시장보고서
상품코드
1848534

사출 성형기 시장 : 기계 유형, 제품 유형, 기계 부품, 최종사용자, 판매 채널별 - 세계 예측(2025-2032년)

Injection Molding Machine Market by Machine Type, Product Type, Machine Components, End-User, Sales Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 187 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

사출 성형기 시장은 2032년까지 CAGR 5.51%로 197억 5,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 128억 5,000만 달러
추정 연도 2025년 135억 2,000만 달러
예측 연도 2032 197억 5,000만 달러
CAGR(%) 5.51%

사출 성형기를 둘러싼 상황은 전략적 장비의 역할, 업무 우선 순위, 투자 결정 요인에 중점을 둔 간결한 상황입니다.

이 분석은 현대 사출 성형기를 둘러싼 환경에 대한 간략한 설명으로 시작하여 제조의 필요성, 기술의 진화, 공급 라인의 현실의 변화가 교차하는 모습을 그려내고 있습니다. 기계는 단순히 자본설비로서가 아니라 소비재, 자동차 조립, 전자기기 케이스, 의료기기 등 제품 혁신의 실현자로 자리매김하고 있습니다. 독자들은 재료 호환성, 사이클 타임 최적화, 수명주기 비용의 트레이드 오프의 맥락에서 기계를 이해함으로써 장비 선택이 다운스트림 가치 창출과 운영 탄력성에 어떤 영향을 미치는지 더 잘 이해할 수 있습니다.

소개에서는 산업의 틀에서 업무에 미치는 영향에 초점을 맞추고, 자동화, 에너지 효율, 디지털 통합이 점점 더 중요해지고 있음을 강조합니다. 처리량 요구 사항, 제품 복잡성, 규제 압력 등 현대화 선택이 조달 기준과 애프터마켓 서비스를 어떻게 형성하고 있는지에 초점을 맞추고 있습니다. 이 섹션에서는 구매자, OEM 및 서비스 제공업체가 사출 성형 자산을 평가할 때 우선순위를 두는 주요 성능 속성을 명확히 하고, 부문별 투자 결정을 위한 전략적 질문을 개괄함으로써 보다 심층적인 분석을 위한 토대를 마련합니다.

생산 아키텍처와 애프터마켓 서비스 모델을 변화시키는 기술, 재료, 디지털 전환에 대한 심층적인 리뷰

사출 성형기의 사업 환경은 기계 아키텍처, 재료 과학 및 디지털 공정 제어의 발전에 힘입어 혁신적인 변화를 맞이하고 있습니다. 정밀성, 재현성, 에너지 효율이 가장 중요한 애플리케이션에서는 기존의 유압식 플랫폼 대신 전동식 성형기가 도입되고 있으며, 성능과 비용의 균형이 요구되는 애플리케이션에서는 하이브리드 성형기가 틈새시장을 개척하고 있습니다. 동시에, 재료의 다양화, 특히 엔지니어링 열가소성 플라스틱 및 고성능 엘라스토머의 사용 확대로 인해 더 엄격한 공정 제어와 더 진보된 냉각 및 사출 서브 시스템을 갖춘 기계가 필요합니다.

또 다른 큰 변화는 인더스트리 4.0의 기능을 기계 제어 및 주변기기에 통합하는 것입니다. 에지 분석, 폐쇄 루프 프로세스 모니터링 및 예측 유지보수 알고리즘은 더 높은 가동 시간과 일관된 부품 품질을 가능하게 하며, 이는 제조업체가 생산 셀 및 서비스 계약을 구성하는 방식에 영향을 미칩니다. 주요 기업들은 핵심 부품의 리드타임을 단축하고, 로컬 서비스 네트워크를 중시함으로써 다운타임에 대한 노출을 줄이고 있습니다. 이러한 요인들이 결합되어 사출 성형 생태계 전체에서 자본 계획, 운영자 기술 요구 사항 및 애프터 서비스 모델이 재정의되고 있습니다.

