시장보고서
상품코드
1864286

세계의 인트라로지스틱스 자동화 솔루션 시장 : 제공별, 유형별, 용도별, 최종 용도 산업별, 배포 모드별 예측(2025-2032년)

Intralogistics Automation Solutions Market by Offering, Type, Application, End-Use Industry, Deployment Mode - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 192 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

인트라로지스틱스 자동화 솔루션 시장은 2032년까지 연평균 복합 성장률(CAGR) 8.55%를 나타내 549억 3,000만 달러 규모에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도(2024년) 284억 9,000만 달러
추정 연도(2025년) 309억 6,000만 달러
예측 연도(2032년) 549억 3,000만 달러
CAGR(%) 8.55%

인트라로지스틱스 자동화의 전략적 도입 : 성공적인 도입을위한 비즈니스 촉진 요소, 기술 융합 및 조직적 요구 사항을 체계화합니다.

인트라로지스틱스 자동화는 운영 전략, 고급 로보틱스 및 소프트웨어 구동 오케스트레이션의 교차점에 위치합니다. 유통 센터, 제조 현장, 집중형 물류 허브를 가로지르는 조직은 노동력의 변동성 증가, 고객의 속도와 정확성에 대한 기대, 강인한 공급망의 필요성에 대응하기 위해 시설 내 물품 흐름을 재조정하고 있습니다. 경영진은 내부 흐름 개선이 서비스 차별화와 이익률 보호에 직결됨을 인정하고 인트라로지스틱스를 백오피스 비용 센터가 아닌 전략적 자산으로 취급하는 경향이 커지고 있습니다.

노동력 역학, 인공지능을 이용한 오케스트레이션, 모듈형 생태계 진화 등 인트라로지스틱스를 재구성하는 주요 변화 요인에 대한 간략한 토론

내물류의 정세는 인구동태의 동향, 기술 혁신, 진화하는 고객 기대가 복합적으로 작용하여 변혁적인 전환기를 맞이하고 있습니다. 노동 시장은 자동화의 의사 결정에 영향을 미치는 가장 지속적인 요인 중 하나입니다. 인력 부족과 이직률의 상승으로 조직은 수작업을 줄이고 안전성을 높이는 시스템에 투자를 촉구하고 있습니다. 동시에, 전자상거래의 보급과 보다 신속한 풀필먼트 사이클에 대한 기대는 내부 처리량과 정확성에 대한 요구 수준을 높여 높은 처리량 컨베이어와 유연한 로봇군 모두의 도입을 촉진하고 있습니다.

미국 관세 동향이 자동화 프로젝트의 조달 전략, 조달 거점, 업무 연속성에 미치는 영향에 대한 날카로운 분석(2025년)

관세 시책은 자본재 취득과 공급망 구조에 관한 판단 기준을 바꿀 수 있으며, 2025년에 논의된 관세 환경은 조달과 도입 계획에 복잡성을 더하게 됩니다. 수입 관세 및 무역 제한으로 인해 부품 및 완제품 비용이 변동되는 경우, 조직은 대체 공급업체 간의 총 착륙 비용을 평가하고 현지 조립 및 조달을 검토하고 자본 프로젝트의 타이밍을 재평가합니다. 이러한 움직임은 리드 타임의 긴 수입에 대한 의존도를 줄이는 솔루션과 제조·통합을 주요 수요 거점에 가까운 지역에서 실시하는 니어쇼어 전략에 대한 관심을 가속시키는 경우가 많습니다.

산업분야의 의사결정자를 위해 제공형태, 특정기기급, 도입요건을 실용적인 선정기준에 정합시키는 체계적인 세분화 분석

세분화은 고차원의 전략을 조달·도입의 선택으로 변환하는 실용적인 관점을 기재하고 있습니다. 제공 제품을 기반으로 의사 결정자는 하드웨어의 내구성과 물리적 성능과 소프트웨어가 제공하는 적응성과 지속적인 개선의 균형을 고려해야합니다. 한편, 서비스는 설계, 통합, 라이프사이클 지원을 포함하고, 이들 둘을 다리는 역할을 담당합니다. 많은 도입 사례에서 하드웨어 선택은 장기적인 유지보수 시스템을 결정하고, 소프트웨어는 오케스트레이션과 분석 기능을 규정하며, 서비스는 시운전과 지속적인 최적화를 통해 시스템이 약속된 성능을 발휘할 수 있도록 합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

