시장보고서
상품코드
1848836

소형 모듈형 원자로 시장 : 유형, 정격 출력, 배치, 용도, 최종사용자 산업별 - 세계 예측(2025-2032년)

Small Modular Reactor Market by Type, Power Rating, Deployment, Application, End-User Industry - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

소형 모듈형 원자로 시장은 2032년까지 연평균 복합 성장률(CAGR) 5.61%로 90억 1,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 58억 2,000만 달러
추정 연도 : 2025년 61억 2,000만 달러
예측 연도 : 2032년 90억 1,000만 달러
CAGR(%) 5.61%

소형 모듈로, 모듈 제조, 규제 진화, 멀티 벡터 산업 통합을 통해 소형 모듈로가 에너지 시스템의 패러다임을 어떻게 변화시킬 것인지에 대한 간결한 프레임워크

소형 모듈형 용광로(SMR)는 전기, 열 및 산업 공정의 통합에 대한 기존의 접근 방식을 재정의할 수 있는 에너지 시스템으로서 개념 및 실증에서 실용적인 배치로 발전하고 있습니다. SMR은 모듈식 제조 원리와 원자력 기술의 발전을 결합하여 현장 건설의 복잡성을 줄이고, 시운전 일정을 단축하며, 전력회사, 산업체 및 원격지 용도를 위한 확장 가능한 용량 추가를 가능하게 합니다. 각국 정부가 탈탄소화 목표를 가속화하고 탄력적인 기저부하와 송전 가능한 저탄소 자원을 찾는 가운데, SMR은 대체 에너지라기보다는 재생에너지의 보완재로서 다시 한 번 전략적 초점을 맞추었습니다.

핵심 엔지니어링을 넘어 규제 프레임워크, 공급망 개발, 자금 조달 모델, 입지 전략에 이르기까지 SMR 생태계가 성숙해지고 있습니다. 규제 기관은 모듈식 및 공장 조립형 부품에 대응하기 위해 인허가 경로를 개선하고 있으며, 제조업체는 수동적 안전, 단순화된 운전, 지역 난방 및 수소 생산과 같은 하이브리드 에너지 출력에 중점을 둔 설계를 반복하고 있습니다. 이러한 요소들을 종합하면 SMR이 단계적이고 리스크 관리된 방식으로 도입되어 기저부하 수요와 새로운 산업의 탈탄소화 요구사항을 모두 지원할 수 있는 궤도를 형성할 수 있습니다. 이 소개는 구조적 변화, 관세의 영향, 세분화 정보, 지역 역학, 경쟁 정보, 그리고 향후 10년을 헤쳐 나가기 위한 업계 리더에게 권장되는 조치를 임원급에서 통합할 수 있는 발판을 마련합니다.

정책 인센티브, 제조 산업화, 하이브리드 이용 혁신이 소형 모듈로 도입 경로의 빠른 전환을 촉진하는 방법

소형 모듈형 원자로를 둘러싼 환경은 정책적 신호, 기술적 성숙도, 진화하는 상업적 모델에 따라 변화하고 있습니다. 공공정책이 중요한 촉매제가 되고 있습니다. 새로운 조달 경로와 인센티브는 차세대 원자력 프로젝트에 자본을 집중시키고, 안전과 라이선싱에 대한 재검토는 재현 가능한 설계의 불확실성을 감소시키고 있습니다. 기술의 발전은 보다 컴팩트한 노심 시스템, 강화된 패시브 안전 기능, 그리고 전통적인 기저부하 발전 이외의 잠재적 이용 사례를 확장하는 유연한 발전소 균형 솔루션을 제공합니다.

동시에 자금 조달과 계약 관행도 적응하고 있습니다. 장기적인 자산 라이프사이클과 짧은 제조 및 건설 기간의 균형을 맞추기 위해 공장 보증, 모듈식 납품 마일스톤, 성능 기반 계약 등 혁신적인 계약 모델이 등장하고 있습니다. 공급망 또한 맞춤형 현장 생산에서 연속 생산이 가능한 산업화된 제조 허브로 이동하고 있으며, 그 결과 비용 학습과 품질 관리가 가능해졌습니다. 또한, 수소 생산 및 산업 열 이용과 같은 탈탄소화 우선 과제와 통합하면 하이브리드 가치 흐름이 생성되어 프로젝트의 경제성이 향상되고 투자자에게 더 매력적으로 다가갈 수 있습니다. 이러한 변화를 종합하면, SMR이 틈새 시장 실증 시험에서 다양한 시장에서 확장 가능한 인프라 구현으로 진화할 수 있는 환경이 조성되고 있습니다.

