시장보고서
상품코드
1848747

하이드로겔 기반 약물전달 시스템 시장 : 용도, 제품 유형, 치료 분야, 최종사용자별 - 세계 예측(2025-2032년)

Hydrogel-based Drug Delivery System Market by Application, Product Type, Therapeutic Area, End User - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 193 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

하이드로겔 기반 약물전달 시스템 시장은 2032년까지 연평균 복합 성장률(CAGR) 8.90%로 161억 3,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 81억 5,000만 달러
추정 연도 : 2025년 88억 9,000만 달러
예측 연도 : 2032년 161억 3,000만 달러
CAGR(%) 8.90%

하이드로겔 기반 약물 전달 시스템을 과학적 진보, 임상적 추진력, 규제 신호, 번역적 모멘텀 등을 바탕으로 알기 쉽게 소개합니다.

하이드로겔 기반 약물 전달은 실험실에서의 호기심에서 여러 임상 영역의 복잡한 치료 과제를 해결할 수 있는 다재다능한 플랫폼 클래스로 부상했습니다. 최근 고분자 화학, 가교 기술 및 페이로드 안정화 분야의 발전은 방출 동역학을 조절하고 생리적 신호에 반응하며 이전에는 실용적이지 않았던 방식으로 조직 환경과 통합할 수 있는 하이드로겔을 생성하는 데 집중되어 있습니다. 이러한 과학적 발전은 국소 치료, 최소침습적 전달 형태, 환자 중심 치료 모델에 대한 임상적 관심 증가와 맞물려 기술의 성숙과 채택을 위한 비옥한 환경을 조성하고 있습니다.

소재의 기술 혁신에 그치지 않고, 전임상 유효성 시험과 초기 인체 임상시험 간의 반복적인 피드백을 통해 안전성 프로파일과 임상 전개에 필요한 운영 요건이 명확해짐에 따라 번역적 모멘텀이 증가하고 있습니다. 동시에 규제 당국은 탄탄한 특성 평가 및 관리 전략이 입증되면 조합 제품의 특성을 고려한 적응형 접근 방식에 관대하다는 것을 보여주고 있습니다. 이러한 힘을 종합하면, 하이드로겔 기반 약물 전달이 틈새 시장에서 보다 광범위한 임상 통합으로 발전할 수 있는 경로가 만들어지고, 향후 R&D 우선순위, 투자 결정, 부문 간 협력 관계가 형성될 것입니다.

하이드로겔 약물 전달의 상황을 재구성하고, 혁신의 새로운 길을 개척하고, 과학, 임상, 규제, 상업적 힘의 수렴 분석

하이드로겔을 이용한 약물 전달의 상황은 과학적, 임상적, 상업적 힘의 수렴으로 변화하고 있습니다. 과학적인 측면에서 모듈식 화학 및 다기능 가교 전략은 하이드로겔이 캐리어와 활성 생체 모방 매트릭스의 역할을 모두 수행할 수 있도록 하여 수동적 전달에서 조직 통합 및 재생 지원으로 기능 범위를 확장하고 있습니다. 임상적으로, 국소적 효능을 향상시키면서 전신 노출을 감소시키는 치료법에 대한 선호도가 증가하고 있으며, 하이드로겔은 표적화된 눈, 피부, 수술 전후 적용에 있어 매력적인 플랫폼으로 자리매김하고 있습니다.

상업적으로, 고분자 전문가, 생명공학 혁신가, 임상 기기 제조업체 간의 파트너십은 제형 전문성과 확립된 전달 장치를 결합한 공동 개발 모델을 가속화하고 있습니다. 규제 당국의 기대치도 하이브리드 제품에 대응할 수 있도록 진화하고 있으며, 특성화, 생체 적합성, 성능의 엔드포인트에 대해 스폰서와 규제 당국 간에 더 빠르고 반복적인 조정이 이루어지고 있습니다. 마지막으로, 편의성, 순응도, 비용 효율성에 대한 환자와 지불자의 우선순위는 가치 제안을 재구성하고 개발자가 실제 혜택을 입증하도록 유도하고 있습니다. 이러한 변화의 흐름은 연구개발 로드맵을 재조정하고, 가치사슬 전반에 걸쳐 새로운 혁신의 입구를 만들어내고 있습니다.