  • 자동화 창고의 실시간 데이터 스트림을 활용한 동적 주문 이행 스케줄링용 고도 AI 구동형 예측 분석의 통합
  • 플루필먼트 센터에서 사람과 로봇의 원활한 상호작용을 실현하기 위해 안전 센서를 통합한 협조형 자율 이동 로봇의 도입
  • IoT 접속성을 활용한 하이브리드 팔레트 셔틀 컨베이어 시스템을 도입해, 복수 존간의 재고 운송을 최적화했다
  • 클라우드 기반 창고 실행 시스템을 도입하여 이종 자동화 플릿 전체에서 실시간 가시성과 동적 태스크 할당을 실현
  • 심층 학습 알고리즘으로 강화된 비전 가이드형 로봇 피킹 시스템을 활용하여 EC 유통에 있어서 고정밀 주문 조립을 실현
  • 회생 브레이크와 태양광 충전 모듈을 탑재한 에너지 절약형 자율 지게차의 등장에 의해 내부 물류에 있어서 탄소발자국를 삭감
  • 디지털 트윈 시뮬레이션 플랫폼과 창고의 실시간 데이터 피드를 통합하여 레이아웃 설계와 처리량 성능을 실시간으로 최적화
  • 도시형 소매 환경에 있어서 컴팩트한 자동 창고 시스템을 채용한 라스트 마일용 마이크로 플루필먼트 센터의 확충
  • 자동화 창고에 있어서공급 체인의 투명성 확보와 위조 리스크 저감을 위해, 블록 체인을 활용한 추적·트래서빌리티 솔루션의 도입
  • 다층 수직 리프트 모듈과 셔틀 로봇을 조합한 시스템의 도입에 의해 보관 밀도를 극대화해 배치 피킹 효율을 가속
  • IoT 센서 네트워크와 머신러닝을 활용한 예지 보전 프레임워크의 도입에 의해 계획외의 물류 정지 시간을 최소한으로 억제합니다
  • 복잡한 자동화 시설에 있어서 피킹 정밀도와 연수 효율의 향상을 목적으로 한, 창고 작업원용 증강현실(AR) 가이드 워크 플로우의 개발
  • 고밀도 창고에 있어서 동적 채널 최적화를 위해, 집중형 AI 배차 시스템에 의해 조정되는 군집 자율 이동 로봇군의 고도화

제6장 미국 관세의 누적 영향(2025년)

제7장 AI의 누적 영향(2025년)

제8장 인트라로지스틱스 자동화 솔루션 시장 : 제공별

  • 하드웨어
  • 서비스
  • 소프트웨어

제9장 인트라로지스틱스 자동화 솔루션 시장 : 유형별

  • 자동 유도 차량
    • 레이저 유도
    • 자기 테이프 유도
    • 자연 지형 탐색
  • 자동 저장 및 검색 시스템
  • 자율 이동 로봇
    • 차동 구동 방식
    • 전방향 이동 방식
  • 컨베이어 시스템
  • 분류 시스템

제10장 인트라로지스틱스 자동화 솔루션 시장 : 용도별

  • 포장 및 팔레타이징
  • 피킹
  • 분류
  • 저장 및 회수
  • 운송

제11장 인트라로지스틱스 자동화 솔루션 시장 : 최종 이용 산업별

  • 자동차
  • 전자상거래 및 소매
  • 식품 및 음료
  • 제조
  • 제약 및 의료
  • 제3자 물류

제12장 인트라로지스틱스 자동화 솔루션 시장 : 배포 모드별

  • 클라우드
  • On-Premise

제13장 인트라로지스틱스 자동화 솔루션 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 인트라로지스틱스 자동화 솔루션 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 인트라로지스틱스 자동화 솔루션 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석(2024년)
  • FPNV 포지셔닝 매트릭스(2024년)
  • 경쟁 분석
    • KION Group AG
    • Toyota Industries Corporation
    • Daifuku Co., Ltd.
    • Mitsubishi Logisnext Co., Ltd.
    • Jungheinrich AG
    • KUKA AG
    • SSI Schafer Group
    • Swisslog AG
    • Vanderlande Industries Holding BV
    • Honeywell International Inc.
KTH 25.12.10

