시장보고서
상품코드
1868246

갈륨비소 시장 : 디바이스별, 기판별, 용도별 - 세계 예측(2025-2032년)

Gallium Arsenide Market by Device, Substrate, Application - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 196 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

갈륨비소 시장은 2032년까지 CAGR 6.48%로 106억 달러 규모로 성장할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 64억 1,000만 달러
추정 연도 2025년 68억 2,000만 달러
예측 연도 2032 106억 달러
CAGR(%) 6.48%

갈륨비소를 핵심 산업 분야에서 차세대 광, RF 및 태양광발전 장치 구조를 구현하는 핵심 재료로 포지셔닝, 설득력 있는 전략적 도입

갈륨비소(GaAs)는 틈새시장인 III-V족 반도체에서 고성능 광전자 및 고주파 시스템을 구현하는 기반 재료로 진화해 왔습니다. 우수한 전자 이동도, 직접 밴드갭, 내방사선성으로 인해 레이저 다이오드, LED, 광검출기, 고주파 증폭기 등에 적용하기에 특히 적합합니다. 지난 10년간 디바이스 수준의 혁신으로 GaAs의 응용 범위는 기존의 마이크로파 링크를 넘어 고밀도 광집적 및 첨단 무선 인프라로 확장되었습니다. 한편, 기판 엔지니어링과 에피택시 재료 기술의 발전으로 수율과 소자의 균일성이 향상되고 있습니다.

세계 산업에서 갈륨비소 공급망, 디바이스 혁신, 통합 전략을 재구축하는 구조적, 시장적 요인에 대한 심층적 검토

갈륨비소(GaAs)의 상황은 통신, 국방, 포토닉스 통합의 여러 세력이 수렴하면서 혁신적인 변화를 맞이하고 있습니다. 첫째, 고주파 무선 표준의 도입과 네트워크의 고밀도화에 따라 GaAs의 높은 전자 이동성과 열 안정성을 활용한 고주파 디바이스 및 전력 증폭기에 대한 수요가 증가하고 있습니다. 둘째, 광집적회로의 성숙으로 설계 패러다임이 전환되어 화합물 반도체가 실리콘 기반 제조 공정 및 자동화 패키징과의 연계를 강화하는 방향으로 이끌고 있습니다.

2025년까지 미국의 관세 조치가 갈륨비소 공급망 전반의 조달, 제조 현지화, 전략적 탄력성을 어떻게 재구성했는지에 대한 분석적 검토

2025년까지 미국의 최근 관세 조치와 무역 정책 동향은 조달, 생산, 파트너십 모델 전반에 걸쳐 전략적 조정을 촉진함으로써 GaAs 밸류체인에 누적된 질적 영향을 미쳤습니다. 관세로 인해 많은 기업들이 비용 압박을 받았지만, 더 큰 영향은 행동 측면에 있었습니다 : 기업들은 공급업체 기반 다변화를 가속화하고, 지역적 제조 거점 확보에 우선순위를 두었으며, 지정학적 리스크를 줄이기 위해 국내 또는 동맹국에서의 가공에 대한 투자를 늘렸습니다.

디바이스, 기판, 애플리케이션 레벨의 트렌드를 파악할 수 있는 종합적인 세분화 기반 인사이트, 그리고 집중적인 투자가 상대적으로 큰 경쟁 우위를 창출할 수 있는 분야

세분화에 기반한 인사이트는 디바이스, 기판, 애플리케이션 차원에서 차별화된 가치 풀과 기술 우선순위를 파악할 수 있게 해줍니다. 디바이스별로 보면 시장 역학은 광전자 디바이스, 광집적회로, RF 디바이스, 태양전지로 크게 구분되며, 광전자 디바이스는 다시 레이저 다이오드, LED, 광검출기로 세분화됩니다. 여기서 레이저 다이오드는 정밀 센싱과 고용량 광 링크를 주도하고, LED와 광검출기는 소비자 및 산업용 등급의 센싱과 조명을 지원합니다. 광 집적 회로는 광 기능을 통합하고, 삽입 손실을 줄이고 열 관리를 개선하기 위해 첨단 패키징과 점점 더 많이 결합되고 있습니다. 한편, RF 디바이스는 프론트엔드 모듈 및 전력 증폭기용으로 GaAs의 주파수 성능을 계속 활용하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 갈륨비소 시장 : 디바이스별

