시장보고서
상품코드
1870613

유전자 전달 기술 시장 : 전달 벡터 유형별, 치료 용도별, 제품별, 최종사용자별, 기술별 - 세계 예측(2025-2032년)

Gene Delivery Technologies Market by Delivery Vector Type, Therapeutic Application, Product, End User, Technology - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 180 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

유전자 전달 기술 시장은 2032년까지 CAGR 15.41%로 155억 6,000만 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024 49억 4,000만 달러
추정연도 2025 57억 2,000만 달러
예측연도 2032 155억 6,000만 달러
CAGR(%) 15.41%

유전자 전달 기술 혁신의 실용화 및 상용화에 영향을 미치는 현재의 과학적, 규제적, 운영적 요인을 정리한 전략적 개관

유전자 전달 기술은 분자 의학, 첨단 재료 과학, 정밀 치료 개발의 교차점에 위치하고 있습니다. 최근 벡터 설계, 나노입자 공학, 세포 조작 기술의 발전으로 유전자 도입, 수정, 억제 전략의 실현 가능성이 비약적으로 향상되었습니다. 그 결과, 신약개발 과정의 단축과 중개경로의 모듈화가 진행되어 보다 다양한 치료법이 예측가능성을 높이면서 연구단계에서 임상단계로 넘어갈 수 있게 되었습니다.

수렴하는 과학적 진보, 제조 기술의 성숙, 진화하는 규제 요건이 경쟁 및 임상 전략을 재구성하는 가운데, 이를 예리하게 분석

유전자 전달 환경은 기술적 실현 가능성과 상업적 기회를 재정의하는 여러 변혁적 변화를 경험하고 있습니다. 첫째, 플랫폼의 다양화가 가속화되고 있습니다. 개발자들은 바이러스성 벡터의 전통적 강점과 비바이러스성 접근법이 제공하는 기동성 및 페이로드의 유연성을 결합하여 보다 다원화된 생태계를 구축하고 있습니다. 이러한 다변화는 일부 치료 영역의 기술적 장벽을 낮추는 한편, 비교 분석과 제품 차별화에 대한 새로운 복잡성을 야기하고 있습니다.

2025년 관세 조정 및 무역 정책 동향이 밸류체인 전반공급망 재구축, 조달 전략, 비즈니스 연속성(운영 탄력성)을 어떻게 촉진하는지에 대한 집중적인 평가가 이루어질 것입니다.

국경 간 무역 및 수입 관세에 영향을 미치는 정책적 움직임은 유전자 도입 분야에서 활동하는 조직에게 공급망, 시약 조달, 자본 투입에 눈에 띄는 다운스트림 효과를 가져올 수 있습니다. 2025년, 미국에서 도입된 관세 조정의 누적 영향으로 인해 조달 전략과 공급업체 다각화 계획에 대한 모니터링이 강화되었습니다. 개발사와 공급업체는 이에 대응하여 공급업체 거점 배치를 재검토하고, 저관세 지역의 대체 공급업체를 선정하는 한편, 비용 변동과 납기 리스크를 줄이기 위해 핵심 부품과 시약의 니어쇼어링을 검토하고 있습니다.

전달 벡터, 치료 응용, 제품 유형, 최종사용자 요구, 핵심 기술이 어떻게 교차하여 전략적 선택과 가치 제안을 형성하는지 정밀하게 탐구

세분화는 기술 선택, 임상 적용, 제품 요구, 최종사용자 동향 및 기본 전달 메커니즘을 비교할 수 있는 실용적인 관점을 제공합니다. 전달 벡터의 유형을 고려할 때, 시장은 비바이러스성 벡터 접근법과 바이러스성 벡터 접근법으로 나눌 수 있습니다. 비바이러스성 벡터 접근법 내에서는 지질 나노입자 플랫폼, 물리적 방법, 고분자 기반 벡터로 세분화되며, 물리적 방법 범주 자체도 전기 천공법, 마이크로 인젝션, 초음파 기술 등으로 나뉩니다. 바이러스성 벡터 접근법은 백본과 생물학적 특성에 따라 구분되며, 아데노연관바이러스, 아데노바이러스, 렌치바이러스, 레트로바이러스가 각각 다른 위험-편익 프로파일과 페이로드 특성을 가지고 있습니다.

