시장보고서
상품코드
1870702

인공뼈 시장 : 소재별, 용도별, 최종사용자별, 유통경로별 - 세계 예측(2025-2032년)

Artificial Bone Market by Material, Application, End User, Distribution Channel - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 184 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

인공뼈 시장은 2032년까지 CAGR 5.77%로 26억 7,000만 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024 17억 달러
추정연도 2025 18억 달러
예측연도 2032 26억 7,000만 달러
CAGR(%) 5.77%

바이오소재의 발전이 수술, 규제, 공급망의 현실과 교차하는 인공뼈 분야의 진화하는 방향에 대한 간결한 오리엔테이션

인공뼈의 상황은 바이오소재의 혁신, 수술 기술의 진화, 의료 제공 모델의 변화가 교차하는 지점에 위치하고 있습니다. 합성 스캐폴드의 발전, 생물학적 통합 전략의 개선, 보다 정밀한 수술 툴의 개발로 인해 뼈 수복 및 재건에 대한 임상적 기대치가 재조정되었습니다. 이러한 기술적 발전은 최소침습 수술에 대한 수요 증가, 외래 진료의 확대, 비용 효율성 및 장기적인 환자 결과에 대한 중요성 증가와 맞물려 있습니다.

생체 재료, 제조 기술, 임상적 증거 창출, 공급 통합의 혁신이 융합되어 인공뼈 솔루션을 재정의

업계에서는 제품 설계, 임상 도입, 경쟁 포지셔닝을 재구성하는 여러 가지 변혁적 변화가 일어나고 있습니다. 첫째, 재료과학의 혁신은 기존의 동종 이식편을 넘어 생분해성 조정, 강화된 골 유도 능력, 맞춤형 기계적 특성을 제공하는 고성능 합성 솔루션으로 확대되고 있습니다. 생체활성 유리, 하이드록시아파타이트 복합재, 폴리머 블렌드, 인산삼칼슘 제제의 발전으로 개발자들은 천연 뼈의 미세 환경을 보다 충실하게 모방하는 스캐폴드를 설계할 수 있게 되었습니다.

인공뼈 생태계공급망, 조달 경제성, 조달 전략에 대한 관세 조치가 미치는 전략적 영향 평가

2025년에 도입된 정책 변경과 관세 조치는 기업과 의료 시스템이 사업 계획에서 고려해야 할 새로운 변수를 도입했습니다. 특정 의료 수입품에 대한 관세 인상은 원자재, 완성된 임플란트, 전문기구를 국제적으로 조달하는 비용 구조에 즉각적인 영향을 미칩니다. 영향을 받는 무역 경로에 대한 의존도가 높은 조직은 조달 프로세스의 복잡성과 가격 압력 증가에 직면하고 있습니다.

재료, 임상 응용, 최종사용자 도입, 전달 모드에서 차별화된 경로를 명확히하고 제품 및 시장 적합성을 향상시킵니다.

세분화를 통해 재료 유형, 임상 적용, 최종사용자, 유통 채널별로 미묘한 기회 영역과 위험 영역을 파악할 수 있습니다. 재료의 관점에서 볼 때, 시장은 생체 유래와 합성의 선택에 의해 형성되고 있으며, 동종 이식편 및 이종 이식편 제품이 증가하는 합성 대체품군과 경쟁하고 있습니다. 합성 재료 자체도 다양하며, 생체활성 유리, 하이드록시아파타이트, 금속 대체재, 고분자 복합재, 인산삼칼슘을 기반으로 한 배합물을 포함하며, 각기 다른 취급 특성, 분해 프로파일, 비용에 영향을 미칩니다. 이러한 재료의 차이는 외과 의사의 선택, 규제 경로, 제조 요구 사항에 영향을 미칩니다.

아메리카, 유럽, 중동/아프리카, 아시아태평양의 지역별 혁신, 규제 다양성, 도입 동향을 매핑하고 전략적 진입을 안내

지역별 동향은 전략을 형성하는 명확한 혁신 거점, 규제 환경, 상업적 압력을 보여줍니다. 미국 대륙에서는 이미 구축된 의료 네트워크, 풍부한 임상 연구 능력, 성숙한 상환 제도가 새로운 재료 및 기기의 신속한 임상 검증과 채택을 지원하고 있습니다. 이 지역의 첨단 병원 및 외래 인프라는 환자 치료 결과와 업무 효율성을 획기적으로 개선할 수 있는 솔루션에 대한 수요를 창출하고 있습니다.

