시장보고서
상품코드
1855550

엔지니어드 플루이드 시장 : 제품 유형, 용도, 최종 이용 산업, 기반 플루이드 유형, 점도 등급, 기술, 유통 채널별 - 세계 예측(2025-2032년)

Engineered Fluids Market by Product Type, Application, End Use Industry, Base Fluid Type, Viscosity Grade, Technology, Distribution Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 197 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

엔지니어드 플루이드 시장은 2032년까지 CAGR 10.73%로 24억 9,000만 달러로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 11억 달러
추정 연도 2025년 12억 1,000만 달러
예측 연도 2032 24억 9,000만 달러
CAGR(%) 10.73%

기술적 특성, 응용 수요, 전략적 우선순위를 연결하여 경영진의 의사결정 및 사업 계획 수립에 도움이 되는 인공유체의 간결한 프레임워크

최종사용자, 규제 당국, 기술 제공업체가 성능, 지속가능성, 공급망 강인성에 초점을 맞추고 있는 가운데, 인공유체를 둘러싼 환경은 전략적 조사가 강화되는 시점에 있습니다. 이 요약은 이 분야의 중요한 역학을 간결하게 설명하고, 진화하는 응용 요구 사항과 유체 화학의 기술적 특성과의 상호 작용을 강조합니다. 독자들은 제품 차별화, 규제 압력, 유통 네트워크가 공급업체의 경쟁력과 고객의 조달 결정을 어떻게 형성하고 있는지에 대한 명확한 프레임워크를 얻을 수 있습니다.

비용, 성능, 환경 컴플라이언스와의 트레이드오프를 고려해야 하는 의사결정자에게는 명확한 컨텍스트가 필수적입니다. 따라서 본 소개에서는 열 관리, 윤활, 유압 제어, 금속 가공 공정에서의 역할 등 최신 엔지니어드 플루이드의 정의적 특징을 명확히 하고 있습니다. 또한, 서비스 간격 연장, 에너지 효율 향상, 전동화 및 고효율 플랫폼에 적응할 수 있는 맞춤형 배합 및 첨가제 기술의 중요성이 증가하고 있음을 강조합니다.

서론은 제품의 기초에서 전략적 의미, 수요의 구조적 변화, 정책 주도형 파괴, 세분화 주도형 기회, 지역적 차별화 요소, 경쟁의 자세, 업계 리더를 위한 실용적인 제안 등 이후 섹션에서 다룰 핵심 주제를 제시합니다. 이 책은 학술적인 설명이 아닌 실용적인 인사이트를 필요로 하는 경영진과 기술 리더를 대상으로 합니다.

기술 혁신, 환경 규제 강화, 서비스 지향적 상업 모델이 인공 유체 분야의 제품 요구 사항과 경쟁 우위를 재정의하는 방법

기술, 규제 및 최종 사용 기대치를 가로지르는 일련의 혁신적인 변화로 인해 인공 유체의 상황이 재편되고 있습니다. 파워트레인의 전동화 및 하이브리드화로 인해 열 관리 및 윤활에 대한 요구가 재정의되고 있으며, 배합업체들은 저점도, 전기 절연성, 열전달 특성 강화를 위한 기술 혁신을 추진하고 있습니다. 동시에 고속 자동화 및 정밀 가공의 부상으로 안정적인 유변학 및 우수한 칩 배출 성능을 가진 금속 가공 유제에 대한 수요가 증가하고 있습니다.

환경 및 규제 프레임워크는 저독성 기유와 생분해성 첨가제의 채택을 가속화하고 있으며, 기존의 광물성 오일 배합을 발전시켜야 한다는 압력이 발생하고 있습니다. 이러한 규제 모멘텀은 수명주기 영향과 재활용성을 우선시하는 고객 중심의 지속가능성 의무에 의해 보완되어 제조업체들이 에스테르 기반 유압유 및 합성 혼합유와 같은 새로운 화학제품에 대한 투자를 촉진하고 있습니다. 동시에, 첨가제 기술 및 블렌드 개선으로 부품의 수명을 연장하고 유지보수에 대한 수고를 덜어주는 성능 향상을 가져왔습니다.