지역별로 차별화된 임상 역량, 규제 환경, 제조 동향에 대한 평가는 세계 시장에서의 기술 도입 경로와 전략적 제휴를 결정

주요 3개 지역의 기술 도입, 규제 경로, 상업적 전략은 지역적 역학이 크게 영향을 미칩니다. 미주 대륙은 임상 개발, 첨단 제조 능력, 투자자 활동의 밀집된 생태계를 보유하고 있으며, 초기 단계의 개념 증명에서 후기 임상 프로그램으로 빠르게 전환할 수 있도록 지원합니다. 이러한 환경은 개발자와 수탁제조 파트너 간의 긴밀한 협력을 촉진하는 한편, 전문 제조 역량과 유능한 인재 풀을 둘러싼 경쟁도 심화되고 있습니다.

해당 부문의 경쟁적 포지셔닝, 제휴 형성, 인수 근거를 결정하는 전략적 아키유형, 파트너십 행동, 공급업체 모델의 분석적 통합

업계 전반의 기업 행동에서 제휴 패턴, 경쟁 역학, 혁신의 궤적에 영향을 미치는 명확한 전략적 아키유형이 드러납니다. 대규모 통합형 개발사들은 차별화 보호와 규제 리스크 관리를 위해 자체 제조 역량과 독자적인 전달 기술에 대한 투자를 통해 플랫폼 관리와 수직적 통합을 우선시하는 경향이 있습니다. 중견 전문 기업은 틈새 적응증이나 독자적인 전달 기술 혁신에 초점을 맞추고, 수탁제조업체 및 학술기관과의 타겟형 협업을 통해 자본을 보존하면서 기술 이전 단계를 가속화하는 경우가 많습니다.

유전자 전달 분야에서 과학적 혁신과 제조 탄력성, 규제 대응 준비, 지속가능한 상업적 실행을 조화시키기 위한 실용적이고 우선순위가 지정된 전략적 행동

업계 리더는 과학적 진보를 지속가능한 경쟁 우위로 전환하기 위해 일련의 실천적 행동을 취해야 합니다. 첫째, 개발 과정의 초기 단계에서 벡터 선택을 장기적인 제조 및 규제 전략과 일치시켜야 합니다. 제조 가능성과 규제 요건을 초기 단계의 벡터 설계에 통합함으로써 조직은 고비용의 재설계 리스크를 줄이고 임상 준비 기간을 단축할 수 있습니다. 둘째, 공급업체 네트워크를 다양화하고 중요한 시약과 부품의 대체 공급원을 인증하여 무역 혼란과 단일 장애 지점에 대한 노출을 줄이는 것입니다.

실무적 인사이트와 전략적 제안을 도출하기 위해 사용한 1차 조사와 2차 조사의 조합, 전문가 인터뷰, 삼각측량 접근법에 대한 투명성 있는 설명

본 분석의 기초가 되는 조사는 1차 정보의 체계적인 검토, 전문가 인터뷰, 기술 문헌의 체계적인 삼각 측량 등을 결합하여 확고한 실무적 지식을 확보했습니다. 1차 데이터 수집을 위해 고위 R&D 책임자, 제조 전문가, 규제 전문가를 대상으로 인터뷰를 실시하여 현실적인 제약과 새로운 실천 방법을 확인했습니다. 이러한 질적 연구 결과를 바탕으로, 학술 논문, 학회 발표 자료, 기술 백서를 엄격하게 평가하여 기술 동향을 확인하고 재현 가능한 성능 주장을 확인했습니다.

유전자 전달 기술의 혁신을 지속적인 임상적, 상업적 성과로 연결하기 위해서는 기술적, 운영적, 규제적 전략의 통합적 접근이 필요함을 강조하는 간결한 통합 분석

요약하면, 유전자 전달 기술은 과학적 진보와 운영 및 규제 측면의 고도화가 결합하여 중요한 분기점에 서 있습니다. 다양화되는 전달 플랫폼, 진화하는 제조 패러다임, 변화하는 정책 환경의 상호작용으로 인해 조직은 개발, 공급망, 상업화 영역 전반에 걸쳐 의도적이고 통합적인 선택을 해야 하는 상황에 직면해 있습니다. 벡터 선택과 제조 가능성을 적극적으로 일치시키고, 강력한 공급망을 확보하며, 규제 당국 및 지불자와 조기에 협력하는 조직일수록 기술적 잠재력을 지속적인 치료 효과로 전환할 수 있는 위치에 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 유전자 전달 기술 시장 : 벡터 유형별