누적된 무역 조치와 관세의 역학이 소형 모듈로 프로젝트공급망 현지화, 조달 전략 및 위험 완화를 어떻게 변화시키고 있는지 평가합니다.

최근 몇 년 동안 시행된 관세 조치는 소형 모듈로 프로젝트공급망 전략, 조달 결정, 비용 구조에 영향을 미치는 일련의 누적 효과를 낳고 있습니다. 주요 부품 및 소재에 대한 관세는 개발자와 벤더가 단기 조달 계획을 재검토하고, 무역 정책 변동에 노출될 위험을 줄이기 위해 대체 공급업체, 현지 조달 전략, 수직적 통합을 검토할 수 있는 동기를 부여하고 있습니다. 관세로 인해 국경 간 운송의 비용과 복잡성이 증가하면, 이해관계자들은 납기를 지키고 예측 가능한 비용 기반을 유지하기 위해 주요 제조 공정의 현지화를 우선시하거나 관세 우대 지역에 조립 허브를 설립하기도 했습니다.

또한, 관세는 상대적 비용 포지션을 변화시키고 무역 마찰을 피하기 위한 전략적 파트너십을 유도함으로써 기술 공급업체 간의 경쟁 역학에 영향을 미치고 있습니다. 개발도상국 기업들은 지정학적 리스크와 관세 리스크를 헤지하기 위해 이중 소싱 프레임워크와 여러 지역공급 발자국을 평가했습니다. 프로젝트 수준에서 조달팀은 관세 시나리오를 계약 조건과 우발적 허용 범위에 반영하는 한편, 세관 및 무역 고문과 조기에 협력하여 분류 및 관세 감면 최적화를 위해 노력하고 있습니다. 규제 당국의 승인과 정부 간 협력도 중요한 에너지 인프라 구성 요소에 대한 관세 면제 및 유리한 관세 대우를 촉진하기 위해 활용되고 있습니다. 그 결과, 누적된 관세 환경은 당면한 조달 과제일 뿐만 아니라 지역 기반 산업 역량과 전략적 공급망 재설계를 촉진하는 요인으로 작용하고 있습니다.

원자로 유형, 정격 출력, 도입 형태, 용도, 최종 사용자 산업이 전략적 선택과 가치 제안을 결정하는 방법을 설명하는 다차원적 세분화의 관점

통찰력 있는 세분화 분석을 통해 수요 촉진요인, 기술 요구 사항 및 상업적 경로가 SMR의 기본 차원에서 어떻게 다른지 파악할 수 있습니다. 제품 유형에 따라 개발자와 최종 사용자는 연료주기 유연성, 열 출력 특성, 산업용 열 및 수소 생산 적합성 등의 우선순위에 따라 고속중성자로, 중수로, 고온가스로, 경수로, 용융염로 중 하나를 선택합니다. 각 기술 제품군은 고유한 라이선스 고려 사항과 공급망 프로파일을 제시하며, 이는 특정 이용 사례의 선택에 영향을 미칠 수 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 소형 모듈형 원자로 시장 : 유형별