  • 광전자 디바이스
    • 레이저 다이오드
    • LED
    • 광검출기
  • 광집적회로
  • 고주파 디바이스
  • 태양전지

제9장 갈륨비소 시장 : 기판별

  • 벌크 웨이퍼
  • 엔지니어드 기판
  • 에피택셜 웨이퍼
  • 가상 기판

제10장 갈륨비소 시장 : 용도별

  • 자동차
  • 가전제품
  • 방위·항공우주
  • 의료
  • 광통신
    • 광섬유 증폭기
    • 트랜시버
  • 무선 통신
    • 4G/3G
    • 5G
    • 위성통신

제11장 갈륨비소 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제12장 갈륨비소 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제13장 갈륨비소 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제14장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Qorvo, Inc.
    • Skyworks Solutions, Inc.
    • Broadcom Inc.
    • MACOM Technology Solutions Holdings, Inc.
    • Sumitomo Electric Industries, Ltd.
    • II-VI Incorporated
    • Win Semiconductors Corp.
    • IQE plc
    • United Monolithic Semiconductors SAS
    • Teledyne e2v Limited
KSM 25.11.28

The Gallium Arsenide Market is projected to grow by USD 10.60 billion at a CAGR of 6.48% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 6.41 billion
Estimated Year [2025] USD 6.82 billion
Forecast Year [2032] USD 10.60 billion
CAGR (%) 6.48%

Compelling strategic introduction that positions gallium arsenide as a pivotal material enabling next-generation photonic, RF, and photovoltaic device architectures across critical industries

Gallium arsenide (GaAs) has evolved from a niche III-V semiconductor to a cornerstone material enabling high-performance optoelectronic and RF systems. Its superior electron mobility, direct bandgap, and radiation hardness make it uniquely suited for laser diodes, LEDs, photodetectors, and high-frequency amplifiers. Over the past decade, device-level innovation has expanded GaAs applications beyond legacy microwave links into dense photonic integration and advanced wireless infrastructure, while material advances in substrate engineering and epitaxy have improved yield and device uniformity.

As the semiconductor ecosystem increasingly prioritizes performance per watt and spectral efficiency, GaAs occupies an essential position between silicon photonics and compound semiconductor platforms. This introduction frames GaAs not merely as a discrete material but as an enabling technology that underpins a range of systems from fiber amplifiers and transceivers to satellite communication payloads and precision medical sensors. Understanding GaAs requires a dual focus on device architectures and upstream substrate and epitaxial processes, since bottlenecks at any stage reverberate through supply chains and product roadmaps.

Consequently, stakeholders must consider GaAs through a systems lens: evaluating how device innovations interact with substrate choices, fabrication constraints, and application requirements. This approach clarifies where investment, standardization, and supply diversification will deliver the greatest strategic value as market dynamics accelerate.

Detailed examination of the structural and market forces reshaping gallium arsenide supply chains, device innovation, and integration strategies across global industries

The GaAs landscape is undergoing transformative shifts driven by converging forces in telecommunications, defense, and photonics integration. First, the rollout of higher-frequency wireless standards and the densification of networks place a premium on RF devices and power amplifiers that exploit GaAs's high electron mobility and thermal stability. Second, the maturation of photonic integrated circuits is redirecting design paradigms, pushing compound semiconductors into closer alignment with silicon-based manufacturing and automated packaging.

Third, advances in substrate engineering-spanning engineered substrates, epitaxial wafers, and virtual substrate technologies-are altering the economics of GaAs fabrication by enabling larger diameters, improved crystalline quality, and novel heterointegration methods. At the same time, supply chain strategies are shifting: manufacturers pursue vertical integration for critical epitaxy and substrate capabilities while ecosystem partnerships form around shared IP and co-development agreements to accelerate time-to-market.

Finally, sustainability and resource efficiency are rising on corporate and regulatory agendas, prompting investments in circular approaches for precious materials and in processes that reduce hazardous byproducts. These collective shifts are redefining competitive advantage in the GaAs ecosystem, favoring actors who can integrate materials science advances with system-level design, agile supply management, and scalable manufacturing practices.