2025년 미국의 관세 인상이 하이드로겔 밸류체인 전반공급망, 조달 전략, 회복력 투자에 대한 투자를 어떻게 재구성할 것인지에 대한 전략적 평가

미국이 2025년 단계적 관세를 도입함에 따라 하이드로겔 개발 및 제조 기업은 공급망 전략, 조달 결정, 비용 관리에 대한 새로운 고려를 하게 될 것입니다. 특수 폴리머, 가교제, 시약 등급 단량체 등 많은 하이드로겔 제제의 핵심 원료는 세계 공급업체 네트워크를 통해 조달되는 경우가 많습니다. 관세에 따른 상륙 비용 상승으로 인해 기업들은 공급업체 다변화를 검토하고, 국내 대체품의 인증을 앞당기며, 무역 정책 변동에 따른 위험을 줄이기 위해 자재 인보이스 전략을 재구성할 필요가 있습니다.

이러한 무역의 변화는 니어쇼어링과 수직적 통합에 대한 결정에도 영향을 미치고 있으며, 일부 기업들은 마진의 안정성을 유지하고 임상 프로그램 시장 출시 시간을 지키기 위해 중요한 제조 공정을 현지화하는 것의 이점을 평가했습니다. 또한, 조달팀은 R&D 부서와 더욱 긴밀하게 협력하여 관세에 영향을 받는 투입물에 대한 의존도를 줄이기 위한 처방 접근 방식을 식별하고, 법무 및 규제 부서는 규정 준수 의무에 영향을 미칠 수 있는 관세 분류 변경을 면밀히 검토하고 있습니다. 경쟁 환경을 종합하면, 관세 환경은 전면적인 철수보다는 전략적 적응을 촉진하고, 경쟁력 유지를 위한 탄력성 위주의 투자 및 계약 재협상을 촉구하고 있습니다.

용도 유형, 제품군, 치료 영역, 최종 사용자 설정이 우선순위 지정 및 개발 전략에 반영되는 방식, 세부 세분화에 대한 통찰력을 제공합니다.

부문 수준의 통찰력을 통해 과학적 역량과 임상적 요구 및 상업적 기회가 교차하는 지점을 파악하고, 우선순위를 정할 수 있는 미묘한 지도를 제공합니다. 용도별로는 안과용 제제, 조직공학용 제제, 경피흡수형 제제, 상처치유용 제제가 있으며, 안과용 제제는 점안제와 점안인서트로, 조직공학용 제제는 골재생, 연골재생, 피부대체재로, 경피흡수형 제제는 겔과 패치로, 상처치유용 제제는 급성상처, 화상피복재, 만성상처로 분류됩니다. 상처치료제는 급성상처, 화상피복재, 만성상처로 분류됩니다. 각 용도는 서로 다른 제형 제약, 기기 통합 요구사항, 규제 경로를 가지고 있으며, 따라서 각 용도의 개발 일정과 기술적 리스크 프로파일은 부문에 따라 크게 달라질 수 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 하이드로겔 기반 약물전달 시스템 시장 : 용도별

  • 안과 투여
    • 안약
    • 안과용 삽입물
  • 조직공학
    • 뼈 재생
    • 연골 재생
    • 피부 대체품
  • 경피 전달
    • 패치
  • 상처 치유
    • 급성 창상
    • 화상 붕대
    • 만성 창상

제9장 하이드로겔 기반 약물전달 시스템 시장 : 제품 유형별

  • 하이브리드 폴리머
  • 천연 폴리머
  • 합성 폴리머

제10장 하이드로겔 기반 약물전달 시스템 시장 : 치유 영역별

  • 심혈관 치료
  • 당뇨병 관리
  • 종양학
  • 정형외과 수복

제11장 하이드로겔 기반 약물전달 시스템 시장 : 최종사용자별

  • 클리닉
  • 가정치료 환경
  • 병원
  • 연구기관

제12장 하이드로겔 기반 약물전달 시스템 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 하이드로겔 기반 약물전달 시스템 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 하이드로겔 기반 약물전달 시스템 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Evonik Industries AG
    • The Lubrizol Corporation
    • Ashland Global Holdings Inc.
    • BASF SE
    • DuPont de Nemours, Inc.
    • DSM N.V.
    • Dow Inc.
    • Merck KGaA
    • Lonza Group AG
    • 3M Company
LSH

The Hydrogel-based Drug Delivery System Market is projected to grow by USD 16.13 billion at a CAGR of 8.90% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 8.15 billion
Estimated Year [2025] USD 8.89 billion
Forecast Year [2032] USD 16.13 billion
CAGR (%) 8.90%

A clear introduction to hydrogel-based drug delivery systems capturing scientific progress, clinical drivers, regulatory signals, and translational momentum

Hydrogel-based drug delivery has emerged from laboratory curiosity to a versatile platform class that addresses complex therapeutic challenges across multiple clinical domains. Recent advances in polymer chemistry, crosslinking techniques, and payload stabilization have converged to produce hydrogels that can modulate release kinetics, respond to physiological cues, and integrate with tissue environments in ways that were previously impractical. These scientific developments coincide with rising clinical interest in localized therapies, minimally invasive delivery formats, and patient-centric care models, which together create a fertile environment for technology maturation and adoption.