2025년 시행되는 미국의 관세 조치별 누적 운영 및 조달에 미치는 영향에 대한 종합적 평가

2025년 미국의 새로운 관세 조치가 시행되면, 공급망과 구매 전략 전반에 걸쳐 업무적, 전략적 영향이 중층적으로 영향을 미칠 것입니다. 거래 수준에서 특정 수입 기계 및 부품에 대한 관세 인상으로 인해 조달팀은 단가에만 초점을 맞추지 않고 총 상륙 비용을 재평가할 필요가 있습니다. 이러한 재조정에는 공급업체의 다양화, 개조와 교체에 대한 비교 경제성, 예비 부품 및 하위 어셈블리의 육상 조달 증가 가능성 등에 더 중점을 두는 것이 포함됩니다.

전략적 관점에서 볼 때, 관세는 제조업체들에게 현지 공급업체와의 관계를 강화할 수 있는 인센티브를 제공하고, 노출을 줄이기 위해 위탁생산이나 라이선스 조립과 같은 장기적인 옵션을 평가하게 했습니다. 업계의 위험 배분은 서비스 및 유지보수 생태계로 이동하고 있으며, 현지에 기반을 둔 전문 지식과 재고의 가용성이 장비 선택에 더 큰 역할을 하고 있습니다. 또한, 자본 배분 결정은 잠재적인 정책 변동을 점점 더 많이 고려하고 있습니다. 기업들은 변화하는 투입 비용과 무역 조건에 적응할 수 있는 유연한 조달 방식과 모듈식 기계 구조를 우선시하고 있습니다.

기계 아키텍처, 재료 클래스, 부품 및 서브시스템, 최종사용자 수요, 판매 채널을 조달 및 서비스 전략과 연결하여 실행 가능한 세분화에 대한 인사이트를 제공합니다.

세분화 인사이트는 기계 유형 속성, 제품 재료 수요, 구성요소 아키텍처, 최종사용자 요구 사항, 판매 채널 선호도가 어떻게 상호 작용하여 장비 선택 및 애프터마켓 전략을 형성하는지에 대한 미묘한 이해가 필요합니다. 기계 유형별로 보면 속도, 정확성, 저에너지 소비에 중점을 둔 전기식 사출 성형기, 성능과 비용의 균형을 맞춘 하이브리드 사출 성형기, 고톤 및 레거시 용도에 적합한 유압식 사출 성형기가 있습니다. 이러한 차이는 자본 배분 및 공장 개보수 우선순위에 반영됩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 사출 성형기 시장 : 기종별

  • 전기 사출 성형기
  • 하이브리드 사출 성형기
  • 유압 사출 성형기

제9장 사출 성형기 시장 : 제품 유형별

  • 세라믹
  • 금속
  • 플라스틱
    • 열가소성
    • 열경화성 수지
  • 고무

제10장 사출 성형기 시장 : 기계 부품별

  • 클램프 유닛
  • 컨트롤 유닛
  • 냉각 유닛
  • 유압 시스템
  • 사출 유닛
  • 타이 바

제11장 사출 성형기 시장 : 최종사용자별

  • 자동차
    • 외장 부품
    • 내장 부품
  • 소비재
  • 일렉트로닉스
  • 헬스케어 업계

제12장 사출 성형기 시장 : 판매 채널별

  • 오프라인 판매
  • 온라인 판매

제13장 사출 성형기 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 사출 성형기 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 사출 성형기 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • ARBURG GmbH+Co KG
    • FANUC CORPORATION
    • Hillenbrand, Inc.
    • Huarong Group
    • Husky Technologies
    • KraussMaffei Group GmbH
    • MITSUBISHI HEAVY INDUSTRIES, LTD.
    • Sumitomo Heavy Industries, Ltd.
    • UBE Machinery Inc.
    • Yizumi Holdings Co., Ltd.
KSM

The Injection Molding Machine Market is projected to grow by USD 19.75 billion at a CAGR of 5.51% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 12.85 billion
Estimated Year [2025] USD 13.52 billion
Forecast Year [2032] USD 19.75 billion
CAGR (%) 5.51%

Concise orientation to the injection molding machine landscape highlighting strategic equipment roles, operational priorities, and investment decision drivers

This analysis opens with a concise orientation to the contemporary injection molding machine environment, mapping the intersection of manufacturing imperatives, technology evolution, and shifting supply-line realities. The narrative situates machines not merely as capital equipment but as enablers of product innovation across consumer goods, automotive assemblies, electronics housings, and medical devices. By framing machines in the context of material compatibility, cycle-time optimization, and lifecycle cost trade-offs, readers can better appreciate how equipment selection influences downstream value creation and operational resilience.