The Intralogistics Automation Solutions Market is projected to grow by USD 54.93 billion at a CAGR of 8.55% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 28.49 billion
Estimated Year [2025] USD 30.96 billion
Forecast Year [2032] USD 54.93 billion
CAGR (%) 8.55%

A strategic introduction to intralogistics automation that frames operational drivers, technology convergence, and organizational prerequisites for successful adoption

Intralogistics automation sits at the intersection of operations strategy, advanced robotics, and software-driven orchestration. Organizations across distribution centers, manufacturing floors, and centralized logistics hubs are recalibrating how goods flow within facilities to address rising labor volatility, customer expectations for speed and accuracy, and the need for resilient supply chains. Leaders are increasingly treating intralogistics as a strategic asset rather than a back-office cost center, recognizing that improvements to internal flows translate directly to service differentiation and margin protection.

As adoption accelerates, the ecosystem of hardware, software, and service providers is maturing rapidly. Contemporary solutions integrate autonomous mobile robots and automated guided vehicles with storage and retrieval systems, conveyors, and sortation equipment, all governed by warehouse control and warehouse management layers. This convergence enables greater visibility, deterministic task allocation, and incremental automation that can be phased into live operations. In addition, cloud and on-premise deployment models present distinct trade-offs between scalability, latency, and data ownership, which must be matched to enterprise risk tolerance and IT strategy.

Ultimately, the introduction of intralogistics automation requires holistic planning. Cross-functional coordination among operations, engineering, IT, and procurement is essential to manage change, validate assumptions, and secure measurable outcomes. When executed thoughtfully, automation enhances throughput, reduces error rates, and creates capacity for new business models while preserving flexibility for future technology evolution.

A concise exploration of the major transformative forces reshaping intralogistics including labor dynamics, AI-enabled orchestration, and modular ecosystem evolution

The intralogistics landscape is undergoing transformative shifts driven by a combination of demographic trends, technological innovation, and evolving customer expectations. Labor markets remain one of the most persistent levers influencing automation decisions; shortages and attrition are prompting organizations to invest in systems that reduce manual handling and increase safety. Simultaneously, the proliferation of e-commerce and the expectation for faster fulfillment cycles have raised the bar on internal throughput and accuracy, incentivizing the deployment of both high-throughput conveyors and flexible robotic fleets.

Technological maturation has broadened the palette of viable solutions. Autonomous mobile robots and automated guided vehicles now coexist with sophisticated automated storage and retrieval systems, while software platforms increasingly enable orchestration across heterogeneous equipment. Artificial intelligence and machine learning are being applied to demand prediction, dynamic slotting, and routing optimization, refining decision-making at the task and facility levels. Cloud-native architectures are enabling faster software updates and remote monitoring, while on-premise solutions remain preferred where latency or data sovereignty concerns dominate.

As a result, the industry is shifting from single-vendor monoliths toward modular ecosystems in which integrators, hardware OEMs, and software providers collaborate. This evolutionary trend supports phased deployments that lower implementation risk and preserve optionality. For leaders, embracing interoperability standards and focusing on measurable process improvements will be the differentiators between pilots that stall and programs that deliver sustained operational advantage.

An incisive analysis of how United States tariff developments in 2025 can reshape procurement strategies, sourcing footprints, and operational continuity in automation projects

Tariff policy can alter the calculus for capital equipment acquisition and supply chain architecture, and the tariff environment under discussion for 2025 introduces a layer of complexity for procurement and deployment planning. When import duties or trade restrictions change component and finished-goods costs, organizations evaluate total landed cost across alternative suppliers, consider local assembly or sourcing, and reassess the timing of capital projects. These dynamics often accelerate interest in solutions that reduce dependence on long lead-time imports or that enable nearshoring strategies where manufacturing and integration occur closer to key demand centers.