  • 고속 중성자 원자로
  • 중수 원자로
  • 고온 가스 냉각 원자로
  • 경수 원자로
  • 용융염 원자로

제9장 소형 모듈형 원자로 시장 : 정격 출력별

  • 101-200MW
  • 201-300MW
  • 100MW 미만

제10장 소형 모듈형 원자로 시장 : 전개 형태별

  • 그리드 접속
  • Off-grid

제11장 소형 모듈형 원자로 시장 : 용도별

  • 담수화
  • 지역 난방
  • 발전
  • 수소 제조
  • 산업용 열

제12장 소형 모듈형 원자로 시장 : 최종사용자 업계별

  • 상업
  • 산업
    • 화학제품
    • 제조업
    • 광업
    • 석유 및 가스
  • 공공 인프라 및 유틸리티

제13장 소형 모듈형 원자로 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 소형 모듈형 원자로 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 소형 모듈형 원자로 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • ARC Clean Technology, Inc.
    • AtkinsRealis Group Inc.
    • Blykalla AB
    • China National Nuclear Corporation
    • General Atomics
    • General Electric Company
    • Holtec International
    • Kairos Power
    • Mirion Technologies, Inc.
    • Mitsubishi Heavy Industries, Ltd.
    • Moltex Energy Ltd.
    • NANO Nuclear Energy Inc.
    • NuScale Power Corporation
    • Oklo, Inc.
    • Rolls-Royce Holdings PLC
    • Seaborg Technologies ApS
    • Southern Company
    • State Atomic Energy Corporation ROSATOM
    • TerraPower LLC
    • Terrestrial Energy Inc.
    • ThorCon Power
    • Toshiba Corporation
    • Tractebel Group by Engie Group
    • Westinghouse Electric Company LLC
    • X Energy, LLC
    • Electricite de France SA
LSH

The Small Modular Reactor Market is projected to grow by USD 9.01 billion at a CAGR of 5.61% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 5.82 billion
Estimated Year [2025] USD 6.12 billion
Forecast Year [2032] USD 9.01 billion
CAGR (%) 5.61%

A concise framing of how small modular reactors shift energy system paradigms through modular manufacturing, regulatory evolution, and multi-vector industrial integration

Small modular reactors (SMRs) are progressing from concept and demonstration toward practical deployment as energy systems that promise to redefine conventional approaches to electricity, heat, and industrial process integration. They combine modular manufacturing principles with nuclear technology advances to reduce on-site construction complexity, shorten commissioning timelines, and enable scalable capacity additions for utilities, industrial operators, and remote applications. As governments accelerate decarbonization targets and seek resilient baseload and dispatchable low-carbon resources, SMRs are receiving renewed strategic focus as a complement to renewables rather than a substitute.

Beyond core engineering, the SMR ecosystem is maturing across regulatory frameworks, supply chain development, financing models, and siting strategies. Regulatory agencies are refining licensing pathways to accommodate modularity and factory-assembled components, while manufacturers are iterating designs to emphasize passive safety, simplified operations, and hybrid energy outputs such as district heating and hydrogen production. Taken together, these elements create a trajectory where SMRs can be deployed in a phased and risk-managed way, supporting both baseload needs and emerging industrial decarbonization requirements. This introduction sets the stage for an executive-level synthesis of structural shifts, tariff impacts, segmentation intelligence, regional dynamics, competitive positioning, and recommended actions for industry leaders seeking to navigate the coming decade.

How converging policy incentives, manufacturing industrialization, and hybrid-use innovations are catalyzing the rapid transformation of small modular reactor deployment pathways

The landscape for small modular reactors is undergoing transformative shifts driven by policy signals, technological maturation, and evolving commercial models. Public policy is a critical catalyst; new procurement pathways and incentives are aligning capital toward next-generation nuclear projects, while revised safety and licensing approaches reduce uncertainty for repeatable designs. Technological advances are delivering more compact core systems, enhanced passive safety features, and flexible balance-of-plant solutions that expand potential use cases beyond traditional baseload electricity generation.

Simultaneously, financing and contracting practices are adapting. Innovative contracting models-such as factory warranties, modular delivery milestones, and performance-based contracts-are emerging to reconcile long-term asset lifecycles with shorter manufacturing and construction horizons. The supply chain is also shifting from bespoke, on-site fabrication to industrialized manufacturing hubs capable of serial production, which in turn supports cost learning and quality control. In addition, integration with decarbonization priorities such as hydrogen production and industrial heat creates hybrid value streams that improve project economics and broaden investor appeal. Taken together, these shifts are creating an environment where SMRs evolve from niche demonstrations to scalable infrastructure enablers in diverse markets.

Assessing how cumulative trade measures and tariff dynamics are reshaping supply chain localization, procurement strategies, and risk mitigation for small modular reactor projects

Tariff actions implemented in recent years have produced a cumulative set of effects that are influencing supply chain strategies, sourcing decisions, and cost structures for small modular reactor projects. Tariffs on critical components and materials have incentivized developers and vendors to reassess near-term procurement plans and consider alternative suppliers, local content strategies, and vertical integration to reduce exposure to trade policy volatility. Where tariffs have increased the cost or complexity of cross-border shipments, stakeholders have prioritized localization of key manufacturing steps or established assembly hubs in tariff-favored jurisdictions to preserve delivery schedules and maintain predictable cost bases.