상업적 측면에서는 유통 및 조달 모델이 상태 기반 모니터링 및 자산 관리와 유체를 번들로 묶은 통합 서비스 제공으로 전환되고 있습니다. 디지털화는 유체 성능을 운전 결과에 연결하는 센서 데이터와 분석에 기반한 예지보전 모델을 가능하게 합니다. 이러한 변화는 배합 전문성과 디지털 서비스를 결합할 수 있는 공급업체에게 새로운 가치 제안을 창출하는 동시에, 상호연결된 밸류체인에서 컴플라이언스 및 공급 연속성의 기준을 높이고 있습니다.

미국 관세 조정이 엔지니어드 플루이드 가치사슬의 공급망 복원력, 조달 전략, 자본 배분에 미치는 연쇄적 영향

미국의 무역 및 관세 정책의 재구성은 엔지니어드 플루이드 생태계 전반의 조달 전략과 공급업체 발자취에 중요한 복잡성 층을 도입했습니다. 관세 조정 및 정책 신호는 원자재 조달, 수입 등가 가격 책정, 제조 능력의 온쇼어화 또는 니어쇼어화의 전략적 계산에 영향을 미칩니다. 그 결과, 조달팀은 운송 중단 및 비용 변동 위험을 줄이기 위해 공급업체와의 관계 및 물류 계획을 재검토하게 됩니다.

관세는 직접적인 비용에 미치는 영향뿐만 아니라, 특히 자본 집약적인 배합 및 포장 작업과 관련된 경우, 공급업체의 투자 결정에도 영향을 미칩니다. 공급업체는 시장 접근과 서비스 수준을 유지하기 위해 생산의 지역화를 선택할 수 있으며, 이는 공급업체 상황에 장기적인 구조적 전환을 가져올 수 있습니다. 이러한 이전 및 생산능력 결정은 제한된 세계 거점에서 생산되는 특수 화학제품 및 첨가제의 가용성에도 영향을 미치며, 멀티소싱 전략과 전략적 재고의 중요성을 강조합니다.

경영 측면에서는 계층화된 공급망의 투명성을 높이고, 보다 장기적인 거래 조건을 협상하고, 위험을 공유하는 계약 메커니즘을 모색함으로써 기업은 적응하고 있습니다. 이러한 대응으로 인해 공급 아키텍처는 더욱 탄력적이고 복잡해졌으며, 물류의 민첩성과 공급업체의 다양화는 제제의 품질만큼이나 중요해졌습니다. 제조업체와 최종사용자 모두에게 관세에 영향을 받는 환경은 공급업체의 적극적인 참여, 돌발 상황에 대한 대응 계획, 그리고 단가뿐만 아니라 총 소유 비용에 초점을 맞출 것을 요구하고 있습니다.

차별화된 수요 포켓과 서비스 니즈를 파악하기 위해 제품 계층, 용도별 요구사항, 기본 액체의 화학적 특성, 유통 모델을 매핑하는 세부 세분화

미묘한 세분화 프레임워크는 전체 엔지니어드 플루이드 시장에서 수요 탄력성, 기술 차별화, 마진 풀이 가장 두드러지는 곳을 드러냅니다. 제품 유형별로 보면 유전체 유체, 열전달 유체, 유압유체, 윤활유, 금속 가공유는 각각 고유한 배합 과제와 최종 사용 요건을 제시합니다. 윤활유는 압축기 오일, 엔진 오일, 기어 오일, 변속기 오일 등 첨가제의 종류와 성능 지표가 다르기 때문에 더욱 세분화할 필요가 있습니다. 엔진 오일은 다시 상용차와 승용차 용으로 나뉘며, 각각 듀티 사이클, 연료 종류, 배기가스 규제 적합성에 따라 조정됩니다. 기어 오일은 자동차 기어 오일과 산업용 기어 오일의 범주로 나뉘며, 이는 점도와 극압 첨가제의 요구가 다르다는 것을 반영합니다. 금속가공유제도 절삭유제와 인발유제로 나뉘며, 절삭유제는 다시 냉각, 윤활, 절삭유제거의 균형이 잘 잡힌 직선유제와 수용성유제로 나뉩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 엔지니어드 플루이드 시장 : 제품 유형별