Beyond materials innovation, translational momentum is being driven by iterative feedback between preclinical efficacy studies and early human trials, which clarify safety profiles and operational requirements for clinical deployment. Concurrently, regulatory authorities have signaled openness to adaptive approaches that account for combination product attributes, provided robust characterization and control strategies are demonstrated. Taken together, these forces create a pathway for hydrogel-based drug delivery to evolve from niche applications to broader clinical integration, shaping R&D priorities, investment decisions, and cross-sector collaborations moving forward.

An analysis of the converging scientific, clinical, regulatory, and commercial forces that are reshaping the hydrogel delivery landscape and opening new pathways for innovation

The landscape for hydrogel-based drug delivery is experiencing transformative shifts driven by converging scientific, clinical, and commercial forces. On the scientific front, modular chemistries and multifunctional crosslinking strategies are enabling hydrogels to serve as both carriers and active biomimetic matrices, thereby expanding their functional scope beyond passive delivery into tissue integration and regenerative support. Clinically, there is growing preference for therapies that reduce systemic exposure while improving local efficacy, which positions hydrogels as attractive platforms for targeted ocular, dermal, and perioperative applications.

Commercially, partnerships between polymer specialists, biotech innovators, and clinical device manufacturers are accelerating co-development models that combine formulation expertise with established delivery devices. Regulatory expectations are evolving to accommodate hybrid products, prompting earlier and more iterative engagement between sponsors and regulators to align on characterization, biocompatibility, and performance endpoints. Finally, patient and payer priorities-driven by convenience, adherence, and cost-effectiveness-are reshaping value propositions and pushing developers to demonstrate real-world benefits. These cumulative shifts are recalibrating R&D roadmaps and creating new entry points for innovation across the value chain.

A strategic assessment of how United States tariff changes in 2025 are reshaping supply chains, sourcing strategies, and resilience investments across hydrogel value chains

The introduction of incremental tariffs by the United States in 2025 has layered new considerations onto supply chain strategy, sourcing decisions, and cost management for hydrogel developers and manufacturers. Raw materials central to many hydrogel formulations, including specialty polymers, crosslinkers, and reagent-grade monomers, are frequently sourced through global supplier networks. Tariff-induced increases to landed costs have prompted firms to reassess supplier diversification, accelerate qualification of domestic alternatives, and reengineer bill-of-materials strategies to mitigate exposure to trade policy volatility.

These trade shifts are also influencing decisions around nearshoring and vertical integration, with some organizations evaluating the benefits of localizing critical manufacturing steps to maintain margin stability and protect time-to-market for clinical programs. Furthermore, procurement teams are working more closely with R&D to identify formulation approaches that reduce reliance on tariff-exposed inputs, and legal and regulatory functions are scrutinizing changes in customs classifications that could affect compliance obligations. Collectively, the tariff environment is catalyzing strategic adaptation rather than wholesale retreat, encouraging resilience-focused investments and contract renegotiations to preserve competitive positioning.

In-depth segmentation insights revealing how application types, product classes, therapeutic areas, and end-user settings converge to inform prioritization and development strategy

Segment-level insights reveal where scientific capabilities intersect with clinical need and commercial opportunity, offering a nuanced map for prioritization. Based on Application, the landscape includes Ophthalmic Delivery, Tissue Engineering, Transdermal Delivery, and Wound Healing, with Ophthalmic Delivery further differentiated into Eye Drops and Ocular Inserts, Tissue Engineering subdivided into Bone Regeneration, Cartilage Regeneration, and Skin Substitutes, Transdermal Delivery split between Gels and Patches, and Wound Healing covering Acute Wounds, Burn Dressings, and Chronic Wounds. Each application grouping carries distinct formulation constraints, device integration requirements, and regulatory pathways, meaning that translational timelines and technical risk profiles vary significantly across segments.

Based on Product Type, innovation centers on Hybrid Polymers, Natural Polymers, and Synthetic Polymers, each bringing unique advantages: hybrid systems balance bioactivity and mechanical performance, natural polymers offer inherent biocompatibility and cell-interactive properties, and synthetic polymers provide tunable degradation and reproducible manufacturing. Based on Therapeutic Area, projects focus on Cardiovascular Therapies, Diabetes Management, Oncology, and Orthopedic Repair, where localized delivery and controlled release can address unmet efficacy and safety needs. Based on End User, adoption dynamics differ across Clinics, Homecare Settings, Hospitals, and Research Institutes, with use environments shaping packaging, dosing formats, and training requirements. Mapping these segment axes together reveals clusters where technological readiness, clinical demand, and adoption pathways align, enabling prioritized investment decisions and targeted partnership strategies.