시장 리더와 전문 혁신가들이 임상적 증거, 수직적 통합, 디지털 서비스를 결합하여 방어 가능한 위치를 구축하는 방법

경쟁 환경은 점점 더 기본적인 제품 특성을 넘어선 역량에 의해 정의되고 있습니다. 주요 기업 및 전문 혁신가들은 보다 심층적인 임상 증거 패키지에 투자하고, 비계 재료와 생체 보철물을 결합한 다기능 플랫폼을 만들고, 임상 센터와의 전략적 제휴를 통해 실제 임상에서 검증을 가속화하기 위해 노력하고 있습니다. 일부 조직은 중요한 투입물을 관리하고 공급 중단에 대한 노출을 줄이기 위해 수직적 통합을 우선시하는 반면, 다른 조직은 유연한 제조 거점 및 제품군의 신속한 반복 개발에 초점을 맞추었습니다.

채택 확대, 공급망 강화, 임상 및 상업적 검증 가속화를 위한 제조업체 및 공급업체의 구체적인 전략적 조치

업계 리더는 모멘텀을 활용하고 리스크를 줄이기 위해 일련의 실천적 행동을 추구할 수 있습니다. 생물학적 성능과 제조 확장성이 균형 잡힌 합성 재료 플랫폼에 대한 투자를 우선시하고, 취급 및 분해 프로파일이 임상적 요구를 충족하는 바이오 활성 유리, 수산화인회석 혼합물, 고분자 복합재, 인산삼칼슘과 같은 배합에 초점을 맞추었습니다. 동시에 표적 레지스트리, 연구자 주도 임상시험, 고빈도 수술센터와의 제휴를 통해 임상 증거 창출을 확대하여 KOL에서의 수용을 가속화할 것입니다.

2차 문헌 통합, 임상의 및 조달 담당자와의 1차 인터뷰, 공급망 매핑, 시나리오 분석을 결합한 다층적이고 검증된 연구 설계를 통해 실행 가능한 결과를 보장

본 연구 접근방식은 다양한 출처의 지식을 삼각측량하고, 상업적 및 임상적 주제를 검증하는 다층적 조사 방법을 결합했습니다. 2차 조사에서는 심사 완료된 문헌, 규제 당국 신청 서류, 임상 가이드라인, 공공 조달 고시를 통합하여 기술적, 정책적 기반을 구축했습니다. 1차 조사에서는 정형외과 의사 및 치과의사, 병원 조달 담당자, 외래 수술센터 관리자, 연구기관 연구원을 대상으로 구조화된 인터뷰와 질적 토론을 실시하여 미묘한 임상적 선호도와 구매 행동을 파악했습니다.

재료 혁신, 임상적 검증, 비즈니스 연속성, 어떤 인공뼈 솔루션이 표준 치료법이 될지 결정하는 메커니즘의 통합

인공뼈 분야는 기초 이식 재료에 대한 초점에서 설계 솔루션, 데이터베이스 증거 패키지 및 강력한 상업적 모델에 의해 정의되는 상황으로 전환하고 있습니다. 재료의 혁신으로 치료 옵션이 확대되고, 제조 및 유통의 변화로 환자별 맞춤 치료가 가능해졌습니다. 정책 및 관세 변화는 공급망 민첩성과 현지 제조 전략의 중요성을 강조하는 한편, 임상의들은 채용을 지원할 수 있는 엄격한 실제 증거를 요구하고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 인공뼈 시장 : 소재별

  • 동종이식편
  • 합성
    • 생체활성 유리
    • 하이드록시아파타이트
    • 금속 대체재
    • 폴리머 복합재
    • 인산 삼칼슘
  • 이종 이식편

제9장 인공뼈 시장 : 용도별

  • 치과
    • 임플란트학
    • 치주병학
  • 신경학
    • 두개 형성술
  • 정형외과
    • 관절 재건
    • 척추고정술
    • 외상 수복