Transitioning from industry framing to operational impact, the introduction underscores the growing emphasis on automation, energy efficiency, and digital integration. It highlights how modernization choices-whether driven by throughput requirements, product complexity, or regulatory pressures-shape procurement criteria and aftermarket services. This section sets the stage for deeper analysis by clarifying the key performance attributes that buyers, OEMs, and service providers prioritize when evaluating injection molding assets, and by outlining the strategic questions that inform investment decisions across sectors.

Detailed review of the transformative technological, material, and digital shifts reshaping production architectures and aftermarket service models

The operational landscape for injection molding machines is undergoing transformative shifts driven by advances in machine architectures, materials science, and digital process control. Electric machines are displacing traditional hydraulic platforms in applications where precision, repeatability, and energy efficiency are paramount, while hybrid offerings are carving a niche where balanced performance and cost considerations are required. Concurrently, materials diversification-especially the expanded use of engineered thermoplastics and high-performance elastomers-requires machines with tighter process control and more advanced cooling and injection subsystems.

Another major shift is the integration of Industry 4.0 capabilities into machine controls and peripherals. Edge analytics, closed-loop process monitoring, and predictive maintenance algorithms are enabling higher uptime and consistent part quality, which in turn affects how manufacturers configure production cells and service agreements. Supply-chain reconfiguration is also notable; companies are shortening lead times for critical components and emphasizing local service networks to reduce downtime exposure. Together, these drivers are redefining capital planning, operator skill requirements, and aftermarket service models across the injection molding ecosystem.

Comprehensive appraisal of cumulative operational and procurement impacts resulting from the United States tariff measures enacted in 2025

The implementation of new tariff measures in the United States in 2025 has introduced layered operational and strategic implications across supply chains and purchasing strategies. At the transactional level, increased duties on certain imported machines and components have driven procurement teams to reassess total landed cost rather than focusing solely on unit pricing. This recalibration includes a greater emphasis on supplier diversification, the comparative economics of refurbishment versus replacement, and the potential for increased onshore sourcing of spare parts and subassemblies.

From a strategic standpoint, tariffs have incentivized manufacturers to strengthen local supplier relationships and to evaluate long-term options such as toll manufacturing and licensed assembly to mitigate exposure. The distribution of industry risk has shifted toward service and maintenance ecosystems, where availability of localized expertise and inventory plays a larger role in equipment selection. Moreover, capital allocation decisions increasingly account for potential policy volatility; companies are prioritizing flexible procurement arrangements and modular machine architectures that can adapt to changing input costs and trade conditions.

Actionable segmentation insights that link machine architectures, material classes, component subsystems, end-user demands, and sales channels to procurement and service strategies

Segmentation insight requires a nuanced appreciation of how machine type attributes, product material demands, component architecture, end-user requirements, and sales channel preferences interact to shape equipment selection and aftermarket strategy. Based on Machine Type, the landscape is differentiated among Electric Injection Molding Machine offerings, which emphasize speed, precision, and lower energy consumption; Hybrid Injection Molding Machine variants, which balance performance and cost; and Hydraulic Injection Molding Machine platforms, which remain relevant for high-tonnage or legacy applications. These distinctions inform capital allocation and plant retrofit priorities.

Based on Product Type, component and product designers must account for the distinct processing needs of Ceramic and Metal parts versus Rubber and Plastic. Within Plastic, the divide between Thermoplastic and Thermosets drives choices for heating profiles, mold design, and part handling. Based on Machine Components, the performance and serviceability expectations center on the Clamping Unit, Control Unit, Cooling Unit, Hydraulic System, Injection Unit, and Tie Bar, each contributing to throughput, precision, and maintainability. Based on End-User, adoption patterns diverge among Automotive, Consumer Goods, Electronics, and Healthcare Industry segments, with the Automotive domain further subdivided into Exterior Components and Interior Components, which impose discrete quality and aesthetics constraints. Based on Sales Channel, procurement pathways vary between Offline Sales and Online Sales, affecting lead times, financing options, and aftermarket support structures. Integrating these segmentation lenses enables clearer alignment of equipment capabilities with product specifications and operational constraints.