Analytical review of how U.S. tariff measures through 2025 have reshaped procurement, manufacturing localization, and strategic resilience across gallium arsenide supply chains

Recent tariff actions and trade policy developments in the United States through 2025 have had a cumulative qualitative impact on GaAs value chains by prompting strategic adjustments across sourcing, production, and partnership models. While tariffs have introduced cost pressures that many firms initially absorbed, the more consequential effect has been behavioral: companies accelerated diversification of supplier bases, prioritized regional manufacturing footprints, and increased investments in domestic or allied-country processing to mitigate geopolitical risk.

These shifts led to a rebalancing of procurement strategies, where long-term agreements and multi-sourcing arrangements became tools to secure continuity of supply for substrates and epitaxial services. Moreover, R&D investments redirected toward process resilience-such as yield improvements, substrate reuse, and alternative material pathways-helped to partially offset tariff-induced margin compression. In parallel, some players explored licensing and collaboration mechanisms that enable localized production without transferring core IP, reflecting a nuanced approach to protecting technology while complying with trade constraints.

In summary, the cumulative impact of tariffs through 2025 did not uniformly stifle demand; instead, it catalyzed strategic realignment across the GaAs ecosystem. Companies that moved quickly to shore up critical inputs, optimize manufacturing footprints, and pursue resilient contractual arrangements were better positioned to maintain development timelines and safeguard customer commitments.

Comprehensive segmentation-driven intelligence illuminating device, substrate, and application-level dynamics and where targeted investments unlock disproportionate competitive advantage

Segmentation-driven insights reveal differentiated value pools and technology priorities across device, substrate, and application dimensions. Based on Device, market dynamics vary significantly among Optoelectronic Devices, Photonic Integrated Circuits, RF Devices, and Solar Cells, with Optoelectronic Devices further differentiated by Laser Diodes, LEDs, and Photodetectors; here, laser diodes are driving precision sensing and high-capacity optical links while LEDs and photodetectors support consumer- and industrial-grade sensing and illumination. Photonic integrated circuits are consolidating optical functions and are increasingly paired with advanced packaging to reduce insertion loss and improve thermal management, whereas RF devices continue to capitalize on GaAs's frequency performance for front-end modules and power amplifiers.

Based on Substrate, distinctions among Bulk Wafer, Engineered Substrate, Epitaxial Wafer, and Virtual Substrate inform supply chain strategy and cost-to-performance trade-offs; bulk wafers remain foundational for many legacy processes, engineered substrates enable lattice-matched layers for complex heterostructures, epitaxial wafers drive device uniformity for high-yield production, and virtual substrates create pathways for heterointegration with silicon and other platforms. Based on Application, demand patterns differ across Automotive, Consumer Electronics, Defense & Aerospace, Medical, Optical Communication, and Wireless Communication, with Optical Communication subdivided into Fiber Amplifiers and Transceivers and Wireless Communication covering 4G/3G, 5G, and Satellite Communication; automotive and medical segments emphasize reliability and long-term qualification, optical communication prioritizes low-loss integrated solutions, and wireless communication focuses on bandwidth and power efficiency tailored to each generation and satellite platforms.

Integrating these segmentation lenses exposes where innovation and investment will have the most leverage: device architects must coordinate with substrate suppliers to meet application-specific reliability thresholds, while system integrators should align wafer and epitaxy choices with packaging strategies to balance cost, performance, and manufacturability.

In-depth regional intelligence revealing how production capabilities, regulatory environments, and collaboration frameworks across major geographies will shape gallium arsenide competitiveness

Regional insights highlight distinct industrial strengths and strategic challenges that will influence future GaAs trajectories across the Americas, Europe, Middle East & Africa, and Asia-Pacific. In the Americas, strengths include advanced packaging expertise, niche high-reliability defense and space programs, and a growing emphasis on domesticized supply chains; yet, the region faces capacity constraints in large-diameter substrate supply and must invest in epitaxy capabilities to scale. Europe, Middle East & Africa combines strong research ecosystems, optical communication suppliers, and aerospace specialization, while regulatory complexity and fragmented supply networks create coordination challenges that necessitate public-private collaboration to unlock large-scale production.

Asia-Pacific remains the most vertically integrated region, with robust manufacturing clusters spanning substrate production, epitaxial services, device fabrication, and system assembly, enabling rapid scaling and cost advantages. However, the region also faces increasing scrutiny over export controls and geopolitical pressures that encourage supply chain diversification. Across regions, cross-border collaboration in standards, qualification processes, and workforce development will be essential to harmonize component reliability, accelerate certification for automotive and medical applications, and enable interoperable photonic platforms.