제10장 인공뼈 시장 : 최종사용자별

  • 외래 수술 센터
  • 치과의원
  • 병원
  • 연구기관
    • 임상 조사
    • 전임상 조사

제11장 인공뼈 시장 : 유통 채널별

  • 직접 판매
  • 판매 대리점
    • E-Commerce 파트너
    • 의료기기 도매업체
  • 온라인 채널
    • 제조업체 웹사이트
    • 서드파티 플랫폼

제12장 인공뼈 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제13장 인공뼈 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제14장 인공뼈 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제15장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • Stryker Corporation
    • Zimmer Biomet Holdings, Inc.
    • Medtronic plc
    • DePuy Synthes, Inc.
    • Baxter International Inc.
    • Straumann Holding AG
    • Integra LifeSciences Holdings Corporation
    • NuVasive, Inc.
    • Globus Medical, Inc.
    • Orthofix Medical Inc.
KSA 25.12.02

The Artificial Bone Market is projected to grow by USD 2.67 billion at a CAGR of 5.77% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 1.70 billion
Estimated Year [2025] USD 1.80 billion
Forecast Year [2032] USD 2.67 billion
CAGR (%) 5.77%

A concise orientation to the evolving artificial bone field where biomaterial advances intersect with surgical, regulatory, and supply chain realities

The artificial bone landscape sits at the confluence of biomaterials innovation, surgical technique evolution, and shifting healthcare delivery models. Advances in synthetic scaffolds, improved biological integration strategies, and more precise surgical tools have recalibrated clinical expectations for bone repair and reconstruction. These technological developments coincide with rising demand for minimally invasive procedures, outpatient care expansion, and an increased emphasis on cost-effectiveness and long-term patient outcomes.

Clinical leaders and procurement teams now evaluate products not only for initial handling and osteoconductivity, but for demonstrated healing trajectories, infection resistance, and compatibility with adjunctive therapies such as growth factors or cell-based approaches. Regulatory scrutiny has tightened in many jurisdictions, raising the bar for robust clinical evidence and post-market surveillance. Meanwhile, supply chain resilience and manufacturing scalability have become board-level concerns as providers seek reliable partners capable of consistent quality and responsive logistics.

Against this backdrop, stakeholders must balance innovation with reproducibility. Emerging materials and digital manufacturing techniques offer promise, yet adoption hinges on clear, reproducible clinical benefits, streamlined reimbursement pathways, and practical considerations for hospitals, clinics, and ambulatory surgical centers. The following analysis synthesizes these dynamics to orient strategy across product development, market entry, and commercial execution.

How converging innovations in biomaterials, manufacturing, clinical evidence generation, and supply integration are redefining artificial bone solutions

The industry is experiencing several transformative shifts that are reshaping product design, clinical adoption, and competitive positioning. First, materials science innovations have expanded beyond traditional allografts to high-performance synthetic solutions that offer tunable biodegradation, enhanced osteoinduction, and tailored mechanical properties. Progress in bioactive glass, hydroxyapatite composites, polymer blends, and tricalcium phosphate formulations has allowed developers to engineer scaffolds that more closely mimic native bone microenvironments.

Second, manufacturing approaches such as additive manufacturing and precision machining are enabling patient-specific implants and porous architectures that optimize vascularization and load transfer. These capabilities are altering surgeon preferences by improving intraoperative fit and reducing the need for secondary procedures. Concurrently, improvements in sterilization, packaging, and cold-chain logistics have lowered infection risks and expanded the practical use of biologic-derived materials.

Third, the competitive landscape is shifting as companies prioritize vertical integration, strategic partnerships with clinical centers, and the development of consolidated data packages that include clinical outcomes, cost-effectiveness analyses, and real-world evidence. Health systems are increasingly demanding demonstrable value, creating incentives for suppliers to align product profiles with reimbursement criteria and bundled care pathways. Together, these shifts are accelerating a market evolution from commodity grafting materials to sophisticated, clinically validated therapeutic platforms.

Assessing the strategic consequences of tariff measures on supply chains, procurement economics, and sourcing strategies in the artificial bone ecosystem

Policy changes and tariff measures introduced in 2025 have introduced new variables that companies and health systems must account for in operational planning. Increased duties on certain medical imports have immediate implications for cost structures where raw materials, finished implants, or specialized instrumentation are sourced internationally. Organizations with a concentrated exposure to affected trade lanes have faced enhanced procurement complexity and pricing pressure.