Moreover, tariffs have affected the competitive dynamics among technology vendors by altering relative cost positions and by motivating strategic partnerships to circumvent trade frictions. Developers are increasingly evaluating dual-sourcing frameworks and multi-region supply footprints to hedge geopolitical and tariff risks. At the project level, procurement teams are incorporating tariff scenarios into contractual terms and contingency allowances while engaging early with customs and trade advisors to optimize classification and duty mitigation. Regulatory approvals and intergovernmental cooperation are also being leveraged to facilitate tariff exemptions or favorable tariff treatment for critical energy infrastructure components. Consequently, the cumulative tariff environment is not only a near-term procurement challenge but also an accelerator for localized industrial capability and strategic supply chain redesign.

A multidimensional segmentation perspective explaining how reactor type, power rating, deployment mode, application, and end-user industry determine strategic choices and value propositions

Insightful segmentation analysis reveals how demand drivers, technical requirements, and commercial pathways differ across fundamental dimensions of the SMR landscape. Based on type, developers and end users select among fast neutron reactors, heavy-water reactors, high-temperature gas-cooled reactors, light-water reactors, and molten salt reactors depending on priorities such as fuel cycle flexibility, thermal output characteristics, and suitability for industrial heat or hydrogen production. Each technology family presents unique licensing considerations and supply chain profiles, which influence selection for specific use cases.

Based on power rating, project design choices and application suitability vary substantially across units sized below 100 megawatts, those in the 101-200 megawatt range, and units in the 201-300 megawatt band; smaller units often target remote or off-grid applications and incremental capacity additions, while mid-range units are designed for grid-integrated or industrial-scale services. Based on deployment, distinctions between grid-connected and off-grid installations guide integration strategies, cooling system choices, and operational modes, with off-grid projects placing a premium on autonomy, fuel logistics, and hybridization with storage or thermal loads. Based on application, use cases span desalination, district heating, electricity generation, hydrogen production, and industrial heat, with each end-use imposing different thermal pairing, regulatory, and economic conditions. Finally, based on end-user industry, the buyer landscape ranges across commercial, industrial, and public infrastructures and utilities; industrial deployments further differentiate by sector-chemical, manufacturing, mining, and oil and gas-each demanding tailored interface engineering, safety cases, and contractual structures. Understanding these segmentation layers is essential for aligning technology selection, commercial models, and deployment sequencing to end-user requirements.

A regional synthesis of how Americas, Europe Middle East & Africa, and Asia-Pacific dynamics shape deployment priorities, manufacturing hubs, and policy coordination for SMRs

Regional dynamics will be a central determinant of where and how small modular reactors materialize at scale. In the Americas, policy momentum in certain jurisdictions, combined with legacy nuclear supply chains and private sector investment appetite, creates fertile conditions for pilot deployments and the establishment of manufacturing cells. Public-private partnerships and state-level procurement strategies are shaping pathways to commercial demonstrations and initial series production, while regional electricity market structures influence whether SMRs prioritize grid services or industrial off-take.

In Europe, the Middle East & Africa, the landscape is heterogeneous; some markets are pursuing SMRs as a strategic tool for energy security and decarbonization, while others focus on industrial heat and desalination applications. Regulatory harmonization, cross-border cooperation, and intergovernmental financing mechanisms are increasingly important in this region to lower barriers for demonstration projects and to coordinate critical infrastructure investments. In the Asia-Pacific, robust industrial manufacturing capabilities, aggressive decarbonization targets in several economies, and a strong interest in hydrogen and district energy applications have combined to produce a vibrant development environment. Supply chain clustering and regional export opportunities are also prominent considerations in Asia-Pacific, where serial manufacturing and regional deployment corridors can unlock economies of scale. Taken together, these regional distinctions underline the need for market entry strategies that align technology choice, financing approaches, and regulatory engagement to local realities.