Taken together, these regional characteristics indicate that strategic partnerships and targeted investments in manufacturing capacity, workforce skill-building, and regulatory alignment will determine which geographies capture value as GaAs applications proliferate.

Actionable competitive analysis describing how technical excellence, partnership models, and integrated manufacturing capabilities determine leadership positions within the gallium arsenide ecosystem

Competitive landscapes in the GaAs ecosystem are defined by a mix of vertically integrated manufacturers, specialized substrate and epitaxy providers, foundries offering compound semiconductor process flows, and agile start-ups focused on photonic integration or device-level differentiation. Leading actors tend to combine materials science expertise with robust IP portfolios and manufacturing scale, while niche players compete on process specialization, rapid prototyping, and application-specific optimizations for defense, optical communications, or medical devices.

Partnership models are increasingly central: device designers collaborate with substrate suppliers to pre-qualify wafers and epitaxial stacks, packaging houses co-develop thermal solutions with RF device makers, and systems companies form alliances with photonics integrators to compress product development cycles. This interplay between capability depth and collaborative networks creates a dynamic where strategic alliances can unlock new addressable applications more quickly than isolated R&D investments.

Consequently, companies that balance strong core competencies-such as high-quality epitaxy, yield-focused process control, or advanced photonic packaging-with flexible partnership strategies will outpace peers. In short, competitive advantage in the GaAs landscape stems from a combination of technical excellence, supply chain integration, and the ability to rapidly translate materials-level improvements into system-level differentiation.

Practical and prioritized recommendations for executives to fortify supply resilience, accelerate device-to-substrate integration, and operationalize sustainability in gallium arsenide value chains

Industry leaders should pursue a multi-pronged strategy that strengthens supply resilience, accelerates innovation, and aligns business models with emergent application demands. First, prioritize supply chain resilience by diversifying sources for substrates and epitaxy capacity, establishing long-term agreements, and investing selectively in regional manufacturing nodes that reduce geopolitical exposure. Second, accelerate integration between device design and substrate engineering to shorten qualification cycles and optimize device yield, using joint development agreements and co-funded pilot lines when appropriate.

Third, focus R&D on system-level metrics such as power efficiency, thermal performance, and reliability under field conditions, thereby ensuring that materials breakthroughs translate into measurable product advantages. Fourth, pursue standardized qualification frameworks and interoperability protocols to reduce time-to-certification for automotive, medical, and optical communication use cases. Fifth, cultivate multi-disciplinary talent by investing in cross-functional teams that combine materials science, RF design, photonics, and packaging expertise, and by partnering with academic institutions for targeted talent pipelines.

Finally, embed sustainability and circularity in process decisions to address regulatory expectations and customer preferences, including materials recycling, safer chemical handling, and energy-efficient production techniques. Implementing these measures will improve strategic flexibility and drive enduring competitive advantage across device and application segments.

Robust mixed-methods research methodology combining primary expert engagement, supply chain mapping, patent and literature analysis, and scenario validation to ensure actionable insights

The research methodology underpinning this analysis combined qualitative and quantitative techniques to ensure rigorous, evidence-based conclusions. Primary research included structured interviews with materials scientists, device architects, supply chain managers, and regulatory experts across manufacturing regions, enabling triangulation of operational realities with strategic intent. Secondary analysis encompassed peer-reviewed literature, patent filings, technical whitepapers, and publicly available regulatory and standards documentation to validate technology trajectories and qualification requirements.

Additionally, the methodology incorporated supply chain mapping and bottleneck analysis to identify critical nodes for substrate and epitaxial capacity, supplemented by manufacturing process audits and failure-mode assessments where access permitted. Scenario analysis examined policy and trade contingencies to understand potential impacts on sourcing and localization strategies. Finally, cross-validation workshops with domain experts ensured that the synthesized findings reflect both near-term operational constraints and longer-term technological pathways.

This layered approach ensures the recommendations and insights are grounded in operational practice, technical feasibility, and strategic foresight, providing decision-makers with a reliable basis for action.