Key regional insights that explain how Americas, Europe Middle East & Africa, and Asia-Pacific dynamics uniquely influence regulatory pathways, clinical adoption, and commercialization strategies

Regional dynamics shape commercialization pathways, regulatory engagement, and partnership models in distinct ways. In the Americas, a combination of advanced clinical infrastructure and concentrated pockets of biotechnology innovation favors early adoption in ophthalmology, oncology adjuncts, and hospital-led regenerative procedures, while strong manufacturing capabilities support scale-up strategies. Reimbursement frameworks and purchasing behaviors in this region also influence the commercial case for formats that reduce hospital stays or enable outpatient management.

Europe, Middle East & Africa presents a heterogeneous landscape in which regulatory harmonization within certain markets coexists with variable reimbursement approaches and infrastructure diversity. Developers pursuing these markets typically emphasize robust clinical evidence and health-economic narratives to facilitate uptake across differing national systems. Asia-Pacific includes a broad span of capabilities from mature centers of clinical research to rapidly expanding manufacturing ecosystems; here, accelerated regulatory pathways and high-volume patient populations can enable faster clinical validation, provided developers adapt to local regulatory expectations and distribution channels. Each region demands bespoke go-to-market plans that reflect clinical practice patterns, regulatory timelines, and commercial partnerships.

A synthesis of company-level behaviors, partnership trends, and investment priorities that reveal how specialization and collaboration drive commercialization across the hydrogel ecosystem

Company-level behavior within the hydrogel delivery ecosystem is characterized by a mix of specialization and cross-sector collaboration. Established polymer developers and specialty chemical firms continue to invest in formulation platforms and manufacturing scale, while biotech and medical device companies pursue asset-centric or platform-based strategies that pair therapeutic payloads with delivery matrices. Strategic partnerships, licensing agreements, and targeted acquisitions are common mechanisms for accelerating capability gaps-particularly when one party provides clinical validation and another contributes materials expertise or manufacturing capacity.

Investment patterns show a preference for de-risking programs through staged development, where initial indications with clear clinical endpoints and feasible regulatory paths are chosen to demonstrate platform value before expanding into more complex therapeutic areas. At the same time, a growing cohort of agile start-ups focuses on tightly scoped indications such as ocular inserts or wound dressings where rapid proof-of-concept can create attractive collaboration opportunities. Across the ecosystem, leadership teams that combine material science depth with regulatory and clinical strategy experience are best positioned to translate laboratory innovation into durable commercial outcomes.

Actionable recommendations for leaders to align R&D focus, regulatory engagement, supply chain resilience, and commercialization tactics to accelerate hydrogel adoption and reduce time to impact

Industry leaders should adopt a portfolio approach that balances near-term clinical wins with longer-term platform development while embedding resilience into sourcing and manufacturing plans. Prioritize indications where delivery attributes align tightly with clinical unmet need, and pursue iterative clinical studies that generate both safety and pragmatic use-case evidence to support clinician adoption. Concurrently, engage with regulatory authorities early to validate analytical strategies for combination products and to clarify biocompatibility and stability expectations that will streamline approval pathways.

Operationally, diversify supplier relationships for critical polymer and reagent inputs and evaluate nearshoring or co-manufacturing arrangements to reduce exposure to tariff-driven cost variability. Invest in scalable analytical and process controls to ensure reproducibility as formulations transition from lab to GMP environments. Commercially, design end-user education and patient support programs that reflect the realities of Clinics, Homecare Settings, Hospitals, and Research Institutes, tailoring training and packaging to minimize adoption friction. Finally, cultivate targeted partnerships across academia, clinical centers, and specialist manufacturers to accelerate translation while sharing risk and capability costs.

A transparent mixed-methods research approach combining primary expert interviews, secondary technical evidence, and scenario validation to produce defensible insights for stakeholders

The research methodology combined systematic evidence synthesis with targeted expert elicitation to create a validated narrative of technological and commercial trends. Primary inputs included structured interviews with clinicians, materials scientists, regulatory specialists, and procurement leaders to capture practical constraints and adoption drivers not always visible in published literature. Secondary research encompassed peer-reviewed journals, regulatory guidance documents, patent landscapes, and clinical trial registries to triangulate technical maturity, safety considerations, and clinical endpoints relevant to hydrogel applications.