How established nuclear firms and agile newcomers are reshaping competitive positioning through partnerships, localized manufacturing, and integrated multi-vector offers

Competitive dynamics within the SMR ecosystem are evolving rapidly as established nuclear firms, emerging technology companies, and diversified engineering groups converge on commercial opportunities. Legacy incumbents are leveraging design experience, supply chain relationships, and regulatory familiarity to position incrementally modularized solutions, while a wave of new entrants is advancing novel core technologies and modular fabrication techniques to capture niche applications and to accelerate first-of-a-kind deployment timelines. Partnerships and strategic alliances between constructors, component fabricators, utilities, and industrial off-takers are increasingly common as stakeholders seek to combine technological capabilities with market channels and project funding.

Manufacturers that demonstrate repeatable factory processes and robust quality assurance regimes are gaining credibility with utilities and investors, and service providers that can deliver integrated operations, maintenance, and fuel cycle management propositions enhance total-cost confidence for buyers. In parallel, vendors are differentiating on hybrid offerings such as integrated hydrogen production loops and industrial heat interfaces, which expand addressable markets beyond pure power generation. Intellectual property strategies, localization commitments, and co-investment in domestic manufacturing facilities are also emerging as decisive competitive moves that influence procurement decisions and public-sector support. Consequently, competitive positioning increasingly reflects not only technical performance but also supply chain resilience, financing creativity, and the ability to deliver turnkey, multi-vector solutions.

Concrete strategic moves for technology developers, utilities, and industrial offtakers to industrialize SMR delivery through manufacturing readiness, regulatory engagement, and integrated commercial models

Industry leaders seeking to capture value in the SMR transition should adopt a decisive, multi-dimensional action plan that aligns technology strategy, commercial models, and operational readiness. First, prioritize design repeatability and manufacturability by investing in modular factory capabilities and rigorous quality systems to reduce schedule and execution risks; coupling these investments with clear localization strategies will enhance access to procurement incentives and mitigate tariff exposure. Second, pursue early engagements with regulators and system operators to define licensing pathways and grid integration requirements, thereby shortening permitting timelines and clarifying interface obligations for hybrid applications.

Third, structure commercial offers to include performance-based elements and flexible offtake arrangements that address the risk tolerances of utilities and industrial customers; bundling thermal outputs for hydrogen or district heating with electricity sales can create diversified revenue profiles. Fourth, establish supply chain partnerships and dual sourcing plans to de-risk critical components, while negotiating long-lead procurement and logistics strategies to manage trade policy exposure. Fifth, incorporate scenario-modeled risk assessments into project financing conversations to demonstrate resilience against policy shifts and tariff dynamics. Finally, invest in workforce training and operations readiness programs to ensure that deployments transition smoothly from factory acceptance into safe, efficient long-term operations. Collectively, these actions will position organizations to move from demonstration projects to repeatable commercial rollouts.

A robust methodological approach integrating primary interviews, secondary triangulation, scenario and sensitivity analyses, and case-study validation to derive actionable strategic insights

This analysis synthesizes primary and secondary research inputs to create a comprehensive view of technological, commercial, and policy dynamics shaping the SMR landscape. Primary research included structured interviews with senior executives across vendor firms, utilities, industrial end users, regulatory advisors, and supply chain specialists to capture first-hand perspectives on deployment barriers, design trade-offs, and procurement preferences. Secondary research encompassed peer-reviewed technical literature, public regulatory filings, policy statements, and company disclosures, which were triangulated with primary inputs to validate trends and project-level considerations.

Analytical methods applied scenario analysis to assess the implications of alternative regulatory, tariff, and financing pathways for supply chain strategies and deployment sequencing. Sensitivity analysis focused on procurement lead times, localization commitments, and hybridization revenue streams to evaluate how different assumptions alter project risk profiles. Where applicable, comparative case studies of demonstration projects and industrialized manufacturing models were used to extract transferable lessons for commercialization. Throughout the process, findings were stress-tested with subject-matter experts to ensure robustness and to reduce single-source bias. The methodology therefore combines qualitative insights with structured analytical frameworks to support strategic decision-making for stakeholders across the SMR value chain.

A conclusive synthesis emphasizing the conditions under which small modular reactors transition from demonstration to repeatable commercial infrastructure and competitive advantage

In conclusion, small modular reactors represent a credible pathway to expand low-carbon, dispatchable energy solutions while supporting industrial decarbonization through heat, hydrogen, and desalination applications. The intersection of policy support, technological maturation, and evolving financing frameworks is enabling a shift from one-off demonstrations to strategies that emphasize serial manufacturing and repeatable project delivery. However, successful commercialization will depend on the ability of developers and investors to manage supply chain exposure, navigate tariff environments, and adapt commercial models to diverse end-user requirements.

