시장보고서
상품코드
1858209

압출 코팅 시장 : 용도, 기술, 기재, 최종 이용 산업, 코팅 유형별 - 세계 예측(2025-2032년)

Extrusion Coatings Market by Application, Technology, Substrate, End Use Industry, Coating Type - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 186 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

압출 코팅 시장은 2032년까지 연평균 복합 성장률(CAGR) 5.91%로 98억 4,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 : 2024년 62억 1,000만 달러
추정 연도 : 2025년 65억 8,000만 달러
예측 연도 : 2032년 98억 4,000만 달러
CAGR(%) 5.91%

재료 과학, 규제 압력, 최종 사용 수요, 제조업체 및 컨버터가 압출 코팅 전략을 재구성하는 이유를 설명하는 간결한 산업 프레임워크

재료과학의 혁신이 규제, 공급망 및 최종 사용의 역학 변화와 교차하는 가운데, 압출 코팅 분야는 매우 중요한 교차로에 놓여 있습니다. 이 소개에서는 현대 압출 코팅을 정의하는 핵심 기술, 기판과의 관계, 응용 압력에 대한 개요를 설명하고 업계 상황을 정리합니다. 또한, R&D, 운영, 상업 팀 간의 기능 간 협업이 단기적인 기회를 포착하고, 단기적으로 드러나는 위험을 완화하는 데 필수적인 이유를 설명합니다.

이 책에서는 먼저, 플렉서블 기판과 리지드 기판 모두에서 익스트루젼 코팅이 필수적인 기술적 기반에 대해 고찰하고, 배합의 선택이 밀봉성, 배리어성, 가공성에 어떤 영향을 미치는지 밝힙니다. 또한, 특히 포장, 의료, 자동차 분야에서 다운스트림 사용자의 요구가 지속가능성, 재활용성, 오염 방지를 위해 재료의 우선순위를 어떻게 변화시키고 있는지를 살펴봅니다. 또한, 원자재 변동, 규제 모니터링, 무역 패턴의 변화와 같은 거시적 요인이 공급업체 선택, 공정 투자, 제품 차별화를 둘러싼 의사결정 주기에 어떤 압력을 가하고 있는지를 정리했습니다.

마지막으로 서론에서는 본 보고서의 분석 접근 방식을 설명하고, 주요 이해관계자 인터뷰, 기술 준비도 평가, 시나리오 분석을 통합하여 직접 실행 가능한 인사이트를 도출했다는 점을 강조합니다. 이 프레임워크를 통해 독자들은 분석을 통해 적용된 렌즈와 발견을 상업적, 기술적 전략에 적용할 때 기대할 수 있는 실질적인 이점을 이해할 수 있습니다.

기술 혁신, 지속가능성, 업무의 디지털화가 압출 코팅의 전체 밸류체인에서 상업적 전략과 제조 전략을 재정의하는 방법

압출 코팅을 둘러싼 환경은 제형, 장비, 가치사슬의 각 모델에 파급되는 변화의 시기를 맞이하고 있습니다. 기술의 발전은 기능적 성능과 환경적 컴플라이언스의 균형을 맞추는 고분자 화학의 채택을 가속화하고 있습니다. 동시에, 제조 발자국은 원자재 가용성 및 물류 비용의 지역적 변동에 적응하고 있으며, 중앙 집중식 생산에서 보다 분산된 고객 밀착형 역량에 대한 전략적 조정을 촉진하고 있습니다.

지속가능성에 대한 열망은 재료 공급업체와 컨버터 모두 라이프사이클 영향을 재검토하고, 용매 배출을 줄이고 공정 효율을 향상시키는 수성 화학물질과 고형분 배합을 혁신하여 용매 배출을 줄이고 공정 효율을 향상시키는 혁신을 이끌어내고 있습니다. 그 결과, 수지 제조업체, 접착제 배합 제조업체, 최종 사용자 간의 협력 체제가 강화되어 기성품이 아닌 용도에 특화된 솔루션의 통합적인 개발 경로가 구축되고 있습니다. 동시에, 다층 구조 및 금속화 층이 없는 배리어 성능에 대한 요구 등 패키징의 고도화에 따른 수요 측면의 변화로 인해 압출 코팅의 성능 수준이 재정의되고 있습니다.