  • 비바이러스성 벡터
    • 지질 나노입자
    • 물리적 방법
      • 전기 천공법
      • 현미경하주사법
      • 초음파
    • 폴리머 기반 벡터
  • 바이러스 벡터
    • 아데노연관바이러스
    • 아데노바이러스
    • 렌티바이러스
    • 레트로바이러스

제9장 유전자 전달 기술 시장 : 치료 용도별

  • 심혈관치료
  • 유전성 질환
  • 종양학
  • 백신

제10장 유전자 전달 기술 시장 : 제품별

  • 기기
  • 키트
  • 시약

제11장 유전자 전달 기술 시장 : 최종사용자별

  • 병원 및 진료소
  • 제약회사
  • 연구기관

제12장 유전자 전달 기술 시장 : 기술별

  • 형질도입(Transduction)
  • 트랜스펙션

제13장 유전자 전달 기술 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 유전자 전달 기술 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 유전자 전달 기술 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Thermo Fisher Scientific Inc.
    • Merck KGaA
    • Lonza Group AG
    • Danaher Corporation
    • Sartorius AG
    • Takara Bio Inc.
    • QIAGEN N.V.
    • Oxford Biomedica plc
    • Catalent, Inc.
    • Promega Corporation
KSA 25.12.02

The Gene Delivery Technologies Market is projected to grow by USD 15.56 billion at a CAGR of 15.41% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 4.94 billion
Estimated Year [2025] USD 5.72 billion
Forecast Year [2032] USD 15.56 billion
CAGR (%) 15.41%

A strategic overview that frames current scientific, regulatory, and operational forces shaping the translation and commercialization of gene delivery innovations

Gene delivery technologies are at the intersection of molecular medicine, advanced materials science, and precision therapeutics development. Recent advances in vector design, nanoparticle engineering, and cellular manipulation techniques have driven a step-change in what is feasible for gene addition, correction, and suppression strategies. As a result, discovery funnels are shortening and translational pathways are becoming more modular, enabling a wider range of therapeutic modalities to move from bench to clinic with greater predictability.

At the same time, regulatory authorities and clinical stakeholders are increasingly focused on product quality attributes that influence safety, manufacturability, and long-term durability. This dual focus on innovation and regulatory readiness is reshaping how developers prioritize platform investments, choose delivery modalities, and structure clinical programs. Notably, logistical considerations such as cold chain, manufacturing scale, and supply resilience are now central to go-to-market planning rather than being treated as downstream operational challenges.

Consequently, organizations that align vector selection, analytical control strategies, and manufacturing scale-up early in development are positioned to reduce translational friction. This introduction sets the stage for an executive-level appraisal of disruptive shifts, policy influences, segmentation nuances, regional dynamics, and practical recommendations that follow in the subsequent sections.

An incisive analysis of converging scientific advances, manufacturing maturation, and evolving regulatory expectations that are reshaping competition and clinical strategies

The landscape of gene delivery is undergoing several transformative shifts that are redefining technical feasibility and commercial opportunity. First, platform diversification has accelerated: developers are balancing the classical strengths of viral vectors with the agility and payload flexibility offered by non-viral approaches, creating a more pluralistic ecosystem. This diversification has lowered technical barriers for some therapeutic areas while introducing new complexity around comparative analytics and product differentiation.

Second, material science breakthroughs-particularly in lipid nanoparticle formulation and polymer chemistry-are enabling finer control of biodistribution and immune engagement. These advances increase the probability of therapeutic success for indications previously considered inaccessible to gene-based interventions. Third, integrated manufacturing models and the maturation of contract development and manufacturing organizations have improved the throughput and reliability of vector production, although capacity constraints remain a practical choke point for rapid scale-up.

Finally, shifts in regulatory expectations and payer engagement models are promoting earlier alignment on clinical endpoints, safety monitoring, and post-approval evidence generation, which in turn influences preclinical modeling and trial design. Taken together, these shifts are not isolated; they interact dynamically to reshape cost structures, partner selection, and the relative attractiveness of therapeutic targets.