In response, manufacturers and distributors are adapting by reshaping supply chains to mitigate tariff-related risk. Some entities have accelerated nearshoring of component supply, established contingency stocking strategies, or diversified supplier portfolios to reduce dependence on tariff-impacted regions. Others have reassessed their product portfolios to prioritize locally manufactured lines or to reformulate products to leverage materials with lower import sensitivity.

Clinicians and purchasing leaders are adjusting tender specifications and total-cost-of-ownership evaluations to capture the downstream effects of tariffs on inventory turnover, device availability, and contractual pricing. At the same time, tariff-driven cost inflation is driving greater emphasis on clinical differentiation and demonstrable outcome improvements to justify price adjustments. Taken together, the cumulative impact is a recalibration of commercial models, with a renewed premium on supply chain transparency, supplier flexibility, and localized manufacturing capabilities.

Uncovering differentiated pathways for materials, clinical applications, end-user adoption, and distribution modes to sharpen product and market fit

Segmentation reveals nuanced opportunity pockets and risk zones across material types, clinical applications, end users, and distribution channels. From a materials standpoint, the market is shaped by biological and synthetic options, with allograft and xenograft offerings competing alongside a growing set of synthetic alternatives. Synthetic materials themselves vary widely, including formulations based on bioactive glass, hydroxyapatite, metal substitutes, polymer composites, and tricalcium phosphate, each presenting distinct handling characteristics, degradation profiles, and cost implications. These material distinctions influence surgeon selection, regulatory pathways, and manufacturing requirements.

Application segmentation clarifies clinical demand drivers. Dental applications encompass implantology and periodontal procedures that favor smaller, highly controlled grafts and devices that integrate with dental implant workflows. Neurological uses, particularly cranioplasty, require materials optimized for contouring, infection resistance, and long-term structural support. Orthopedic applications span joint reconstruction, spinal fusion, and trauma repair, where load-bearing capacity, osteointegration speed, and compatibility with fixation hardware are paramount. Each application imposes different evidence requirements and procurement behaviors.

End-user segmentation highlights divergent purchasing dynamics and clinical priorities. Ambulatory surgical centers prioritize products that enable rapid turnover and predictable handling, while dental clinics focus on aesthetic outcomes and integration with restorative workflows. Hospitals evaluate devices across broader clinical pathways and cost frameworks, and research institutes-both clinical and preclinical-drive innovation and early-stage validation, influencing later adoption. Distribution channel segmentation reflects multiple go-to-market approaches, from direct sales relationships to distributor networks and online channels. Distributors include e-commerce partners and specialized medical device distributors, while online channels consist of manufacturer websites and third-party platforms, creating layered opportunities for outreach, service, and logistics optimization.

Mapping regional innovation, regulatory diversity, and adoption dynamics across the Americas, Europe Middle East Africa, and Asia-Pacific to guide strategic entry

Regional dynamics reveal distinct innovation centers, regulatory environments, and commercial pressures that shape strategy. In the Americas, established healthcare networks, substantial clinical research capacity, and mature reimbursement systems support rapid clinical validation and adoption of novel materials and devices. The region's sophisticated hospital and outpatient infrastructure creates demand for solutions that deliver demonstrable improvements in patient outcomes and operational efficiency.

Europe, the Middle East & Africa presents a heterogeneous landscape where regulatory harmonization efforts coexist with country-specific reimbursement and procurement practices. Manufacturers must navigate varied approval timelines and evidence expectations, while competitive tendering and cost containment policies can influence pricing strategies. Adoption in certain markets is accelerated by strong public health programs and concentrated research centers that serve as early adopters.

Asia-Pacific is characterized by rapid capacity building, both in manufacturing and clinical adoption, with several economies investing heavily in localized production and regenerative medicine research. Market trajectories in this region are driven by demographic shifts, growing private care segments, and expanding access to elective orthopedic and dental procedures. Across regions, differences in surgeon training, payer models, and supply chain infrastructure necessitate tailored commercial and regulatory strategies rather than one-size-fits-all approaches.