운영 측면에서는 디지털 공정 제어와 인라인 품질 분석이 수율 향상과 폐기물 감소를 위한 표준 레버가 되고 있으며, 웹 가공과 코팅층의 균일성을 보다 엄격하게 제어할 수 있게 되었습니다. 이러한 힘을 종합하면, 이러한 힘은 점진적인 것이 아니라 코팅 생태계에서 지속적인 차별화를 위해 조직이 R&D, 자본 배분 및 상업적 시장 진출 전략의 우선순위를 재설정하는 방법에 관한 것입니다.

무역이 복잡해짐에 따라 2025년 관세 변화가 압출 코팅 생태계 전반공급망, 조달 결정, 경쟁적 포지셔닝을 어떻게 재구성할 것인지 평가합니다.

2025년 미국의 관세 조치의 누적된 영향은 압출 코팅 생태계 내 수출업체, 수입업체, 국내 컨버터에 다각적인 영향을 미칠 것입니다. 관세 변화는 원자재 흐름의 경제성을 변화시키고, 기업들은 공급망의 리스크 프로파일을 재검토할 필요가 있습니다. 특히, 국제 공급 경로를 통한 원료 및 중간 고분자 수지의 경우, 상륙 비용 구조가 변경되어 조달팀은 조달 전략 및 장기 계약을 재검토해야할 것입니다.

직접적인 비용 조정뿐만 아니라 관세는 생산의 근해화, 대체 수지의 인증, 지역 판매자와의 거래 조건 재협상 등 전략적 대응을 유도합니다. 이러한 대응에는 자본과 시간이 필요한 경우가 많으며, 단기적으로 제품 공급 능력에 영향을 미치고 지역의 기술 서비스 역량에 대한 투자를 가속화합니다. 국경 간 공급망에 의존하는 제조업체의 경우, 관세는 고객과의 약속을 지키면서 마진의 무결성을 유지하기 위해 투명한 비용 대 서비스 분석과 시나리오 계획의 중요성을 높입니다.

동시에 관세는 수직적으로 통합된 공급망을 가진 기업과 제3자 수지에 의존하는 기업 사이에 불균등한 경쟁 역학을 만들어 낼 수 있습니다. 관세 환경은 민첩성을 중시하기 때문에 대체 재료의 신속한 인증과 대체 기판에 대응하기 위해 코팅 공식을 조정하는 기업은 혼란을 완화할 수 있습니다. 정책 입안자와 업계 대표들은 건설적인 대화와 적극적인 컴플라이언스 전략이 마찰을 줄이고 코팅의 밸류체인 전반에 걸쳐 보다 예측 가능한 계획을 수립할 수 있다는 것을 알게 될 것입니다.

용도, 기술, 기판, 최종 사용 산업, 코팅 유형이 어떻게 전략적 제품 및 시장 우선순위를 결정하는지를 보여주는 통합 세분화 분석

세분화된 세분화 렌즈를 통해 전체 압출 코팅 시장의 가치, 위험 및 기회가 수렴하는 곳을 밝히고, 투자가 차별화된 수익을 가져다 줄 수 있는 곳을 가리킵니다. 접착제의 경우, 감압식과 수활성식이 다르기 때문에 컨버터의 공정 요구 사항과 최종 용도의 취급 프로토콜이 다릅니다. 배리어 코팅은 규제, 순도, 추적성 기준을 별도로 요구하는 식품 포장용과 의료 포장용으로 세분화되며, 열 밀봉 코팅은 고온용과 저온용으로 세분화되어 각각 다른 기판 선택과 밀봉 장비에 대응합니다. 라미네이션은 필름 라미네이션, 연포장 라미네이션, 판지 라미네이션에서 고려되며, 이는 코팅의 유변학 및 경화 화학적 고려 사항에 영향을 미칩니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 압출 코팅 시장 : 용도별

  • 접착제
    • 감압
    • 물 활성화형
  • 배리어 코팅
    • 식품 포장
    • 의료 포장
  • 기능성 코팅
  • 히트 실 코팅
    • 고온
    • 저온
  • 라미네이션
    • 필름 라미네이트
    • 연포장 라미네이트
    • 판지 라미네이트

제9장 압출 코팅 시장 : 기술별

  • 코폴리머
  • 에틸렌 비닐 아세테이트
  • 메탈로센
  • 플라스토머
  • 폴리우레탄

제10장 압출 코팅 시장 : 기재별

  • 보드
    • 폴딩 카톤 보드
    • 솔리드 표백 보드
  • 필름
    • Bopp
    • PE
    • PET
    • PP
  • 포일
  • 종이
    • 코팅지
    • 크라프트지