In addition to direct cost effects, tariffs influence vendor selection and aftermarket support planning. Companies may prioritize suppliers with established regional footprints and local spare-parts inventories to mitigate exposure to cross-border disruptions. Consequently, system integrators and OEMs that maintain diversified manufacturing and service networks gain a relative advantage in environments where tariff unpredictability is a factor. From an operational standpoint, teams are also placing greater emphasis on flexibility: modular systems and standardized interfaces permit equipment substitutions without large-scale redesign when supplier availability changes.

Finally, strategic procurement approaches now commonly include scenario planning that models supply-chain permutations under different tariff outcomes. By integrating procurement strategy with automation roadmaps, organizations can preserve momentum on digital transformation while protecting capital and operational continuity against trade-policy volatility.

A structured segmentation insight that aligns offering types, specific equipment classes, and deployment considerations to practical selection criteria for industrial decision-makers

Segmentation offers a practical lens for translating high-level strategy into procurement and deployment choices. Based on offering, decision-makers must balance the durability and physical performance of hardware with the adaptability and continuous improvement enabled by software, while services encompass design, integration, and lifecycle support that bridge the two. In many implementations, hardware selection dictates long-term maintenance regimes, software determines orchestration and analytics capabilities, and services ensure that systems deliver on promised performance through commissioning and ongoing optimization.

Based on type, technology selection is dependent on application nuance and physical constraints; automated guided vehicles and autonomous mobile robots provide flexible point-to-point movement with differences in navigation approach and payload capabilities, where AGVs include variants such as laser-guided, magnetic tape-guided, and natural feature navigation, and AMRs include differential drive and omnidirectional platforms that influence aisle design and task allocation. Automated storage and retrieval systems deliver density and rapid vertical movement, while conveyors and sortation systems excel at deterministic, high-throughput flows. These technical distinctions should be matched to operational rhythms and space geometry to realize efficient flows.

Based on application, choices for packing and palletizing, picking, sorting, storage and retrieval, and transportation must be optimized together rather than in isolation, because improvements in one domain often shift constraints elsewhere. Based on end-use industry, sector-specific requirements such as hygiene for food and beverage, traceability in pharmaceutical and healthcare, or high-mix handling in e-commerce influence design parameters and vendor selection. Finally, based on deployment mode, cloud solutions accelerate analytics and remote management while on-premise installations offer tighter control over latency and data governance; the right balance depends on enterprise IT policies and the criticality of real-time control.

A comparative regional insight outlining how the Americas, Europe Middle East & Africa, and Asia-Pacific each influence procurement priorities, vendor selection, and deployment strategies

Regional dynamics shape both supplier ecosystems and the operational priorities that guide automation investment. In the Americas, the combination of e-commerce growth, emphasis on nearshoring, and a tight labor market is driving demand for retrofittable automation and scalable robotic fleets that can be deployed across distributed fulfillment centers. Regional integrators focus on rapid commissioning and spare-part availability, while customers prioritize solutions that reduce dependency on peak-season temporary labor.

In Europe, Middle East & Africa, regulatory considerations, labor cost structures, and dense urban logistics networks favor modular systems that can be adapted to constrained footprints and stricter environmental or safety standards. Manufacturers in this region often prioritize energy efficiency and interoperability with existing enterprise resource planning and warehouse management layers, while integrators emphasize compliance and multi-lingual support.

In Asia-Pacific, high-volume manufacturing and advanced electronics supply chains drive uptake of high-density storage systems and highly automated sortation for export-oriented logistics. Rapid technological adoption paired with aggressive domestic robotics development results in a rich vendor landscape, where local players offer competitive pricing and customization. Across all regions, cross-border serviceability, spare parts logistics, and the ability to scale from pilot to multi-site deployments remain prevailing themes that buyers evaluate when selecting partners.

A focused corporate insight into how incumbent manufacturers, nimble software providers, and integrators are reshaping competitive dynamics through partnerships and platform strategies

Competitive dynamics in intralogistics reflect convergence between traditional equipment manufacturers, software innovators, and systems integrators. Leading companies are investing in partnerships and platform development to provide end-to-end solutions that reduce integration friction for customers. This ecosystem evolution favors organizations that can combine domain expertise in material handling with strong software orchestration capabilities and a robust service footprint.