Conclusive synthesis of strategic priorities indicating how coordinated investments in materials, integration, and supply resilience will determine gallium arsenide leadership in coming years

In conclusion, gallium arsenide stands at a strategic inflection point where material capabilities, device innovation, and geopolitical dynamics intersect to create both challenges and opportunities. As optical communication densifies, wireless standards evolve, and defense and medical systems demand higher performance, GaAs will continue to be an indispensable enabler. The path forward requires coordinated investment in substrate and epitaxial capacity, tighter integration between device design and packaging, and agile supply chain strategies to navigate trade policy fluctuations.

Organizations that adopt a systems-oriented perspective-aligning materials science investments with application-driven qualification and regional manufacturing considerations-will be best positioned to capture value. Moreover, collaboration across industry, academia, and standards bodies will accelerate adoption by reducing time-to-certification and enabling interoperable solutions. Ultimately, the most successful players will be those who combine technical leadership with strategic partnerships, operational resilience, and a clear focus on sustainable manufacturing practices.

These conclusions underscore the immediate need for leaders to reassess sourcing, innovation, and partnership priorities to translate GaAs's material advantages into long-term commercial success.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Rising adoption of GaAs-based high electron mobility transistors in 5G mmWave infrastructure
  • 5.2. Shifts towards integrated GaAs solar cell arrays in spaceborne energy harvesting systems
  • 5.3. Advancements in epitaxial growth techniques improving GaAs substrate defect densities
  • 5.4. Increasing demand for gallium arsenide photonic chips in LIDAR and optical sensing platforms
  • 5.5. Strategic partnerships driving the development of GaAs power amplifiers for aerospace applications
  • 5.6. Emergence of cost-effective GaAs-on-silicon wafer bonding methods for large scale manufacturing
  • 5.7. Regulatory and supply chain risks impacting global gallium arsenide raw material availability

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Gallium Arsenide Market, by Device

  • 8.1. Optoelectronic Devices
    • 8.1.1. Laser Diodes
    • 8.1.2. LEDs
    • 8.1.3. Photodetectors
  • 8.2. Photonic Integrated Circuits
  • 8.3. RF Devices
  • 8.4. Solar Cells

9. Gallium Arsenide Market, by Substrate

  • 9.1. Bulk Wafer
  • 9.2. Engineered Substrate
  • 9.3. Epitaxial Wafer
  • 9.4. Virtual Substrate

10. Gallium Arsenide Market, by Application

  • 10.1. Automotive
  • 10.2. Consumer Electronics
  • 10.3. Defense & Aerospace
  • 10.4. Medical
  • 10.5. Optical Communication
    • 10.5.1. Fiber Amplifiers
    • 10.5.2. Transceivers
  • 10.6. Wireless Communication
    • 10.6.1. 4G/3G
    • 10.6.2. 5G
    • 10.6.3. Satellite Communication

11. Gallium Arsenide Market, by Region

  • 11.1. Americas
    • 11.1.1. North America
    • 11.1.2. Latin America
  • 11.2. Europe, Middle East & Africa
    • 11.2.1. Europe
    • 11.2.2. Middle East
    • 11.2.3. Africa
  • 11.3. Asia-Pacific

12. Gallium Arsenide Market, by Group

  • 12.1. ASEAN
  • 12.2. GCC
  • 12.3. European Union
  • 12.4. BRICS
  • 12.5. G7
  • 12.6. NATO

13. Gallium Arsenide Market, by Country

  • 13.1. United States
  • 13.2. Canada
  • 13.3. Mexico
  • 13.4. Brazil
  • 13.5. United Kingdom
  • 13.6. Germany
  • 13.7. France
  • 13.8. Russia
  • 13.9. Italy
  • 13.10. Spain
  • 13.11. China
  • 13.12. India
  • 13.13. Japan
  • 13.14. Australia
  • 13.15. South Korea

14. Competitive Landscape

  • 14.1. Market Share Analysis, 2024
  • 14.2. FPNV Positioning Matrix, 2024
  • 14.3. Competitive Analysis
    • 14.3.1. Qorvo, Inc.
    • 14.3.2. Skyworks Solutions, Inc.
    • 14.3.3. Broadcom Inc.
    • 14.3.4. MACOM Technology Solutions Holdings, Inc.
    • 14.3.5. Sumitomo Electric Industries, Ltd.
    • 14.3.6. II-VI Incorporated
    • 14.3.7. Win Semiconductors Corp.
    • 14.3.8. IQE plc
    • 14.3.9. United Monolithic Semiconductors SAS
    • 14.3.10. Teledyne e2v Limited
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제