  • 유전체 유체
  • 열전달 유체
  • 유압작동유
  • 윤활유
    • 압축기 오일
    • 엔진 오일
      • 상용차
      • 승용차용
    • 기어 오일
      • 자동차 기어 오일
      • 산업용 기어 오일
    • 변속기유
  • 금속가공유
    • 절삭유
      • 스트레이트 오일
      • 수용성
    • 연신유

제9장 엔지니어드 플루이드 시장 : 용도별

  • 항공우주
  • 자동차
  • 산업용
  • 해양
  • 발전

제10장 엔지니어드 플루이드 시장 : 최종 이용 산업별

  • 항공우주 및 방위
  • 자동차
  • 에너지·전력
  • 제조업
    • 디스크리트 제조
    • 프로세스 제조

제11장 엔지니어드 플루이드 시장 : 기반 유체 유형별

  • 에스테르 유체
  • 광물유
  • 파오
  • 합성유
  • 물 글리콜

제12장 엔지니어드 플루이드 시장 : 점도 등급별

  • 고점도
  • 저점도
  • 중점도

제13장 엔지니어드 플루이드 시장 : 기술별

  • 에멀전
  • 반합성
  • 가용성 오일
  • 스트레이트 오일
  • 합성

제14장 엔지니어드 플루이드 시장 : 유통 채널별

  • 직접 판매
  • 유통업체
    • 로컬·유통업체
    • 마스터 유통업체
  • E-Commerce

제15장 엔지니어드 플루이드 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제16장 엔지니어드 플루이드 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제17장 엔지니어드 플루이드 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제18장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Schlumberger Limited
    • Halliburton Company
    • Baker Hughes Company
    • Weatherford International plc
    • National Oilwell Varco, Inc.
    • Newpark Resources, Inc.
    • Calfrac Well Services Ltd.
    • Superior Energy Services, Inc.
    • Expro Group Holdings PLC
    • Liberty Oilfield Services, Inc.
KSM 25.11.12

The Engineered Fluids Market is projected to grow by USD 2.49 billion at a CAGR of 10.73% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.10 billion
Estimated Year [2025] USD 1.21 billion
Forecast Year [2032] USD 2.49 billion
CAGR (%) 10.73%

A concise framing of engineered fluids that links technical characteristics, application demands, and strategic priorities to inform executive decision-making and operational planning

The engineered fluids landscape is undergoing a period of intensified strategic scrutiny as end users, regulators, and technology providers converge on performance, sustainability, and supply chain resilience. This executive summary opens with a succinct orientation to the sector's critical dynamics, emphasizing the interplay between evolving application requirements and the technical attributes of fluid chemistries. Readers will gain a clear framing of how product differentiation, regulatory pressures, and distribution networks shape supplier competitiveness and customer procurement decisions.

Contextual clarity is essential for decision-makers who must weigh trade-offs between cost, performance, and environmental compliance. Accordingly, the introduction articulates the defining characteristics of modern engineered fluids, including their role in thermal management, lubrication, hydraulic control, and metalworking processes. It also highlights the increasing importance of tailored formulations and additive technologies that enable longer service intervals, improved energy efficiency, and compatibility with electrified and high-efficiency platforms.

Transitioning from product fundamentals to strategic implications, the introduction sets out the core themes explored in subsequent sections: structural shifts in demand, policy-driven disruptions, segmentation-led opportunities, regional differentiators, competitive postures, and pragmatic recommendations for industry leaders. The tone is deliberately pragmatic and forward-looking, aimed at executives and technical leaders who require actionable insights rather than academic exposition.