Strategic behaviors among competitors include vertical integration to secure control of critical components, an emphasis on modular product families that enable incremental automation, and investments in digital services such as predictive maintenance, remote diagnostics, and lifecycle analytics. Moreover, alliances between robotics OEMs and specialized software providers create bundled offerings that simplify procurement but require careful vendor governance to preserve competitive pricing and innovation.

For procurement and operations teams, vendor evaluation should emphasize demonstrated integration experience, local service coverage, and proven methodologies for commissioning and continuous improvement. Evaluations also need to consider interoperability and adherence to open standards where available, because the ability to add or replace components over time without wholesale rip-and-replace reduces long-term operational risk. Ultimately, companies that combine engineering depth, software excellence, and reliable aftermarket support will be best positioned to meet varied customer requirements and sustain long-term partnerships.

A practical set of actionable recommendations that guide executives through pilot selection, governance, procurement discipline, and workforce enablement for scalable automation

Leaders seeking to extract rapid value from intralogistics automation should pursue a phased approach that begins with problem framing and ends with measurable operational objectives. Start by identifying the most constraining process within internal flows-whether that is pick accuracy, sort throughput, or dock-to-stock velocity-and scope a pilot that isolates variables and establishes clear success metrics. Ensure that pilot design incorporates both hardware and software evaluation criteria and that service-level commitments for downtime and spare parts are explicit.

Next, institute cross-functional governance that includes operations, engineering, IT, and procurement stakeholders to oversee vendor selection, integration, and change management. This governance should mandate data capture during pilots to support rigorous performance validation and should require vendors to demonstrate interoperability with existing warehouse management and enterprise systems. Also, develop a procurement strategy that accounts for total lifecycle cost, including maintenance, software licensing, and potential upgrades.

Finally, invest in workforce transition programs that re-skill staff to manage automated systems and interpret analytics outputs. Coupling human capital development with clear metrics and phased rollout plans reduces resistance and accelerates value realization. By focusing on prioritized pilots, strong governance, procurement discipline, and workforce enablement, organizations can scale automation deliberately while minimizing operational disruption.

A transparent research methodology that combines primary interviews, site observations, and secondary validation to produce actionable and verifiable intralogistics insights

The research underpinning these insights synthesizes qualitative and quantitative evidence gathered through structured primary engagement and corroborative secondary analysis. Primary investigation involves interviews with operations leaders, systems integrators, and OEM representatives to capture firsthand perspectives on deployment challenges, service models, and technology performance in live facilities. These conversations are complemented by site visits and walkthroughs where feasible to observe material flows, system footprint constraints, and human-machine interactions in context.

Secondary analysis incorporates product literature, technical white papers, vendor case studies, and regulatory material to validate product capabilities and interoperability claims. Where proprietary or sensitive information is involved, findings are triangulated with multiple sources to ensure accuracy. Analytical frameworks used include technology maturity assessment, supplier capability mapping, and scenario planning to evaluate procurement and sourcing alternatives under varying policy and supply-chain conditions.

Limitations of the methodology include variability in deployment contexts and the rapid pace of innovation that can change vendor offerings between data collection and publication. To mitigate these factors, the research emphasizes traceable evidence, transparent assumptions, and clear delineation of where recommendations rely on operational patterns versus vendor claims. This approach provides decision-makers with actionable evidence while acknowledging the dynamic nature of the technology and supply ecosystem.

A conclusive synthesis emphasizing strategic alignment, procurement resilience, and organizational change as the prerequisites for sustained intralogistics automation success

In conclusion, intralogistics automation represents a strategic lever for operational resilience, cost containment, and service differentiation. The convergence of robotics, storage systems, sortation, and orchestration software enables facilities to meet rising throughput demands while managing labor volatility and compliance requirements. Importantly, the choice of equipment, software, and service model must be tailored to the specific application, facility constraints, and regulatory context to achieve sustainable outcomes.

Near-term priorities for practitioners include selecting modular systems that preserve optionality, emphasizing vendor ecosystems with strong regional service capabilities, and embedding rigorous pilot and measurement discipline into deployment roadmaps. Tariff-driven supply-chain shifts and regional dynamics necessitate that companies incorporate procurement scenario planning into their automation strategies so that capital projects remain resilient to external policy changes. Above all, successful programs treat technology adoption as an organizational change effort, investing in workforce capability and governance structures that sustain continuous improvement.