Looking ahead, stakeholders that combine strong regulatory engagement, localized manufacturing commitments, and flexible offtake strategies will be best positioned to translate technical promise into sustained deployment. Moreover, the greatest near-term opportunities will be in projects that leverage hybrid outputs, integrate with industrial clusters, and align with public-sector decarbonization objectives. Ultimately, the SMR transition will be incremental and path-dependent; those who invest early in manufacturing readiness, supply chain resilience, and customer-aligned commercial propositions will help define the trajectory of this emerging infrastructure class.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of small modular reactors with renewable energy sources to balance grid flexibility and provide backup power
  • 5.2. Harmonizing international regulatory frameworks to accelerate licensing and deployment timelines for SMR projects
  • 5.3. Adoption of advanced digital twins and AI driven predictive maintenance systems to optimize SMR operational efficiency
  • 5.4. Innovations in high assay low enriched uranium fuel designs enabling higher burnup rates and extended refueling intervals for SMRs
  • 5.5. Offsite factory fabrication strategies and modular transport logistics driving cost reduction in SMR scalability and construction
  • 5.6. Surge in private equity and infrastructure fund investments fueling early stage SMR development and commercialization activities
  • 5.7. Expansion of public private partnerships facilitating first of a kind SMR demonstration plants and shared project risk models
  • 5.8. Rising demand for microreactor variants of SMRs to provide reliable power solutions for remote industrial and defense applications
  • 5.9. Integration of passive safety features and inherent shutdown mechanisms to meet evolving international nuclear safety standards for SMRs
  • 5.10. Emergence of SMR power parks combining multiple modules with shared balance of plant systems to achieve economies of scale

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Small Modular Reactor Market, by Type

  • 8.1. Fast Neutron Reactors
  • 8.2. Heavy-Water Reactors
  • 8.3. High-Temperature Gas-Cooled Reactors
  • 8.4. Light-Water Reactors
  • 8.5. Molten Salt Reactors

9. Small Modular Reactor Market, by Power Rating

  • 9.1. 101-200 MW
  • 9.2. 201-300MW
  • 9.3. Below 100 MW

10. Small Modular Reactor Market, by Deployment

  • 10.1. Grid-Connected
  • 10.2. Off-Grid

11. Small Modular Reactor Market, by Application

  • 11.1. Desalination
  • 11.2. District Heating
  • 11.3. Electricity Generation
  • 11.4. Hydrogen Production
  • 11.5. Industrial Heat

12. Small Modular Reactor Market, by End-User Industry

  • 12.1. Commercial
  • 12.2. Industrial
    • 12.2.1. Chemical
    • 12.2.2. Manufacturing
    • 12.2.3. Mining
    • 12.2.4. Oil & Gas
  • 12.3. Public Infrastructures & Utilities

13. Small Modular Reactor Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Small Modular Reactor Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Small Modular Reactor Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. ARC Clean Technology, Inc.
    • 16.3.2. AtkinsRealis Group Inc.
    • 16.3.3. Blykalla AB
    • 16.3.4. China National Nuclear Corporation
    • 16.3.5. General Atomics
    • 16.3.6. General Electric Company
    • 16.3.7. Holtec International
    • 16.3.8. Kairos Power
    • 16.3.9. Mirion Technologies, Inc.
    • 16.3.10. Mitsubishi Heavy Industries, Ltd.
    • 16.3.11. Moltex Energy Ltd.
    • 16.3.12. NANO Nuclear Energy Inc.
    • 16.3.13. NuScale Power Corporation
    • 16.3.14. Oklo, Inc.
    • 16.3.15. Rolls-Royce Holdings PLC
    • 16.3.16. Seaborg Technologies ApS
    • 16.3.17. Southern Company
    • 16.3.18. State Atomic Energy Corporation ROSATOM
    • 16.3.19. TerraPower LLC
    • 16.3.20. Terrestrial Energy Inc.
    • 16.3.21. ThorCon Power
    • 16.3.22. Toshiba Corporation
    • 16.3.23. Tractebel Group by Engie Group
    • 16.3.24. Westinghouse Electric Company LLC
    • 16.3.25. X Energy, LLC
    • 16.3.26. Electricite de France SA
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제