Data analysis employed thematic coding to surface recurring risk themes, opportunity clusters, and segment-specific performance criteria. Scenario analysis was used to test sensitivities related to supply chain disruptions, regulatory shifts, and therapeutic prioritization; these scenarios were reviewed with independent experts to validate plausibility. Quality assurance processes included cross-validation of technical claims, confirmation of regulatory interpretations against primary guidance, and reconciliation of divergent expert viewpoints to present balanced, defensible conclusions. This mixed-methods approach ensured findings are grounded in empirical evidence and enriched by practitioner insight.

A concluding synthesis that emphasizes the convergence of technical validation, regulatory alignment, and commercial readiness as the determinants of hydrogel technology success

Hydrogel-based drug delivery represents a strategically important class of technologies with the potential to improve localized therapy, reduce systemic exposure, and enable new clinical workflows across multiple therapeutic areas. The pathway to broad clinical impact is neither uniform nor guaranteed: it requires deliberate alignment of formulation innovation with clear clinical endpoints, robust regulatory strategies, and commercially viable manufacturing and distribution models. When these elements coalesce, developers can unlock meaningful differentiation by offering delivery formats that reduce patient burden and improve therapeutic indices.

As organizations refine their priorities, those that combine technical rigor, regulatory foresight, and pragmatic commercialization planning will be best positioned to convert early promise into sustainable clinical and commercial results. Success will depend on focusing on indications with clear adoption pathways, building flexible supply chains resilient to trade policy shifts, and fostering partnerships that accelerate clinical validation. Ultimately, a disciplined, evidence-driven approach will determine which hydrogel technologies transition from research platforms to routine clinical tools.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Stimuli-responsive nanocomposite hydrogels integrating gold nanoparticles for on-demand chemotherapeutic release
  • 5.2. 3D bioprinted personalized hydrogel scaffolds enabling patient-specific sustained drug delivery
  • 5.3. Injectable dual cross-linked hydrogel formulations for prolonged ocular drug administration
  • 5.4. Smart hydrogel microneedle arrays for minimally invasive transdermal vaccine delivery
  • 5.5. Biodegradable pH-sensitive hydrogel beads for selective colon-targeted drug release
  • 5.6. In situ forming thermo-responsive hydrogels for controlled insulin delivery in diabetic patients
  • 5.7. Hydrogel-based combination therapy platforms co-delivering chemotherapeutics and gene silencers
  • 5.8. Wearable hydrogel sensor-integrated patches for real-time monitoring of drug release profiles
  • 5.9. Nanofibrillar hydrogel networks functionalized with targeting ligands for enhanced tumor penetration
  • 5.10. Enzyme-responsive injectable hydrogels for localized antibiotic delivery in chronic wound management

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Hydrogel-based Drug Delivery System Market, by Application

  • 8.1. Ophthalmic Delivery
    • 8.1.1. Eye Drops
    • 8.1.2. Ocular Inserts
  • 8.2. Tissue Engineering
    • 8.2.1. Bone Regeneration
    • 8.2.2. Cartilage Regeneration
    • 8.2.3. Skin Substitutes
  • 8.3. Transdermal Delivery
    • 8.3.1. Gels
    • 8.3.2. Patches
  • 8.4. Wound Healing
    • 8.4.1. Acute Wounds
    • 8.4.2. Burn Dressings
    • 8.4.3. Chronic Wounds

9. Hydrogel-based Drug Delivery System Market, by Product Type

  • 9.1. Hybrid Polymers
  • 9.2. Natural Polymers
  • 9.3. Synthetic Polymers

10. Hydrogel-based Drug Delivery System Market, by Therapeutic Area

  • 10.1. Cardiovascular Therapies
  • 10.2. Diabetes Management
  • 10.3. Oncology
  • 10.4. Orthopedic Repair

11. Hydrogel-based Drug Delivery System Market, by End User

  • 11.1. Clinics
  • 11.2. Homecare Settings
  • 11.3. Hospitals
  • 11.4. Research Institutes

12. Hydrogel-based Drug Delivery System Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Hydrogel-based Drug Delivery System Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Hydrogel-based Drug Delivery System Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Evonik Industries AG
    • 15.3.2. The Lubrizol Corporation
    • 15.3.3. Ashland Global Holdings Inc.
    • 15.3.4. BASF SE
    • 15.3.5. DuPont de Nemours, Inc.
    • 15.3.6. DSM N.V.
    • 15.3.7. Dow Inc.
    • 15.3.8. Merck KGaA
    • 15.3.9. Lonza Group AG
    • 15.3.10. 3M Company
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제