By aligning strategic objectives with measured pilot programs, disciplined procurement, and workforce enablement, organizations can transform intralogistics into a competitive advantage that enhances service reliability and operational agility in the face of evolving market pressures.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Integration of advanced AI-driven predictive analytics for dynamic order fulfillment scheduling using real-time data streams in automated warehouses
  • 5.2. Adoption of collaborative autonomous mobile robots with integrated safety sensors for seamless human-robot interaction in fulfillment centers
  • 5.3. Implementation of hybrid pallet shuttle and conveyor systems leveraging IoT connectivity for optimized multi-zone inventory transport
  • 5.4. Deployment of cloud-based warehouse execution systems with real-time visibility and dynamic task allocation across heterogeneous automation fleets
  • 5.5. Utilization of vision-guided robotic picking systems enhanced by deep learning algorithms for high-accuracy order assembly in e-commerce distribution
  • 5.6. Emergence of energy-efficient autonomous forklifts with regenerative braking and solar charging modules reducing carbon footprint in intralogistics
  • 5.7. Integration of digital twin simulation platforms with live warehouse data feeds to optimize layout design and throughput performance in real time
  • 5.8. Expansion of last-mile micro-fulfillment centers employing compact automated storage and retrieval systems within urban retail environments
  • 5.9. Incorporation of blockchain-enabled tracking and traceability solutions for ensuring supply chain transparency and reducing counterfeit risk in automated warehouses
  • 5.10. Adoption of multi-layer vertical lift modules combined with shuttle robots for maximizing storage density and accelerating batch picking efficiency
  • 5.11. Implementation of predictive maintenance frameworks powered by IoT sensor networks and machine learning for minimizing unplanned intralogistics downtime
  • 5.12. Development of augmented reality guided workflows for warehouse operators to improve picking accuracy and training efficiency in complex automated facilities
  • 5.13. Advancement of swarming autonomous mobile robot fleets orchestrated by centralized AI dispatch systems for dynamic path optimization in high-density warehouses

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Intralogistics Automation Solutions Market, by Offering

  • 8.1. Hardware
  • 8.2. Services
  • 8.3. Software

9. Intralogistics Automation Solutions Market, by Type

  • 9.1. Automated Guided Vehicles
    • 9.1.1. Laser Guided
    • 9.1.2. Magnetic Tape Guided
    • 9.1.3. Natural Feature Navigation
  • 9.2. Automated Storage And Retrieval Systems
  • 9.3. Autonomous Mobile Robots
    • 9.3.1. Differential Drive
    • 9.3.2. Omnidirectional
  • 9.4. Conveyor Systems
  • 9.5. Sortation Systems

10. Intralogistics Automation Solutions Market, by Application

  • 10.1. Packing & Palletizing
  • 10.2. Picking
  • 10.3. Sorting
  • 10.4. Storage & Retrieval
  • 10.5. Transportation

11. Intralogistics Automation Solutions Market, by End-Use Industry

  • 11.1. Automotive
  • 11.2. E-Commerce & Retail
  • 11.3. Food & Beverage
  • 11.4. Manufacturing
  • 11.5. Pharmaceutical & Healthcare
  • 11.6. Third-Party Logistics

12. Intralogistics Automation Solutions Market, by Deployment Mode

  • 12.1. Cloud
  • 12.2. On-Premise

13. Intralogistics Automation Solutions Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Intralogistics Automation Solutions Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Intralogistics Automation Solutions Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. KION Group AG
    • 16.3.2. Toyota Industries Corporation
    • 16.3.3. Daifuku Co., Ltd.
    • 16.3.4. Mitsubishi Logisnext Co., Ltd.
    • 16.3.5. Jungheinrich AG
    • 16.3.6. KUKA AG
    • 16.3.7. SSI Schafer Group
    • 16.3.8. Swisslog AG
    • 16.3.9. Vanderlande Industries Holding B.V.
    • 16.3.10. Honeywell International Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제