A focused evaluation of how 2025 tariff adjustments and trade policy dynamics are driving supply chain restructuring, procurement strategies, and operational resilience across the value chain

Policy moves affecting cross-border trade and import duties can have pronounced downstream effects on supply chains, reagent sourcing, and capital deployment for organizations working in gene delivery. In 2025, the cumulative impact of tariff adjustments introduced in the United States has amplified scrutiny on procurement strategies and supplier diversification plans. Developers and suppliers have responded by reassessing supplier footprints, qualifying alternate vendors in lower-tariff jurisdictions, and exploring nearshoring for critical components and reagents to mitigate cost volatility and delivery risk.

These adjustments are affecting different parts of the value chain unevenly. For instrument and equipment suppliers that rely on global component sourcing, tariff-induced cost pressure has prompted renegotiations of supply contracts and, in some cases, deferred capital investment decisions. For reagent and consumable providers, the need to preserve competitiveness has accelerated consolidation discussions and strategic partnerships that can preserve scale economics. Clinical trials and translational programs have also felt secondary effects; procurement delays and elevated costs for specialty reagents can slow timelines and require budgetary reallocation.

In response, forward-looking organizations are recalibrating sourcing strategies, building multi-supplier qualification pathways, and investing in supply chain visibility tools to maintain continuity. While tariffs introduce an element of cost uncertainty, they also serve as a catalyst for operational resilience, prompting strategic decisions that will influence competitive positioning over the medium term.

A nuanced exploration of how delivery vectors, therapeutic applications, product types, end-user demands, and core technologies intersect to shape strategic choices and value propositions

Segmentation provides a practical lens to compare technology choices, clinical applications, product needs, end-user dynamics, and fundamental delivery mechanisms. When considering delivery vector type, the market divides between Non-Viral Vector approaches and Viral Vector approaches. Within Non-Viral Vector approaches there is further granularity across Lipid Nanoparticle platforms, Physical Methods, and Polymer-Based Vectors, with the Physical Method category itself spanning Electroporation, Microinjection, and Ultrasound techniques. Viral Vector approaches are differentiated by backbone and biology, with Adeno Associated Virus, Adenovirus, Lentivirus, and Retrovirus serving distinct risk-benefit and payload profiles.

Therapeutic application segmentation highlights distinct development priorities for Cardiovascular Therapies, Genetic Disorders, Oncology, and Vaccines, each with unique clinical endpoints, regulatory considerations, and commercialization pathways. Product segmentation encompasses Instruments, Kits, and Reagents, reflecting divergent revenue models, customer bases, and quality control requirements. End-user segmentation captures demand-side heterogeneity among Hospitals and Clinics, Pharmaceutical Companies, and Research Institutes, each of which imposes different procurement cycles, service expectations, and scale needs. Technology segmentation distinguishes between Transduction and Transfection methods, which drive differing assay development approaches, safety considerations, and manufacturing controls.

Understanding how these segmentation axes intersect is essential for strategic positioning. For example, an organization focused on oncology vaccines must align vector choice, reagent quality, and clinical logistics differently than a developer pursuing systemic gene correction for a rare genetic disorder. Similarly, suppliers of instruments must tailor go-to-market models to the cadence and procurement sophistication of hospitals versus research institutes.

A regionally differentiated assessment of clinical capabilities, regulatory environments, and manufacturing trends that determine adoption pathways and strategic partnerships across global markets

Regional dynamics markedly influence technology adoption, regulatory pathways, and commercial strategies across the three principal geographies. The Americas exhibit a dense ecosystem of clinical development, advanced manufacturing capacity, and investor activity that supports rapid translation from early-stage proofs of concept to late-stage clinical programs. This environment fosters close collaboration between developers and contract manufacturing partners, although it also increases competition for specialized manufacturing capacity and qualified talent pools.

Europe, Middle East & Africa present a fragmented regulatory landscape that nonetheless offers deep expertise in translational research and a strong tradition of public-private partnership models. Regulatory harmonization efforts and collaborative networks help facilitate multinational trials, but developers must navigate diverse reimbursement frameworks and regional infrastructure variability. In several jurisdictions, progressive policy initiatives are accelerating the adoption of gene therapies within national health systems, while in others, access remains constrained by budgetary and delivery considerations.