How market leaders and specialized innovators are combining clinical evidence, vertical integration, and digital services to create defensible positions

Competitive dynamics are increasingly defined by capabilities beyond basic product attributes. Leading firms and specialist innovators are investing in deeper clinical evidence packages, creating multifunctional platforms that combine scaffolding with biological adjuncts, and pursuing strategic partnerships with clinical centers to accelerate real-world validation. Some organizations are prioritizing vertical integration to control critical inputs and to reduce exposure to supply disruptions, while others focus on nimble manufacturing footprints and rapid iteration of product families.

Mergers and acquisitions remain an important route for accessing complementary technologies, regulatory pathways, and established distribution networks. At the same time, open innovation models and collaborative research agreements with academic centers and contract manufacturers are enabling faster translation of laboratory advances into viable commercial products. Companies that excel are those that align R&D roadmaps with clear reimbursement pathways and that build commercial teams capable of articulating value in clinical and economic terms.

Moreover, a growing number of players are investing in digital services-such as clinician training platforms, procedural planning tools, and post-market surveillance dashboards-to differentiate offerings and deepen customer relationships. Success increasingly depends on an integrated approach that combines material science, clinical evidence, supply chain reliability, and compelling commercial support.

Concrete strategic moves for manufacturers and suppliers to expand adoption, fortify supply chains, and accelerate clinical and commercial validation

Industry leaders can pursue a set of pragmatic actions to capitalize on momentum while mitigating risk. Prioritize investment in synthetic material platforms that balance biological performance with manufacturing scalability, focusing on formulations such as bioactive glass, hydroxyapatite blends, polymer composites, and tricalcium phosphate where handling and degradation profiles meet clinical needs. Concurrently, expand clinical evidence generation through targeted registries, investigator-initiated studies, and partnerships with high-volume surgical centers to accelerate acceptance among key opinion leaders.

Strengthen supply chain resilience by diversifying suppliers, exploring nearshoring options, and implementing dual-sourcing for critical inputs. Align commercial strategies with channel realities: optimize direct sales where clinical support and training drive adoption, leverage distributor networks for broader geographic reach, and develop compelling digital storefronts for repeatable, lower-complexity products. Coordinate these efforts with reimbursement-oriented health economic data to facilitate inclusion in bundled care pathways and hospital formularies.

Finally, invest in post-market surveillance and digital value-added services to capture outcomes data that support iterative product improvement and payer negotiations. In parallel, maintain flexibility in pricing and contracting to respond to tariff impacts and local procurement dynamics. These actions together create a resilient, evidence-driven commercial model capable of sustaining growth across variable regional and regulatory environments.

A layered and validated research design combining secondary synthesis, primary clinician and procurement interviews, supply chain mapping, and scenario analysis to ensure actionable insights

The research approach combined a layered methodology designed to triangulate insights from diverse sources and to validate commercial and clinical themes. Secondary research synthesized peer-reviewed literature, regulatory filings, clinical guidelines, and public procurement notices to establish baseline technical and policy contexts. Primary research included structured interviews and qualitative discussions with orthopedic and dental surgeons, hospital procurement officers, ambulatory surgical center managers, and research institute investigators to capture nuanced clinical preferences and purchasing behaviors.

Supply chain assessments mapped supplier concentrations, manufacturing footprints, and logistical constraints, while product-level analyses examined material compositions, sterilization methods, handling profiles, and documented clinical outcomes. Case studies of representative product launches and procurement decisions illuminated real-world adoption patterns and contracting dynamics. Data quality was assured through cross-validation across sources, reconciliation of conflicting inputs, and iterative stakeholder feedback.

Where appropriate, scenario analysis was used to test the sensitivity of strategic options to regulatory shifts, tariff regimes, and adoption curves. The methodology prioritized transparency in assumptions and traceability of sources to support client-specific inquiries and to facilitate reproducibility of key analytical findings.

Synthesis of how material innovation, clinical validation, and operational resilience will determine which artificial bone solutions become standard of care

The artificial bone sector is transitioning from a focus on basic graft materials to a landscape defined by engineered solutions, data-driven evidence packages, and resilient commercial models. Material innovations are expanding therapeutic options while manufacturing and distribution shifts are enabling more tailored and patient-specific care. Policy and tariff changes underscore the importance of supply chain agility and local manufacturing strategies, even as clinicians demand rigorous, real-world evidence to support adoption.

