½ÃÀ庸°í¼­
»óǰÄÚµå
1768844

¼¼°èÀÇ AI Ãß·Ð ½ÃÀå ±Ô¸ð, Á¡À¯À², ¾÷°è ºÐ¼® º¸°í¼­ : ¸Þ¸ð¸®º°, ÄÄǻƮº°, ¿ëµµº°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº° Àü¸Á ¹× ¿¹Ãø(2025-2032³â)

Global AI Inference Market Size, Share & Industry Analysis Report By Memory, By Compute, By Application, By End Use, By Regional Outlook and Forecast, 2025 - 2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: KBV Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 487 Pages | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ AI Ãß·Ð ½ÃÀå ±Ô¸ð´Â ¿¹Ãø ±â°£ µ¿¾È 17.9%ÀÇ CAGR·Î ¼ºÀåÇÏ¿© 2032³â±îÁö 3,495¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

KBV Cardinal matrix-AI Ãß·Ð ½ÃÀå °æÀï ºÐ¼®

KBV Cardinal matrixÀÇ ºÐ¼®¿¡ µû¸£¸é, NVIDIA Corporation, Amazon Web Services, Inc., Google LLC, Microsoft Corporation ¹× Apple, Inc.°¡ ½ÃÀåÀÇ ¼±±¸ÀÚÀÔ´Ï´Ù. 2025³â 5¿ù, NVIDIA CorporationÀº Grace Blackwell Ç÷§ÆûÀ» žÀçÇÑ DGX Spark ¹× DGX Station °³Àοë AI ½´ÆÛÄÄÇ»ÅÍ DGX Spark¿Í DGX StationÀ» ¹ßÇ¥ÇÏ¿© µ¥ÀÌÅͼ¾ÅÍ ¼öÁØÀÇ AI Ãß·Ð ±â´ÉÀ» µ¥½ºÅ©Åé¿¡ µµÀÔÇß½À´Ï´Ù. ASUS, Dell, HP µî ¼¼°è ±â¾÷µé°ú Çù·ÂÇÏ¿© °³¹ßÀÚ¿Í ¿¬±¸ÀÚµéÀÌ ·ÎÄÿ¡¼­ ½Ç½Ã°£ AI Ãß·ÐÀ» ½ÇÇàÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÏ¸ç ½ÃÀåÀ» È®ÀåÇϰí ÀÖ½À´Ï´Ù. Samsung Electronics Co., Ltd., Qualcomm Incorporated, Advanced Micro Devices, Inc. µîÀÇ ±â¾÷µéÀº ½ÃÀåÀÇ ÁÖ¿ä Çõ½Å°¡µé Áß ÀϺÎÀÔ´Ï´Ù.

COVID-19 ¿µÇ⠺м®

ÆÒµ¥¹Í Ãʱ⿡´Â ºÒÈ®½Ç¼º, °ø±Þ¸Á È¥¶õ, ¿¹»ê Á¦¾àÀ¸·Î ÀÎÇØ ¸¹Àº ¾÷°è°¡ ±â¼ú ÅõÀÚ¸¦ Ãà¼ÒÇß½À´Ï´Ù. ÁøÇà ÁßÀÎ ¸¹Àº ÇÁ·ÎÁ§Æ®°¡ ¿¬±âµÇ°Å³ª º¸·ùµÇ¾ú°í, ±â¾÷µéÀº »õ·Î¿î AI µµÀÔº¸´Ù ºñÁî´Ï½º ¿¬¼Ó¼º À¯Áö¿¡ ÁýÁßÇß½À´Ï´Ù. ±× °á°ú, 2020³â ½ÃÀå ¼ºÀå·üÀº ÀÌÀü ¿¹Ãø¿¡ ºñÇØ µÐÈ­µÇ¾ú½À´Ï´Ù. ÀÌó·³ COVID-19 ÆÒµ¥¹ÍÀº ½ÃÀå¿¡ ´Ù¼Ò ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù.