Asia-Pacific demonstrates rapidly expanding technical capabilities, growing manufacturing capacity, and strong public sector investment in biotech infrastructure. Several markets in the region are advancing local regulatory frameworks to accommodate complex biologics and cell and gene therapies, creating opportunities for clinical trial acceleration and cost-efficient manufacturing. Across all regions, cross-border partnerships, technology transfer, and local talent development will be decisive factors in scaling successful gene delivery platforms.

An analytical synthesis of strategic archetypes, partnership behaviors, and supplier models that determine competitive positioning, alliance formation, and acquisition rationale in the sector

Company behavior across the sector reveals distinct strategic archetypes that influence partnership patterns, competitive dynamics, and innovation trajectories. Large integrated developers tend to prioritize platform control and vertical integration, investing in in-house manufacturing capabilities and proprietary delivery technologies to protect differentiation and manage regulatory risk. Mid-sized specialty firms often focus on niche indications or unique delivery innovations, using targeted collaborations with contract manufacturers and academic partners to accelerate translational steps while conserving capital.

Suppliers of instruments, kits, and reagents frequently pursue dual strategies of technological incrementality and service expansion, enhancing product portfolios with automation, analytics, and quality management solutions to deepen customer relationships. Partnerships between technology innovators and established pharmaceutical companies are increasingly common, reflecting mutual needs: innovators bring novel delivery platforms and early-stage clinical data, while larger firms contribute regulatory, commercialization, and distribution expertise.

Additionally, a growing number of academic spinouts and biotech startups are capitalizing on platform-agnostic approaches that can be licensed across therapeutic domains. These entities often collaborate with specialized contract research and manufacturing organizations to de-risk clinical development. Observing these patterns can inform competitive positioning, alliance strategies, and potential acquisition targets for stakeholders seeking to accelerate capability-building or to augment existing pipelines.

Practical and prioritized strategic actions designed to align scientific innovation with manufacturing resilience, regulatory readiness, and sustainable commercial execution in gene delivery

Industry leaders should adopt a set of pragmatic actions to convert scientific progress into sustainable competitive advantage. First, align vector selection with long-term manufacturing and regulatory strategies early in the development process. By integrating manufacturability and regulatory requirements into early-stage vector design, organizations reduce the risk of costly redesigns and expedite clinical readiness. Second, diversify supplier networks and qualify alternate sources for critical reagents and components to lessen exposure to trade disruptions or single-point failures.

Third, invest in cross-functional capabilities that bridge R&D, regulatory affairs, and commercial teams so that clinical trial design reflects end-user needs and payer expectations. This alignment increases the probability that clinical endpoints translate into meaningful adoption. Fourth, pursue strategic partnerships that combine complementary strengths-platform innovation, clinical development expertise, or global commercialization reach-rather than duplicative capabilities. Fifth, prioritize data robustness and standardized analytics across modalities to facilitate comparative decision-making and to support regulatory submissions.

Finally, consider staged capital allocation that balances platform development with investments in manufacturing resilience and supply chain transparency. Taken together, these actions will help organizations navigate technical complexity, regulatory scrutiny, and market access hurdles while positioning them to capture downstream value from successful therapeutic programs.

A transparent description of the combined primary and secondary research methods, expert interviews, and triangulation approaches used to derive actionable insights and strategic recommendations

The research underpinning this analysis combined a structured review of primary sources, expert interviews, and systematic triangulation of technical literature to ensure robust, actionable findings. Primary data collection included targeted interviews with senior R&D leaders, manufacturing experts, and regulatory professionals to surface real-world constraints and emergent practices. These qualitative insights were complemented by a rigorous assessment of peer-reviewed publications, conference proceedings, and technical white papers to validate technological trendlines and identify reproducible performance claims.

Analytical methods emphasized cross-validation: multiple independent sources were used to confirm observations about vector performance, manufacturing bottlenecks, and clinical strategy. The research team used thematic coding to synthesize interview content and to detect recurring operational themes, which informed the recommended actions and segmentation insights. Limitations were explicitly acknowledged, particularly where emerging technologies have limited public clinical data or where commercial confidentiality constrains detail. To mitigate these gaps, the study prioritized trend consistency and corroborated supplier and developer statements with technical benchmarking where available.