In-depth regional perspective on how Americas, Europe Middle East & Africa, and Asia-Pacific differences inform procurement, service, and supply-chain strategies

Regional dynamics continue to moderate equipment investment patterns, supply-chain configuration, and service delivery models across primary geographies. In the Americas, demand drivers include reshoring initiatives, localized aftermarket services, and OEMs' emphasis on reducing logistical complexity for high-value or time-sensitive production. These conditions favor machines with rapid serviceability and strong local support networks. In contrast, Europe, Middle East & Africa exhibits a pronounced focus on energy efficiency, regulatory compliance, and materials circularity, prompting investments in electric platforms, advanced cooling technologies, and options for closed-loop material handling.

Asia-Pacific remains pivotal for both manufacturing scale and supply-chain depth. The region's maturity in component manufacturing and assembly fosters a broad spectrum of machine deployments, from high-volume hydraulic presses to advanced electric units for precision applications. Across regions, cross-border considerations such as tariff exposure, service availability, and standards compliance influence whether companies prioritize modular designs, invest in local spares inventories, or structure multi-vendor support agreements. Understanding these geographic variations is essential for shaping sales strategies, service footprints, and cross-regional sourcing decisions.

Strategic assessment of competitive differentiation across equipment OEMs and component providers emphasizing digital, modular, and service-oriented advantages

Leading equipment manufacturers and component suppliers continue to evolve their value propositions to address demands for automation, energy performance, and lifecycle services. Companies that have successfully integrated advanced control systems and remote diagnostic capabilities into their product portfolios differentiate on uptime and process stability, while those with modular machine platforms offer more adaptable solutions for varied production profiles. The competitive landscape is characterized by strategic partnerships between OEMs, control-system vendors, and tooling specialists to deliver turnkey cell-level solutions that reduce integration risk for end-users.

Service models are increasingly a battleground for differentiation. Providers that combine rapid parts availability, field-service penetration, and subscription-based monitoring services secure longer customer lifecycles and recurring revenue. At the same time, firms that invest in training and certification programs for customer operators and maintenance teams strengthen relationships and reduce total cost of ownership for buyers. Lastly, component-level innovation-particularly in cooling units, injection units, and control electronics-continues to create opportunities for suppliers to capture value through retrofit kits and upgrade pathways without requiring full machine replacement.

Practical and prioritized actions for executives to strengthen capital resilience, service networks, and digital capability deployment for sustained operational advantage

Industry leaders should adopt a multi-pronged approach that aligns capital allocation, supply resiliency, and digital enablement to capture operational improvements and reduce exposure to external shocks. Prioritize investments in machine platforms that offer modular upgrade pathways and open control architectures, enabling easier integration of advanced monitoring and predictive maintenance capabilities. Simultaneously, deepen local service networks or strategic partnerships to ensure rapid access to spare parts and field expertise, thereby minimizing production risk from prolonged downtime.

In procurement and sourcing, negotiate flexible contracts that allow for component-level substitutions and tiered pricing to buffer against tariff-related cost volatility. Emphasize supplier scorecards that include service response times, local inventory depth, and retrofit capabilities. From an operations perspective, invest in operator upskilling and digital dashboards that translate machine telemetry into actionable process controls. Finally, pilot circular-economy initiatives that reclaim and requalify tooling and non-critical subassemblies to reduce input dependency and demonstrate measurable sustainability gains.

Transparent explanation of a layered research methodology combining primary interviews, hands-on equipment audits, and corroborated secondary analysis to validate findings

The research underpinning this executive summary employed a layered methodology combining primary interviews, technical equipment audits, and secondary industry sources to produce an evidence-based narrative on machine capabilities and market dynamics. Primary engagements included structured interviews with procurement leads, plant managers, and service technicians to capture operational pain points, decision criteria, and retrofit priorities. Technical audits of representative machine installations provided hands-on validation of control architectures, energy consumption characteristics, and maintainability attributes.