½ÃÀå ¼ºÀå¿äÀÎ

¿§Áö ÄÄÇ»ÆÃ°ú »ç¹°ÀÎÅͳÝ(IoT) µð¹ÙÀ̽ºÀÇ ±Þ¼ÓÇÑ È®»êÀº ½ÃÀåÀ» Çü¼ºÇÏ´Â ÁÖ¿ä ¿øµ¿·Â Áß ÇϳªÀÔ´Ï´Ù. Àü ¼¼°è°¡ µðÁöÅÐÈ­µÊ¿¡ µû¶ó ½º¸¶Æ®Æù, ½º¸¶Æ® Ä«¸Þ¶ó, »ê¾÷¿ë ¼¾¼­, ÀÚÀ²ÁÖÇàÂ÷ µî ¼ö½Ê¾ï °³ÀÇ µð¹ÙÀ̽º°¡ ³×Æ®¿öÅ© ¿§Áö¿¡¼­ ¹æ´ëÇÑ µ¥ÀÌÅÍ ½ºÆ®¸²À» »ý¼ºÇϰí ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ Å¬¶ó¿ìµå ±â¹Ý AI ó¸® ¸ðµ¨Àº °­·ÂÇÏÁö¸¸, ÀÌ ¹æ´ëÇÑ ¾çÀÇ ½Ç½Ã°£ Á¤º¸¸¦ ó¸®ÇÒ ¶§ ´ë¿ªÆø, Áö¿¬ ½Ã°£, ÇÁ¶óÀ̹ö½Ã Ãø¸é¿¡¼­ ½É°¢ÇÑ Á¦¾à¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. °á·ÐÀûÀ¸·Î, ¿§Áö ÄÄÇ»ÆÃ°ú AIÀÇ À¶ÇÕÀº ½Ç½Ã°£ ºÐ»êÇü ÀÎÅÚ¸®Àü½ºÀÇ Àü·Ê ¾ø´Â °¡´É¼ºÀ» ¿­¾îÁÖ¸ç, ÀÌ Æ®·»µå¸¦ ½ÃÀå È®´ëÀÇ Áß¿äÇÑ ¿øµ¿·ÂÀ¸·Î È®°íÈ÷ ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¶ÇÇÑ, ½ÃÀåÀ» À̲ô´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿øµ¿·ÂÀº AI Çϵå¿þ¾î °¡¼Ó±âÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î, AI ¸ðµ¨ÀÌ Á¡Á¡ ´õ º¹ÀâÇØÁü¿¡ µû¶ó °í¼Ó Ãß·Ð ÄÄÇ»ÆÃÀ» È¿À²ÀûÀÌ°í ´ë±Ô¸ð·Î ½ÇÇàÇÒ ¼ö ÀÖ´Â Àü¿ë Çϵå¿þ¾î¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±âÁ¸ CPU´Â ¹ü¿ë¼ºÀÌ ³ôÁö¸¸, Çö´ë ½Å°æ¸ÁÀÇ Æ¯Â¡ÀÎ º´·Ä ¿öÅ©·Îµå¿¡ ÃÖÀûÈ­µÇ¾î ÀÖÁö ¾Ê½À´Ï´Ù. µû¶ó¼­ AI Çϵå¿þ¾î °¡¼Ó±âÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀº AI Ãß·ÐÀÇ °æÁ¦¼º, È¿À²¼º ¹× È®À强À» Çõ½ÅÀûÀ¸·Î º¯È­½Ã۰í ÀÖÀ¸¸ç, Çϵå¿þ¾î Çõ½ÅÀº ÀÌ ½ÃÀåÀÇ ¼ºÀå ±Ëµµ¿¡¼­ Ãʼ®À¸·Î È®°íÈ÷ ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¾ïÁ¦¿äÀÎ

±×·¯³ª AI Ãß·Ð ±â¼úÀÇ º¸±ÞÀ» °¡·Î¸·´Â °¡Àå Å« Á¦¾à Áß Çϳª´Â È¿À²ÀûÀÎ Ã߷Р󸮿¡ ÇÊ¿äÇÑ °í±Þ Çϵå¿þ¾îÀÇ °íºñ¿ë°ú º¹À⼺ÀÔ´Ï´Ù. AI Ãß·Ð, ƯÈ÷ µö·¯´× ¸ðµ¨Àº ±×·¡ÇÈ Ã³¸® ÀåÄ¡(GPU), ÅÙ¼­ ó¸® ÀåÄ¡(TPU), Ư¼ö ¸ñÀû ÁýÀûȸ·Î(ASIC), Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA)¿Í °°Àº Ư¼ö Çϵå¿þ¾î°¡ ÇÊ¿äÇÕ´Ï´Ù. (TPU), ÁÖ¹®Çü ÁýÀûȸ·Î(ASIC), Çʵå ÇÁ·Î±×·¡¸Óºí °ÔÀÌÆ® ¾î·¹ÀÌ(FPGA)¿Í °°Àº Ư¼öÇÑ Çϵå¿þ¾î°¡ ÇÊ¿äÇÕ´Ï´Ù. µû¶ó¼­ °í±Þ AI Ãß·Ð Çϵå¿þ¾îÀÇ ¾öû³­ ºñ¿ë°ú º¹À⼺Àº Àü ¼¼°èÀûÀ¸·Î AI Ãß·Ð ¼Ö·ç¼ÇÀÇ ¹ÎÁÖÈ­ ¹× È®Àå °¡´ÉÇÑ µµÀÔÀ» Á¦ÇÑÇÏ´Â Å« Á¦¾àÀÌ µÇ°í ÀÖ½À´Ï´Ù.