The resulting methodology balances depth and breadth, delivering a synthesis that is both grounded in primary stakeholder perspectives and anchored to the technical literature necessary for strategic decision-making.

A concise synthesis emphasizing the need for integrated technical, operational, and regulatory strategies to translate gene delivery innovation into durable clinical and commercial outcomes

In summary, gene delivery technologies stand at a pivotal juncture where scientific advances are increasingly matched by operational and regulatory sophistication. The interplay between diversified delivery platforms, evolving manufacturing paradigms, and shifting policy environments requires organizations to make deliberate, integrated choices across development, supply chain, and commercialization domains. Those that proactively align vector selection with manufacturability, secure resilient supply chains, and engage regulators and payers early are better positioned to translate technical promise into durable therapeutic impact.

Moreover, regional nuances and tariff-induced supplier strategies underscore the importance of geographic flexibility and partnership-driven scale. Suppliers and developers that can demonstrate consistent quality, predictable delivery, and clear clinical value propositions will find favorable opportunities across different markets. Ultimately, navigating this complex environment demands both technical excellence and strategic foresight: by combining rigorous R&D with disciplined operational planning, stakeholders can accelerate clinical translation while managing the practical realities of cost, capacity, and regulatory compliance.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Optimization of lipid nanoparticle formulations for targeted mRNA delivery to rare disease cells
  • 5.2. Engineering of viral vectors to minimize immunogenicity while improving safety profiles in gene therapy applications
  • 5.3. Application of CRISPR-associated delivery vehicles to enhance in vivo gene editing precision and efficiency
  • 5.4. Development of polymeric nanoparticle platforms for sustained release of nucleic acid therapies in oncology research
  • 5.5. Adoption of extracellular vesicle engineering to enable personalized gene delivery across the blood brain barrier
  • 5.6. Integration of machine learning models to predict gene delivery vector performance and in vivo biodistribution
  • 5.7. Use of stimuli responsive nanocarriers for controlled therapeutic gene release in response to specific disease biomarkers
  • 5.8. Transition toward nonviral delivery systems to address manufacturing scalability and regulatory compliance challenges
  • 5.9. Exploration of plant derived virus like particles as scalable platforms for vaccine and gene therapy delivery
  • 5.10. Expansion of combinatorial approaches co delivering small molecule modulators with gene vectors to boost transfection efficiency

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Gene Delivery Technologies Market, by Delivery Vector Type

  • 8.1. Non-Viral Vector
    • 8.1.1. Lipid Nanoparticle
    • 8.1.2. Physical Method
      • 8.1.2.1. Electroporation
      • 8.1.2.2. Microinjection
      • 8.1.2.3. Ultrasound
    • 8.1.3. Polymer Based Vector
  • 8.2. Viral Vector
    • 8.2.1. Adeno Associated Virus
    • 8.2.2. Adenovirus
    • 8.2.3. Lentivirus
    • 8.2.4. Retrovirus

9. Gene Delivery Technologies Market, by Therapeutic Application

  • 9.1. Cardiovascular Therapies
  • 9.2. Genetic Disorders
  • 9.3. Oncology
  • 9.4. Vaccines

10. Gene Delivery Technologies Market, by Product

  • 10.1. Instruments
  • 10.2. Kits
  • 10.3. Reagents

11. Gene Delivery Technologies Market, by End User

  • 11.1. Hospitals And Clinics
  • 11.2. Pharmaceutical Companies
  • 11.3. Research Institutes

12. Gene Delivery Technologies Market, by Technology

  • 12.1. Transduction
  • 12.2. Transfection

13. Gene Delivery Technologies Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Gene Delivery Technologies Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Gene Delivery Technologies Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. Thermo Fisher Scientific Inc.
    • 16.3.2. Merck KGaA
    • 16.3.3. Lonza Group AG
    • 16.3.4. Danaher Corporation
    • 16.3.5. Sartorius AG
    • 16.3.6. Takara Bio Inc.
    • 16.3.7. QIAGEN N.V.
    • 16.3.8. Oxford Biomedica plc
    • 16.3.9. Catalent, Inc.
    • 16.3.10. Promega Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제