Companies that combine rigorous clinical validation with flexible manufacturing, strategic channel alignment, and strong post-market data capabilities will be best positioned to capture opportunity. Health systems and providers will favor partners who deliver consistent quality, clear value propositions, and support for operational workflows. Looking ahead, alignment between product design, regulatory strategy, and payer engagement will determine which innovations move from promising research to routine clinical practice.

The findings point toward a future in which integrated solutions-materials plus clinical services and digital tools-reshape how bone repair therapies are evaluated, procured, and delivered, creating durable commercial advantages for organizations that act decisively.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Advancements in 3D printed composite scaffolds loaded with osteogenic growth factors for critical size bone defects
  • 5.2. Development of bioresorbable magnesium alloy implants with controlled degradation for orthopedic bone repair
  • 5.3. Integration of digital imaging and AI-driven design for patient-specific artificial bone scaffolds with optimized porosity
  • 5.4. Emergence of hybrid nanocomposite coatings enhancing antibacterial and osteoconductive properties in bone substitutes
  • 5.5. Regulatory harmonization and standardized testing protocols accelerating global approval of synthetic bone graft materials
  • 5.6. Adoption of smart biodegradable implants incorporating sensors for real-time monitoring of bone regeneration dynamics

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Artificial Bone Market, by Material

  • 8.1. Allograft
  • 8.2. Synthetic
    • 8.2.1. Bioactive Glass
    • 8.2.2. Hydroxyapatite
    • 8.2.3. Metal Substitute
    • 8.2.4. Polymer Composite
    • 8.2.5. Tricalcium Phosphate
  • 8.3. Xenograft

9. Artificial Bone Market, by Application

  • 9.1. Dental
    • 9.1.1. Implantology
    • 9.1.2. Periodontal
  • 9.2. Neurological
    • 9.2.1. Cranioplasty
  • 9.3. Orthopedic
    • 9.3.1. Joint Reconstruction
    • 9.3.2. Spinal Fusion
    • 9.3.3. Trauma Repair

10. Artificial Bone Market, by End User

  • 10.1. Ambulatory Surgical Centers
  • 10.2. Dental Clinics
  • 10.3. Hospitals
  • 10.4. Research Institutes
    • 10.4.1. Clinical Research
    • 10.4.2. Preclinical Research

11. Artificial Bone Market, by Distribution Channel

  • 11.1. Direct Sales
  • 11.2. Distributors
    • 11.2.1. E-commerce Partners
    • 11.2.2. Medical Device Distributors
  • 11.3. Online Channels
    • 11.3.1. Manufacturer Websites
    • 11.3.2. Third Party Platforms

12. Artificial Bone Market, by Region

  • 12.1. Americas
    • 12.1.1. North America
    • 12.1.2. Latin America
  • 12.2. Europe, Middle East & Africa
    • 12.2.1. Europe
    • 12.2.2. Middle East
    • 12.2.3. Africa
  • 12.3. Asia-Pacific

13. Artificial Bone Market, by Group

  • 13.1. ASEAN
  • 13.2. GCC
  • 13.3. European Union
  • 13.4. BRICS
  • 13.5. G7
  • 13.6. NATO

14. Artificial Bone Market, by Country

  • 14.1. United States
  • 14.2. Canada
  • 14.3. Mexico
  • 14.4. Brazil
  • 14.5. United Kingdom
  • 14.6. Germany
  • 14.7. France
  • 14.8. Russia
  • 14.9. Italy
  • 14.10. Spain
  • 14.11. China
  • 14.12. India
  • 14.13. Japan
  • 14.14. Australia
  • 14.15. South Korea

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Analysis
    • 15.3.1. Stryker Corporation
    • 15.3.2. Zimmer Biomet Holdings, Inc.
    • 15.3.3. Medtronic plc
    • 15.3.4. DePuy Synthes, Inc.
    • 15.3.5. Baxter International Inc.
    • 15.3.6. Straumann Holding AG
    • 15.3.7. Integra LifeSciences Holdings Corporation
    • 15.3.8. NuVasive, Inc.
    • 15.3.9. Globus Medical, Inc.
    • 15.3.10. Orthofix Medical Inc.
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제