°¡Ä¡»ç½½ ºÐ¼®

½ÃÀåÀÇ °¡Ä¡»ç½½Àº AI ¾Ë°í¸®Áò, ¸ðµ¨ ÃÖÀûÈ­, Çϵå¿þ¾î È¿À²¼º Çõ½ÅÀ» ÃßÁøÇÏ´Â ¿¬±¸°³¹ß(R&D)¿¡¼­ ½ÃÀ۵˴ϴÙ. ÀÌ ´Ü°è´Â ÈÄ¼Ó ´Ü°èÀÇ Åä´ë¸¦ ¸¶·ÃÇÕ´Ï´Ù. ÀÌÈÄ Çϵå¿þ¾î ¼³°è ¹× Á¦Á¶´Â Ãß·Ð ¿öÅ©·Îµå¿¡ ¸Â°Ô ¸ÂÃãÈ­µÈ Àü¿ë Ĩ°ú µð¹ÙÀ̽º¸¦ ¸¸µé¾î °í¼º´É°ú ³·Àº ·¹ÀÌÅϽø¦ º¸ÀåÇÕ´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ½ºÅà °³¹ßÀº AI ¸ðµ¨À» ¿øÈ°ÇÏ°Ô ½ÇÇàÇÒ ¼ö ÀÖ´Â µµ±¸, ÇÁ·¹ÀÓ¿öÅ© ¹× API¸¦ »ç¿ëÇÏ¿© ÀÌ·¯ÇÑ Çϵå¿þ¾î ±¸¼º¿ä¼Ò¸¦ Áö¿øÇÕ´Ï´Ù. ¸ðµ¨ ÈÆ·Ã ¹× º¯È¯ ´Ü°è¿¡¼­´Â ÈÆ·ÃµÈ ¸ðµ¨À» ÃÖÀûÈ­ÇÏ°í ½Ç½Ã°£ ȯ°æ¿¡¼­ ¹èÆ÷Çϱ⿡ ÀûÇÕÇÑ ÇüÅ·Πº¯È¯ÇÕ´Ï´Ù. ±×·± ´ÙÀ½ ½Ã½ºÅÛ ÅëÇÕ ¹× ¹èÆ÷¸¦ ÅëÇØ ÀÌ·¯ÇÑ ¸ðµ¨°ú ±â¼úÀÌ »ç¿ëÀÚ È¯°æ¿¡ È¿°úÀûÀ¸·Î ÅëÇյ˴ϴÙ. À¯Åë ¹× Ã¤³Î °ü¸®´Â Àü·«Àû ÆÄÆ®³Ê½Ê°ú ¹°·ù¸¦ ÅëÇØ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀ» ½ÃÀå¿¡ Á¦°øÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ÇコÄɾî, ÀÚµ¿Â÷, ±ÝÀ¶ µî »ê¾÷ Àü¹ÝÀÇ ÃÖÁ¾»ç¿ëÀÚ ¾ÖÇø®ÄÉÀ̼ǿ¡ »ç¿ëµË´Ï´Ù. ¸¶Áö¸·À¸·Î, ¾ÖÇÁÅÍ ¼­ºñ½º ¹× Áö¿øÀº Áö¼ÓÀûÀÎ Áö¿ø°ú À¯Áöº¸¼ö¸¦ Á¦°øÇϰí, ÇâÈÄ ¿¬±¸°³¹ß¿¡ µµ¿òÀÌ µÇ¸ç, Çõ½ÅÀ» À¯ÁöÇϱâ À§ÇÑ ±ÍÁßÇÑ Çǵå¹éÀ» »ý¼ºÇÕ´Ï´Ù.