Secondary source review focused on publicly available technical specifications, regulatory guidance, and trade publications to corroborate observed trends in machine architecture and materials usage. Data synthesis involved cross-referencing qualitative insights with equipment feature matrices to identify consistent patterns in buyer behavior and service expectations. Where appropriate, findings were triangulated across multiple interviewees and installations to strengthen the robustness of conclusions and to highlight reproducible insights relevant to strategic planning and supplier evaluation.

Concluding synthesis emphasizing the strategic importance of equipment modularity, digital integration, and resilient service networks for sustained manufacturing performance

In conclusion, injection molding machines occupy a central role in industrial competitiveness through their impact on product quality, production flexibility, and lifecycle costs. The convergence of electric and hybrid architectures, materials complexity, and digital process control is creating new performance benchmarks and altering the calculus of replacement versus retrofit. Simultaneously, policy shifts and tariff considerations have amplified the importance of localized service networks and flexible procurement strategies.

Executives must therefore evaluate equipment decisions not only through the lens of immediate capital cost but also by considering serviceability, modularity, and the capacity to integrate digital process controls. An emphasis on supplier partnerships that extend beyond transactional relationships to include training, parts availability, and upgrade pathways will be critical to maintaining production continuity and achieving long-term operational efficiencies. These conclusions should guide capital planning, sourcing strategies, and the development of longer-term service models.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of Industrial Internet of Things sensors for real-time monitoring and predictive maintenance in injection molding equipment
  • 5.2. Adoption of advanced servo-hydraulic hybrid injection molding machines to reduce energy consumption in automotive part production
  • 5.3. Development of all-electric injection molding platforms for precision manufacturing in medical device applications
  • 5.4. Implementation of digital twin technology for simulation and optimization of injection molding cycle times and part quality
  • 5.5. Rising demand for micro-injection molding capabilities for miniature components in electronics and microfluidics markets
  • 5.6. Use of eco-friendly bio-based polymer materials requiring tailored machine screw designs and processing parameters
  • 5.7. Expansion of additive manufacturing integration with injection molding to enable rapid tooling and low-volume production
  • 5.8. Deployment of AI-driven process control algorithms to minimize scrap rates and enhance yield in high-volume molding operations

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Injection Molding Machine Market, by Machine Type

  • 8.1. Electric Injection Molding Machine
  • 8.2. Hybrid Injection Molding Machine
  • 8.3. Hydraulic Injection Molding Machine

9. Injection Molding Machine Market, by Product Type

  • 9.1. Ceramic
  • 9.2. Metal
  • 9.3. Plastic
    • 9.3.1. Thermoplastic
    • 9.3.2. Thermosets
  • 9.4. Rubber

10. Injection Molding Machine Market, by Machine Components

  • 10.1. Clamping Unit
  • 10.2. Control Unit
  • 10.3. Cooling Unit
  • 10.4. Hydraulic System
  • 10.5. Injection Unit
  • 10.6. Tie Bar

11. Injection Molding Machine Market, by End-User

  • 11.1. Automotive
    • 11.1.1. Exterior Components
    • 11.1.2. Interior Components
  • 11.2. Consumer Goods
  • 11.3. Electronics
  • 11.4. Healthcare Industry

12. Injection Molding Machine Market, by Sales Channel

  • 12.1. Offline Sales
  • 12.2. Online Sales

13. Injection Molding Machine Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Injection Molding Machine Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Injection Molding Machine Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. ARBURG GmbH + Co KG
    • 16.3.2. FANUC CORPORATION
    • 16.3.3. Hillenbrand, Inc.
    • 16.3.4. Huarong Group
    • 16.3.5. Husky Technologies
    • 16.3.6. KraussMaffei Group GmbH
    • 16.3.7. MITSUBISHI HEAVY INDUSTRIES, LTD.
    • 16.3.8. Sumitomo Heavy Industries, Ltd.
    • 16.3.9. UBE Machinery Inc.
    • 16.3.10. Yizumi Holdings Co., Ltd.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제