How technological innovation, stricter environmental mandates, and service-oriented commercial models are jointly redefining product requirements and competitive advantage in engineered fluids

The engineered fluids landscape is being reshaped by a series of transformative shifts that cut across technology, regulation, and end-use expectations. Electrification and hybridization of powertrains have redefined thermal management and lubrication needs, prompting formulators to innovate for lower viscosity, improved electrical insulation, and enhanced heat transfer characteristics. Simultaneously, the rise of high-speed automation and precision machining has increased demand for metalworking fluids with stable rheology and superior chip evacuation performance.

Environmental and regulatory frameworks are accelerating the adoption of lower-toxicity base fluids and biodegradable additives, creating pressure for legacy mineral oil formulations to evolve. This regulatory momentum is complemented by customer-driven sustainability mandates that prioritize lifecycle impact and recyclability, thereby incentivizing manufacturers to invest in novel chemistries such as ester-based fluids and synthetic blends. At the same time, advancements in additive technology and tailored blends are delivering incremental performance gains that extend component life and reduce maintenance windows.

On the commercial front, distribution and procurement models are shifting toward integrated service offerings that bundle fluids with condition-based monitoring and asset management. Digitalization is enabling predictive maintenance models, supported by sensor data and analytics that tie fluid performance to operational outcomes. These shifts are producing new value propositions for suppliers who can combine formulation expertise with digital services, while also raising the bar for compliance and supply continuity in an increasingly interconnected value chain.

The cascading effects of US tariff adjustments on supply chain resilience, sourcing strategies, and capital allocation in the engineered fluids value chain

The reconfiguration of trade and tariff policies in the United States has introduced a material layer of complexity to procurement strategies and supplier footprints across the engineered fluids ecosystem. Tariff adjustments and policy signals impact raw material sourcing, import parity pricing, and the strategic calculus for onshoring or nearshoring manufacturing capacity. As a consequence, procurement teams are reassessing supplier relationships and logistics plans to mitigate exposure to transit disruptions and cost volatility.

Beyond direct cost implications, tariffs influence supplier investment decisions, particularly where capital-intensive blending and packaging operations are involved. Suppliers may opt to regionalize production to preserve market access and service levels, which can lead to longer-term structural shifts in the supplier landscape. These relocation and capacity decisions also affect the availability of specialty chemistries and additives that are produced at limited global sites, underscoring the importance of multi-sourcing strategies and strategic stockholding.

Operationally, businesses are adapting by increasing transparency in tiered supply chains, negotiating longer-term commercial terms, and exploring contractual mechanisms to share risk. The combined effect of these responses is a more resilient but also more complex supply architecture, in which logistics agility and supplier diversification become as important as formulation quality. For manufacturers and end users alike, the tariff-driven environment demands proactive supplier engagement, contingency planning, and a sharper focus on total cost of ownership rather than unit price alone.

Detailed segmentation that maps product hierarchies, application-specific requirements, base fluid chemistries, and distribution models to identify differentiated demand pockets and service needs

A nuanced segmentation framework reveals where demand elasticity, technical differentiation, and margin pools are most pronounced across the engineered fluids market. By product type, dielectric fluids, heat transfer fluids, hydraulic fluids, lubricating oils, and metalworking fluids each present distinct formulation challenges and end-use requirements. Lubricating oils merit deeper subdivision: compressor oils, engine oils, gear oils, and transmission fluids exhibit different additive regimes and performance metrics. Engine oils split further into commercial vehicle and passenger vehicle formulations, each tailored for duty cycle, fuel type, and emission-control compatibility. Gear oils bifurcate into automotive gear oil and industrial gear oil categories, reflecting divergent viscosity and extreme-pressure additive needs. Metalworking fluids also fork into cutting fluids and drawing fluids, with cutting fluids further delineated into straight oils and water-soluble varieties that balance cooling, lubrication, and chip removal.

Based on application, demand patterns vary across aerospace, automotive, industrial, marine, and power generation contexts, with aerospace and power generation placing a premium on thermal stability and long-term reliability, while automotive and industrial sectors prioritize cost-effective durability. Examining end use industry, aerospace and defense, automotive, energy and power, and manufacturing emerge as primary markets. Within manufacturing, discrete manufacturing and process manufacturing present different fluid replacement cycles and contamination control needs, influencing product selection and service models.

The choice of base fluid type-ester fluids, mineral oil, polyalphaolefin (PAO), synthetic oil, and water glycol-drives core performance attributes such as biodegradability, oxidative stability, and low-temperature flow. Viscosity grade classifications of high, medium, and low viscosity affect energy efficiency and component wear, while technology types including emulsion, semi-synthetic, soluble oil, straight oil, and fully synthetic formulations determine maintenance protocols and operator handling. Distribution channels encompass direct sales, distributors, and e-commerce platforms, with distributors segmented into local distributors and master distributors, each offering different levels of technical support, inventory availability, and geographic reach.

How regional regulatory pressure, manufacturing intensity, and logistics ecosystems drive differentiated product demand and strategic priorities across global geographies

Regional dynamics materially influence product preferences, regulatory exposure, and the architecture of supply networks across the engineered fluids sector. In the Americas, demand dynamics are shaped by mature automotive and industrial markets that increasingly prioritize emissions compliance, fleet electrification readiness, and operational efficiency. This results in steady interest in lower-viscosity lubricants, advanced heat transfer fluids, and metalworking chemistries that support high-throughput manufacturing processes. Local production, proximity to key OEMs, and well-developed distribution networks further characterize the region's commercial structure.

Europe, Middle East & Africa presents a heterogeneous picture where stringent environmental regulations and ambitious decarbonization targets incentivize rapid adoption of biodegradable base fluids and ester-based formulations. Regulatory rigor in parts of Europe drives product innovation and certification requirements, while markets in the Middle East and Africa emphasize supply reliability and compatibility with industrial-scale energy production and marine operations. This region's diversity necessitates flexible product portfolios and localized compliance strategies.

Asia-Pacific remains a center of manufacturing scale, power generation capacity, and heavy industry, with demand for engineered fluids closely tied to industrial output and infrastructure investment. Rapid adoption of automation, expanding automotive production, and significant shipbuilding activity support a broad spectrum of fluid requirements, from high-performance cutting fluids to specialized hydraulic and heat transfer fluids. Regional logistics hubs and local chemical manufacturing capacity make Asia-Pacific an essential component of global supply chains, but regional variations in standards and procurement practices require nuanced market entry and channel strategies.

Competitive positioning strategies that combine formulation excellence, regional manufacturing, and service innovation to secure long-term customer partnerships and differentiated margins

Leading firms in the engineered fluids space are consolidating their positions by investing in formulation capabilities, service-based offerings, and integrated supply solutions. Market participants that combine deep chemistry expertise with application engineering are better positioned to protect margin through differentiated, value-added products. These companies typically deploy cross-functional teams that include application engineers, field service specialists, and R&D chemists to co-develop solutions with key customers, thereby embedding their products within critical asset maintenance regimes.

Strategic moves observed across the industry include vertical integration of blending and packaging operations to improve lead times, selective investments in regional manufacturing to reduce tariff exposure, and partnerships with equipment manufacturers to validate fluid performance in emerging platforms such as electrified drivetrains. Several players are also pursuing digital enablement initiatives that link fluid condition monitoring to predictive maintenance programs, creating sticky service relationships and new recurring revenue streams.

Competitive differentiation increasingly stems from the ability to demonstrate regulatory compliance and sustainability credentials, including certifications for biodegradability and reduced toxicity. Companies that can document lifecycle impacts and offer recycling or reclamation services gain access to procurement processes that prioritize total cost of ownership and environmental performance. Ultimately, the most resilient companies balance technical innovation with operational excellence and channel agility to meet diverse customer needs across regions and end-use sectors.

Actionable tactical and structural initiatives for suppliers to fortify supply chains, accelerate sustainable formulations, and monetize service-based revenue opportunities

Industry leaders should pursue a dual pathway of near-term tactical actions and medium-term structural investments to capture value and mitigate risk. In the near term, companies must strengthen supplier diversification and increase transparency across multi-tiered raw material chains to reduce exposure to trade disruptions. This includes qualifying alternate additive suppliers, extending safety stock for critical chemistries, and renegotiating commercial terms that allow for greater flexibility in response to tariff or logistical shocks.

Over the medium term, firms should invest in formulation platforms that prioritize low environmental impact while maintaining or enhancing performance. Developing ester- and synthetic-based base stocks, alongside advanced additive packages, supports compliance with tightening regulations and broadens addressable applications. Complementary investments in digital services-such as fluid monitoring sensors and analytics-can convert one-time transactions into recurring engagements and provide quantifiable evidence of performance improvements for customers.

Commercially, enhancing distributor enablement programs and equipping direct sales teams with application-specific case studies will improve conversion in high-value segments. Consider targeted regional manufacturing or strategic partnerships to localize production where tariff or logistical risks are material. Finally, establish clear sustainability roadmaps, validated by third-party testing where appropriate, to meet procurement criteria and differentiate in competitive bids. These combined actions will help firms protect margins, sustain growth, and respond nimbly to evolving market conditions.

A rigorous mixed-method research approach combining primary stakeholder interviews, technical literature review, and supply chain triangulation to validate strategic insights and practical implications

This research integrates a mixed-methods approach that balances primary interviews, technical literature review, and cross-validation through supply chain analysis to ensure the robustness of findings. Primary engagement included structured interviews with asset operators, formulation chemists, procurement leaders, and distribution partners to surface practical challenges and validate technology adoption signals. Technical literature and standards documentation provided the foundation for assessing performance attributes and regulatory implications across fluid chemistries.

Secondary investigation encompassed vendor technical data sheets, patent landscapes, and public regulatory records to map product features, innovation trajectories, and compliance requirements. Supply chain analysis incorporated shipping routes, manufacturing footprints, and raw material dependencies to understand structural vulnerabilities and response options. Data triangulation was applied throughout the research cycle to reconcile differing perspectives, and key insights were stress-tested through scenario-based evaluation to assess resilience under varying market conditions.

Quality assurance processes included peer reviews by independent technical advisors and iterative validation with industry stakeholders to ensure factual accuracy and practical relevance. Ethical research standards and confidentiality safeguards were maintained during primary engagements, and all proprietary information collected during interviews was anonymized and synthesized in aggregate to protect commercial sensitivities.

A strategic synthesis that emphasizes formulation innovation, supply resilience, and service-led differentiation as the primary levers for long-term competitiveness in engineered fluids

In conclusion, engineered fluids occupy a strategic intersection of chemistry, mechanical performance, and commercial service delivery, and stakeholders must align technical innovation with resilient supply and sustainability objectives. The sector's near-term priorities include adapting formulations for evolving application demands, mitigating trade-related supply risks, and embedding digital monitoring capabilities into service offerings. At the same time, regulatory imperatives are accelerating the transition toward lower-impact base fluids and greater transparency in chemical composition and lifecycle impacts.

The synthesis of segmentation, regional dynamics, and company strategies indicates that winners will be those who can integrate formulation science with operational flexibility and customer-centric services. Investments in regional manufacturing footprints, distributor enablement, and predictive maintenance platforms will improve time-to-market and strengthen customer retention. Moreover, a clear sustainability narrative, supported by independently validated performance data, will be increasingly important for securing large institutional contracts and meeting public-sector procurement requirements.

For executives and technical leaders, the immediate call is to translate these strategic imperatives into prioritized, measurable initiatives that reduce supply vulnerability, accelerate product differentiation, and create recurring revenue through services. Doing so will position organizations to capture value across shifting application profiles and regulatory landscapes while maintaining operational excellence and customer trust.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Increased development of synthetic refrigerants with ultra-low global warming potential
  • 5.2. Growing adoption of bio-based biodegradable hydraulic fluids in heavy machinery to meet sustainability goals
  • 5.3. Advanced heat transfer fluids for concentrated solar power systems offering higher thermal stability and efficiency
  • 5.4. Rising demand for high-performance dielectric fluids in electrical transformers driven by grid modernization efforts
  • 5.5. Integration of nanofluid technology for enhanced cooling performance in data centers and high-power electronics
  • 5.6. Regulatory pressure driving the development of PFAS-free firefighting foams and specialty fluorinated fluids
  • 5.7. Customization of lubricants with shear-stable polymers for extended service life in wind turbine gearboxes
  • 5.8. Electrification of transport increasing need for specialized e-fluids for electric vehicle thermal management systems
  • 5.9. Circular economy initiatives accelerating fluid recycling, regeneration, and remanufacturing in industrial applications

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Engineered Fluids Market, by Product Type

  • 8.1. Dielectric Fluids
  • 8.2. Heat Transfer Fluids
  • 8.3. Hydraulic Fluids
  • 8.4. Lubricating Oils
    • 8.4.1. Compressor Oils
    • 8.4.2. Engine Oils
      • 8.4.2.1. Commercial Vehicle
      • 8.4.2.2. Passenger Vehicle
    • 8.4.3. Gear Oils
      • 8.4.3.1. Automotive Gear Oil
      • 8.4.3.2. Industrial Gear Oil
    • 8.4.4. Transmission Fluids
  • 8.5. Metalworking Fluids
    • 8.5.1. Cutting Fluids
      • 8.5.1.1. Straight Oils
      • 8.5.1.2. Water-Soluble
    • 8.5.2. Drawing Fluids

9. Engineered Fluids Market, by Application

  • 9.1. Aerospace
  • 9.2. Automotive
  • 9.3. Industrial
  • 9.4. Marine
  • 9.5. Power Generation

10. Engineered Fluids Market, by End Use Industry

  • 10.1. Aerospace And Defense
  • 10.2. Automotive
  • 10.3. Energy And Power
  • 10.4. Manufacturing
    • 10.4.1. Discrete Manufacturing
    • 10.4.2. Process Manufacturing

11. Engineered Fluids Market, by Base Fluid Type

  • 11.1. Ester Fluids
  • 11.2. Mineral Oil
  • 11.3. Pao
  • 11.4. Synthetic Oil
  • 11.5. Water Glycol

12. Engineered Fluids Market, by Viscosity Grade

  • 12.1. High Viscosity
  • 12.2. Low Viscosity
  • 12.3. Medium Viscosity

13. Engineered Fluids Market, by Technology

  • 13.1. Emulsion
  • 13.2. Semi-Synthetic
  • 13.3. Soluble Oil
  • 13.4. Straight Oil
  • 13.5. Synthetic

14. Engineered Fluids Market, by Distribution Channel

  • 14.1. Direct Sales
  • 14.2. Distributors
    • 14.2.1. Local Distributors
    • 14.2.2. Master Distributors
  • 14.3. E-Commerce

15. Engineered Fluids Market, by Region

  • 15.1. Americas
    • 15.1.1. North America
    • 15.1.2. Latin America
  • 15.2. Europe, Middle East & Africa
    • 15.2.1. Europe
    • 15.2.2. Middle East
    • 15.2.3. Africa
  • 15.3. Asia-Pacific

16. Engineered Fluids Market, by Group

  • 16.1. ASEAN
  • 16.2. GCC
  • 16.3. European Union
  • 16.4. BRICS
  • 16.5. G7
  • 16.6. NATO

17. Engineered Fluids Market, by Country

  • 17.1. United States
  • 17.2. Canada
  • 17.3. Mexico
  • 17.4. Brazil
  • 17.5. United Kingdom
  • 17.6. Germany
  • 17.7. France
  • 17.8. Russia
  • 17.9. Italy
  • 17.10. Spain
  • 17.11. China
  • 17.12. India
  • 17.13. Japan
  • 17.14. Australia
  • 17.15. South Korea

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. Schlumberger Limited
    • 18.3.2. Halliburton Company
    • 18.3.3. Baker Hughes Company
    • 18.3.4. Weatherford International plc
    • 18.3.5. National Oilwell Varco, Inc.
    • 18.3.6. Newpark Resources, Inc.
    • 18.3.7. Calfrac Well Services Ltd.
    • 18.3.8. Superior Energy Services, Inc.
    • 18.3.9. Expro Group Holdings PLC
    • 18.3.10. Liberty Oilfield Services, Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제