¸Þ¸ð¸® Àü¸Á

¸Þ¸ð¸®¸¦ ±â¹ÝÀ¸·Î ½ÃÀåÀº HBM(°í´ë¿ªÆø ¸Þ¸ð¸®)°ú DDR(´õºí µ¥ÀÌÅÍ ·¹ÀÌÆ®)·Î ºÐ·ùµÇ¸ç, DDR(´õºí µ¥ÀÌÅÍ ·¹ÀÌÆ®) ºÎ¹®Àº 2024³â ½ÃÀåÀÇ 40%ÀÇ ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇßÀ¸¸ç, DDR(´õºí µ¥ÀÌÅÍ ·¹ÀÌÆ®) ºÎ¹®Àº ½ÃÀå¿¡¼­ Áß¿äÇÑ À§Ä¡¸¦ Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. DDR ¸Þ¸ð¸®´Â ´Ù¾çÇÑ AI ¾ÖÇø®ÄÉÀ̼ǿ¡¼­ Æø³ÐÀº °¡¿ë¼º, ºñ¿ë È¿À²¼º ¹× ¾ÈÁ¤ÀûÀÎ ¼º´ÉÀ¸·Î À¯¸íÇÕ´Ï´Ù.

ÄÄǻƮ Àü¸Á

ÄÄÇ»ÆÃÀ» ±â¹ÝÀ¸·Î ½ÃÀåÀº GPU, CPU, NPU, FPGA, ±âŸ·Î ºÐ·ùµÇ¸ç, CPU ºÎ¹®Àº 2024³â ½ÃÀå Á¡À¯À² 29%¸¦ Â÷ÁöÇßÀ¸¸ç, À¯¿¬¼º, ȣȯ¼º, Á¢±Ù¼ºÀÇ ±ÕÇüÀ» °®Ãá CPU´Â AI Ã߷Рȯ°æ¿¡¼­ ¿©ÀüÈ÷ Áß¿äÇÑ ±¸¼º¿ä¼Ò·Î ³²À» °ÍÀÔ´Ï´Ù. °íµµ·Î Àü¹®È­µÈ ÇÁ·Î¼¼¼­¿Í ´Þ¸® CPU´Â ¹ü¿ë ÄÄÇ»ÆÃÀ» À§ÇØ ¼³°èµÇ¾î ´Ù¾çÇÑ AI ¾Ë°í¸®Áò°ú ¿öÅ©·Îµå¸¦ È¿À²ÀûÀ¸·Î ½ÇÇàÇÒ ¼ö ÀÖ½À´Ï´Ù.

¿ëµµ Àü¸Á

¿ëµµº°·Î ½ÃÀåÀº ¸Ó½Å·¯´×, »ý¼ºÇü AI, ÀÚ¿¬¾î ó¸®(NLP), ÄÄÇ»ÅÍ ºñÀü, ±âŸ·Î ºÐ·ùµË´Ï´Ù. »ý¼ºÇü AI ºÎ¹®Àº 2024³â Àüü ½ÃÀå ¸ÅÃâÀÇ 27%¸¦ Â÷ÁöÇß½À´Ï´Ù. »ý¼ºÇü AI ºÎ¹®Àº ½ÃÀåÀÇ ÁÖ¿ä ¼¼·ÂÀ¸·Î ºü¸£°Ô ºÎ»óÇϰí ÀÖ½À´Ï´Ù. »ý¼ºÇü AI ±â¼úÀº À̹ÌÁö, ÅØ½ºÆ®, À½¼º, µ¿¿µ»ó µî »õ·Î¿î ÄÁÅÙÃ÷¸¦ »ý¼ºÇÒ ¼ö ÀÖ´Â ´É·ÂÀ» °®Ãß°í ÀÖ¾î âÀÇÀû, »ó¾÷Àû, »ê¾÷Àû ÀÀ¿ë ºÐ¾ß¿¡¼­ Æø³ÐÀº °¡´É¼ºÀ» ¿­¾îÁÝ´Ï´Ù.

ÃÖÁ¾ ¿ëµµ Àü¸Á

ÃÖÁ¾ »ç¿ëó¿¡ µû¶ó ½ÃÀåÀº IT ¹× Åë½Å, BFSI, ÇコÄɾî, ¼Ò¸Å ¹× E-Commerce, ÀÚµ¿Â÷, Á¦Á¶, º¸¾È, ±âŸ·Î ºÐ·ùµÇ¸ç, BFSI ºÎ¹®¿¡¼­´Â ¾÷¹« È¿À²¼º, ¸®½ºÅ© °ü¸® °­È­, °í°´ Âü¿©µµ Çâ»óÀ» À§ÇØ AI Ãß·ÐÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ Ãß·Ð ¸ðµ¨Àº ºÎÁ¤°Å·¡ ŽÁö, ´ëÃâ ½ÂÀÎ ÀÚµ¿È­, ½Ç½Ã°£ ½Å¿ëÁ¡¼ö »êÃâ, °³ÀÎÈ­µÈ ±ÝÀ¶»óǰ Á¦°ø µîÀ» Áö¿øÇÕ´Ï´Ù.

Áö¿ª Àü¸Á

Áö¿ªº°·Î´Â ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« µî 4°³ Áö¿ªÀ¸·Î ½ÃÀåÀ» ºÐ¼®Çß½À´Ï´Ù. ºÏ¹Ì´Â 2024³â ½ÃÀå ¸ÅÃâÀÇ 37%¸¦ Â÷ÁöÇß½À´Ï´Ù. ºÏ¹Ì´Â ÁÖ¿ä ±â¼ú ±â¾÷ÀÇ Á¸Àç, AI R&D¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ, °­·ÂÇÑ µðÁöÅÐ ÀÎÇÁ¶ó¿¡ ÈûÀÔ¾î ½ÃÀå¿¡¼­ Áß¿äÇÑ Áö¿ªÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀÇ ¿ªµ¿ÀûÀÎ Çõ½Å »ýŰè´Â ÇコÄɾî, ±ÝÀ¶, Åë½Å, ÀÚµ¿Â÷ µîÀÇ »ê¾÷¿¡¼­ ÷´Ü AI ¼Ö·ç¼Ç µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå °æÀï°ú Ư¼º

½ÃÀåÀº ¿©ÀüÈ÷ Ä¡¿­ÇÑ °æÀïÀÌ °è¼ÓµÇ°í ÀÖÀ¸¸ç, Çõ½ÅÀ» ÁÖµµÇÏ´Â ½ºÅ¸Æ®¾÷°ú Áß°ß±â¾÷ÀÇ ¼ö°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌµé ±â¾÷Àº ½ÃÀå Á¡À¯À²À» È®º¸Çϱâ À§ÇØ Æ¯¼ö Çϵå¿þ¾î, È¿À²ÀûÀÎ ¾Ë°í¸®Áò, Æ´»õ ¾ÖÇø®ÄÉÀ̼ǿ¡ ÁýÁßÇϰí ÀÖ½À´Ï´Ù. ¿ÀÇ ¼Ò½º ÇÁ·¹ÀÓ¿öÅ©¿Í ³·Àº ÁøÀÔÀ庮Àº °æÀïÀ» ´õ¿í °ÝÈ­½ÃÄÑ ÇコÄɾî, ÀÚµ¿Â÷, ±ÝÀ¶ µîÀÇ »ê¾÷¿¡¼­ ºü¸¥ ±â¼ú ¹ßÀü°ú ´Ù¾çÇÑ ¼Ö·ç¼ÇÀÇ Ã¢ÃâÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå ½ÃÀå ¹üÀ§¿Í Á¶»ç ¹æ¹ý

  • ½ÃÀå Á¤ÀÇ
  • ¸ñÀû
  • ½ÃÀå ¹üÀ§
  • ¼¼ºÐÈ­
  • Á¶»ç ¹æ¹ý

Á¦2Àå ½ÃÀå ¿ä¶÷

  • ÁÖ¿ä ÇÏÀ̶óÀÌÆ®

Á¦3Àå ½ÃÀå °³¿ä

  • ¼Ò°³
    • °³¿ä
      • ½ÃÀå ±¸¼º°ú ½Ã³ª¸®¿À
  • ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ÁÖ¿ä ¿äÀÎ
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ½ÃÀå ±âȸ
    • ½ÃÀå °úÁ¦

Á¦4Àå °æÀï ºÐ¼® - ