, by Frequency Band

  • 10.1. Licensed
    • 10.1.1. 1-6GHz
    • 10.1.2. MmWave
    • 10.1.3. Sub-1GHz
  • 10.2. Unlicensed
    • 10.2.1. 2.4GHz
    • 10.2.2. 5GHz

11. Wireless Data Radio Modem Market, by Network Type

  • 11.1. Cellular
    • 11.1.1. 4G LTE
    • 11.1.2. 5G
    • 11.1.3. LPWAN
      • 11.1.3.1. LoRaWAN
      • 11.1.3.2. NB-IoT
  • 11.2. Satellite
  • 11.3. Terrestrial Radio

12. Wireless Data Radio Modem Market, by Data Rate

  • 12.1. High Speed
  • 12.2. Low Speed
  • 12.3. Medium Speed

13. Wireless Data Radio Modem Market, by End User

  • 13.1. Consumer Electronics
  • 13.2. Energy & Utilities
  • 13.3. Government & Defense
  • 13.4. Manufacturing
  • 13.5. Oil & Gas
  • 13.6. Telecommunications
  • 13.7. Transportation & Logistics

14. Wireless Data Radio Modem Market, by Region

  • 14.1. Americas
    • 14.1.1. North America
    • 14.1.2. Latin America
  • 14.2. Europe, Middle East & Africa
    • 14.2.1. Europe
    • 14.2.2. Middle East
    • 14.2.3. Africa
  • 14.3. Asia-Pacific

15. Wireless Data Radio Modem Market, by Group

  • 15.1. ASEAN
  • 15.2. GCC
  • 15.3. European Union
  • 15.4. BRICS
  • 15.5. G7
  • 15.6. NATO

16. Wireless Data Radio Modem Market, by Country

  • 16.1. United States
  • 16.2. Canada
  • 16.3. Mexico
  • 16.4. Brazil
  • 16.5. United Kingdom
  • 16.6. Germany
  • 16.7. France
  • 16.8. Russia
  • 16.9. Italy
  • 16.10. Spain
  • 16.11. China
  • 16.12. India
  • 16.13. Japan
  • 16.14. Australia
  • 16.15. South Korea

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Quectel Wireless Solutions Co., Ltd.
    • 17.3.2. Fibocom Wireless Inc.
    • 17.3.3. Sierra Wireless, Inc.
    • 17.3.4. u-blox Holding AG
    • 17.3.5. Thales S.A.
    • 17.3.6. Digi International Inc.
    • 17.3.7. CalAmp Corp.
    • 17.3.8. Huawei Technologies Co., Ltd.
    • 17.3.9. Advantech Co., Ltd.
    • 17.3.10. Multi-Tech Systems, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제