제11장 압출 코팅 시장 : 최종 이용 산업별

  • 농업
  • 자동차
    • 외장
    • 내장
  • 건축
    • 단열
    • 지붕
  • 메디컬
    • 디바이스 포장
    • 의약품 포장
  • 포장
    • 음료 포장
    • 식품 포장

제12장 압출 코팅 시장 코팅 유형별

  • 분말 코팅
  • 용제 베이스
    • 지방족
    • 방향족
  • Solvent Less
  • 수성
    • 아크릴
    • 폴리우레탄

제13장 압출 코팅 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 압출 코팅 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 압출 코팅 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Dow Inc.
    • BASF SE
    • Arkema S.A.
    • Evonik Industries AG
    • Eastman Chemical Company
    • Henkel AG & Co. KGaA
    • Wacker Chemie AG
    • 3M Company
    • PPG Industries, Inc.
    • H.B. Fuller Company
LSH 25.11.13

The Extrusion Coatings Market is projected to grow by USD 9.84 billion at a CAGR of 5.91% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 6.21 billion
Estimated Year [2025] USD 6.58 billion
Forecast Year [2032] USD 9.84 billion
CAGR (%) 5.91%

A concise industry framing that explains why material science, regulatory pressure, and end-use demands are reshaping extrusion coatings strategies for manufacturers and converters

The extrusion coatings sector stands at a pivotal juncture as material science innovations intersect with shifting regulatory, supply chain, and end-use dynamics. This introduction frames the industry context by outlining the core technologies, substrate relationships, and application pressures that define modern extrusion coating practice. It also sets the stage for why cross-functional alignment between R&D, operations, and commercial teams is essential for capturing near-term opportunities and mitigating emergent risks.

Examination begins with the technical underpinnings that make extrusion coatings indispensable across flexible and rigid substrates, highlighting how formulation choices influence sealability, barrier performance, and processability. Building on this, the narrative explores how downstream user requirements-particularly in packaging, medical, and automotive applications-are reshaping material priorities toward sustainability, recyclability, and contamination control. The introduction further synthesizes how macro drivers such as raw material volatility, regulatory scrutiny, and changing trade patterns collectively pressure decision cycles around supplier selection, process investments, and product differentiation.

Finally, the introduction explains the report's analytical approach, emphasizing an integration of primary stakeholder interviews, technology readiness assessment, and scenario analysis to generate insights that are directly actionable. This framing ensures readers understand the lenses applied throughout the analysis and what practical benefit they can expect when applying the findings to commercial and technical strategies.

How technological innovation, sustainability imperatives, and operational digitization are jointly redefining commercial and manufacturing strategies across the extrusion coatings value chain

The extrusion coatings landscape is undergoing transformative shifts that ripple across formulation, equipment, and value chain models. Technology evolution is accelerating the adoption of polymer chemistries that balance functional performance with environmental compliance. At the same time, manufacturing footprints are adapting to regional volatility in feedstock availability and logistics costs, prompting strategic adjustments from centralized production to more distributed, customer-proximate capabilities.

Sustainability ambitions are pushing both material suppliers and converters to rethink lifecycle impacts, leading to innovation in water-based chemistries and high-solid formulations that reduce solvent emissions and improve process efficiency. As a result, collaboration between resin producers, adhesive formulators, and end users has intensified, creating integrated development pathways for application-specific solutions rather than off-the-shelf products. Concurrently, demand-side shifts in packaging sophistication-such as multi-layer structures and demand for barrier performance without metalized layers-are redefining the performance bar for extrusion coatings.

Operationally, digital process controls and inline quality analytics are becoming standard levers for yield improvement and reduced waste, enabling tighter control over web processing and coating layer uniformity. Taken together, these forces are not incremental; they are reconfiguring how organizations prioritize R&D, capital allocation, and commercial go-to-market strategies for sustained differentiation in the coating ecosystem.

Evaluating how 2025 tariff shifts reshape supply chains, sourcing decisions, and competitive positioning across the extrusion coatings ecosystem amid rising trade complexity

The cumulative impact of United States tariff actions in 2025 presents multidimensional implications for exporters, importers, and domestic converters within the extrusion coatings ecosystem. Tariff shifts alter raw material flow economics and compel firms to reassess supply chain risk profiles. In particular, feedstocks and intermediate polymer resins that traverse international supply routes will experience changes in landed cost structures, prompting procurement teams to revisit sourcing strategies and long-term contracts.

Beyond direct cost adjustments, tariffs catalyze strategic responses such as nearshoring of production, qualification of alternative resin chemistries, and renegotiation of commercial terms with regional distributors. These adaptations often require capital and time, affecting short-term product availability and accelerating investments in regional technical service capabilities. For manufacturers reliant on cross-border supply chains, tariffs increase the importance of transparent cost-to-serve analytics and scenario planning to maintain margin integrity while preserving customer commitments.

At the same time, tariffs can create uneven competitive dynamics between companies with vertically integrated supply chains and those dependent on third-party resins. The tariff environment places a premium on agility-companies that rapidly qualify substitute materials or adjust coating formulations to accommodate alternate substrates can mitigate disruption. Policymakers and industry representatives will find that constructive dialogue and proactive compliance strategies reduce friction and enable more predictable planning across the coating value chain.

An integrated segmentation analysis showing how application, technology, substrate, end-use industry, and coating-type intersections define strategic product and market priorities

A granular segmentation lens reveals where value, risk, and opportunity converge across the extrusion coatings market and points to where investment can yield differentiated returns. Based on Application, the market is studied across Adhesive, Barrier Coating, Functional Coating, Heat Seal Coating, and Lamination; within Adhesive the distinctions between Pressure Sensitive and Water Activated formulations drive different converter process requirements and end-use handling protocols; Barrier Coating is further segmented into Food Packaging and Medical Packaging applications that demand discrete regulatory, purity, and traceability standards; Heat Seal Coating subdivides into High Temperature and Low Temperature variants, each aligning with distinct substrate choices and sealing equipment; Lamination is examined across Film Lamination, Flexible Packaging Lamination, and Paperboard Lamination, which influence both coating rheology and cure chemistry considerations.

Based on Technology, the market is studied across Copolymer, Ethylene Vinyl Acetate, Metallocene, Plastomer, and Polyurethane, and each technology pathway offers a distinct mix of mechanical properties, adhesion profiles, and processing windows that inform application fit and material selection strategies. Based on Substrate, the market is studied across Board, Film, Foil, and Paper; Board is further analyzed into Folding Carton Board and Solid Bleached Board while Film is further differentiated into BOPP, PE, PET, and PP types and Paper into Coated Paper and Kraft Paper, all of which impose characteristic surface energy and roughness constraints on coating performance. Based on End Use Industry, the market is studied across Agriculture, Automotive, Construction, Medical, and Packaging, with Automotive dissected into Exterior and Interior requirements, Construction into Insulation and Roofing functionalities, Medical into Device Packaging and Pharmaceutical Packaging controls, and Packaging into Beverage Packaging and Food Packaging standards. Based on Coating Type, the market is studied across Powder Coating, Solvent Based, Solvent Less, and Water Based options, with Solvent Based subdivided into Aliphatic and Aromatic chemistries and Water Based further categorized into Acrylic and Polyurethane families, each carrying distinct environmental compliance and application trade-offs.

Taken together, these segmentation axes map the intersection of technical constraints and commercial demand. The practical implication is that product strategy must move beyond single-axis optimization; successful offerings align coating chemistry, application technique, and substrate characteristics to the specific regulatory and functional demands of target end-use industries.

Regional differentiation in regulation, feedstock availability, and end-use demand that determines where to prioritize investment in development, production, and technical service capabilities

Regional dynamics create differentiated opportunity sets and regulatory contexts that materially influence commercialization strategy for extrusion coatings. In the Americas, demand patterns are shaped by a mix of mature packaging supply chains and growth pockets in specialized industrial coatings; regional feedstock availability and infrastructure drive preferences for certain resin systems and compel manufacturers to balance centralized production with local service capabilities. In Europe, Middle East & Africa, regulatory frameworks and sustainability mandates are particularly influential, accelerating interest in low-emission formulations and circularity-aligned technologies, while regional variance in waste management systems creates diverse product fit across markets. In Asia-Pacific, rapid urbanization and robust manufacturing ecosystems foster high-volume demand for flexible packaging and industrial coatings; this region also serves as a hotbed for innovation in cost-effective chemistries and scalable processing technologies.

Across these geographies, logistics considerations, trade policies, and proximity to major converters shape strategic decisions about where to locate technical centers and inventory buffers. For example, companies expanding into regions with stringent packaging regulations should prioritize early engagement with local compliance bodies and invest in application labs that replicate downstream processing conditions. Meanwhile, firms pursuing global scale must reconcile regional formulation variations and certification requirements with the efficiencies of standardized production lines. These regional insights suggest that a hybrid approach-combining global technology platforms with localized development and service nodes-best reconciles scale and market responsiveness.

How top-tier players combine formulation leadership, supply resilience, and embedded technical services to secure durable competitive advantage in extrusion coatings

Leading companies in the extrusion coatings arena are deploying distinct strategic playbooks that combine technological leadership, supply chain resilience, and downstream integration. Market leaders typically maintain strong application development capabilities and co-locate technical service resources near major converter clusters to accelerate product adoption and troubleshooting. They also invest in proprietary chemistries or tailored resin partnerships to protect margins and differentiate on performance characteristics such as adhesion across diverse substrates, enhanced barrier properties, or optimized sealability for high-speed lines.

Other influential players double down on operational excellence and supply security, securing long-term agreements with resin suppliers or developing secondary sourcing to cushion volatility. Collaborations with equipment manufacturers and converters for joint process validation have become a competitive necessity, ensuring formulations are not only chemically robust but also compatible with modern coating and lamination lines. Meanwhile, niche specialists concentrate on application-specific challenges-such as medical packaging purity, heat-seal performance, or recyclable laminate solutions-leveraging deep regulatory expertise and validation protocols to command premium positioning.

Across the industry, successful companies blend technical differentiation with pragmatic commercial support, offering training, in-line diagnostics, and after-sales service to embed their solutions into customer operations. The result is that technology advantage alone is insufficient; commercial models that minimize adoption friction and deliver measurable process improvements determine longer-term market leadership.

Practical strategic moves that operationalize R&D, diversify supply, and enhance customer adoption through technical service and digital process controls

Industry leaders must pursue a set of pragmatic, high-impact actions to convert insight into durable advantage in extrusion coatings. First, invest in cross-functional development programs that align polymer chemistry advances with converter process realities; marrying formulation science with real-world line testing reduces time-to-adoption and improves first-pass yield for new products. Second, prioritize supply chain diversification, pairing long-term agreements with flexible regional sourcing to mitigate tariff and logistics exposure while preserving cost competitiveness.

Third, accelerate the transition toward low-emission and water-based chemistries where feasible, deploying pilot programs that assess recyclability, downstream sorting compatibility, and end-of-life outcomes. Fourth, strengthen commercial support by co-locating technical application teams with major customers and offering modular training and trouble-shooting services that reduce adoption friction. Fifth, incorporate digital quality controls and inline analytics into coating operations to drive consistent layer uniformity and reduce rework, thereby improving margins and sustainability credentials.

Finally, adopt a differentiated go-to-market strategy that segments customers by technical sophistication and willingness to co-develop. By combining targeted technical investments with pragmatic supply strategies and a service-led commercial model, companies can protect margins, accelerate innovation, and sustain customer loyalty in a market characterized by evolving regulatory and trade dynamics.

A rigorous, application-focused methodology combining primary stakeholder interviews, technical validation, and scenario-based risk analysis to ensure practical and reliable insight

The research methodology underpinning this analysis combines qualitative and quantitative techniques to ensure robust, actionable findings. Primary research includes structured interviews with technical leaders at resin suppliers, converters, OEMs, and end users to capture firsthand perspectives on formulation trends, process challenges, and regional market dynamics. These conversations were complemented by site visits and virtual process audits that validated coating performance claims under representative operating conditions.

Secondary inputs comprised a careful review of publicly available regulatory guidance, patents, technical bulletins, and scientific literature to corroborate technology trajectories and material behavior. Competitive landscaping used product literature and patent analytics to understand differentiation levers and identify emergent chemistries and application approaches. Scenario analysis modeled the likely operational responses to trade and regulatory shocks, focusing on qualitative risk pathways and mitigation strategies rather than numeric forecasts.

Throughout, data integrity was maintained via cross-validation across multiple sources and triangulation of supplier, converter, and end-user viewpoints. The methodology prioritized relevance to commercial decision-makers by emphasizing application-level validation, manufacturability assessments, and readiness indicators that help translate technical promise into implementable roadmaps.

The strategic synthesis showing why coordinated R&D, supply diversification, and adoption-focused service models determine sustained success in extrusion coatings

In conclusion, extrusion coatings are evolving from commodity formulations toward integrated, application-led solutions that require coordinated responses across R&D, supply chain, and commercial functions. Material innovations are driven by the dual imperatives of enhanced functional performance and reduced environmental impact, while trade and regulatory shifts compel operational flexibility and strategic sourcing. Successful organizations will be those that embed technical service capabilities close to converters, maintain diversified supply relationships, and invest in product development that explicitly addresses end-use regulatory and recyclability constraints.

Moreover, market differentiation increasingly depends on minimizing adoption friction: demonstrable improvements in process yield, in-line quality control, and validated compatibility with downstream packaging and recycling systems command greater commercial returns than incremental material enhancements alone. Companies that align portfolio decisions with regional regulatory realities and that move rapidly to de-risk supply chains will be better placed to sustain margins and capture growth pockets.

Ultimately, the most effective strategies balance long-term technology investment with near-term operational pragmatism, ensuring that innovative chemistries translate into customer-relevant outcomes and resilient business models across the extrusion coatings landscape.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Surge in bio-based polymer extrusion coatings driven by demand for sustainable packaging solutions
  • 5.2. Integration of antimicrobial and barrier-enhancing additives in extrusion coatings for food safety and shelf life extension
  • 5.3. Advancements in low-temperature extrusion coating processes reducing energy consumption and carbon footprint in manufacturing
  • 5.4. Use of nanocomposite fillers in extrusion coatings to improve mechanical strength and barrier performance in packaging
  • 5.5. Growing preference for solvent-free extrusion coating technologies to comply with stringent VOC emission regulations
  • 5.6. Development of high-speed extrusion coaters with inline quality monitoring for increased throughput and reduced waste
  • 5.7. Adoption of digital twin and Industry 4.0 analytics to optimize extrusion coating line efficiency and maintenance planning

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Extrusion Coatings Market, by Application

  • 8.1. Adhesive
    • 8.1.1. Pressure Sensitive
    • 8.1.2. Water Activated
  • 8.2. Barrier Coating
    • 8.2.1. Food Packaging
    • 8.2.2. Medical Packaging
  • 8.3. Functional Coating
  • 8.4. Heat Seal Coating
    • 8.4.1. High Temperature
    • 8.4.2. Low Temperature
  • 8.5. Lamination
    • 8.5.1. Film Lamination
    • 8.5.2. Flexible Packaging Lamination
    • 8.5.3. Paperboard Lamination

9. Extrusion Coatings Market, by Technology

  • 9.1. Copolymer
  • 9.2. Ethylene Vinyl Acetate
  • 9.3. Metallocene
  • 9.4. Plastomer
  • 9.5. Polyurethane

10. Extrusion Coatings Market, by Substrate

  • 10.1. Board
    • 10.1.1. Folding Carton Board
    • 10.1.2. Solid Bleached Board
  • 10.2. Film
    • 10.2.1. Bopp
    • 10.2.2. Pe
    • 10.2.3. Pet
    • 10.2.4. Pp
  • 10.3. Foil
  • 10.4. Paper
    • 10.4.1. Coated Paper
    • 10.4.2. Kraft Paper

11. Extrusion Coatings Market, by End Use Industry

  • 11.1. Agriculture
  • 11.2. Automotive
    • 11.2.1. Exterior
    • 11.2.2. Interior
  • 11.3. Construction
    • 11.3.1. Insulation
    • 11.3.2. Roofing
  • 11.4. Medical
    • 11.4.1. Device Packaging
    • 11.4.2. Pharmaceutical Packaging
  • 11.5. Packaging
    • 11.5.1. Beverage Packaging
    • 11.5.2. Food Packaging

12. Extrusion Coatings Market, by Coating Type

  • 12.1. Powder Coating
  • 12.2. Solvent Based
    • 12.2.1. Aliphatic
    • 12.2.2. Aromatic
  • 12.3. Solvent Less
  • 12.4. Water Based
    • 12.4.1. Acrylic
    • 12.4.2. Polyurethane

13. Extrusion Coatings Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Extrusion Coatings Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Extrusion Coatings Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Dow Inc.
    • 16.3.2. BASF SE
    • 16.3.3. Arkema S.A.
    • 16.3.4. Evonik Industries AG
    • 16.3.5. Eastman Chemical Company
    • 16.3.6. Henkel AG & Co. KGaA
    • 16.3.7. Wacker Chemie AG
    • 16.3.8. 3M Company
    • 16.3.9. PPG Industries, Inc.
    • 16.3.10. H.B. Fuller Company
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제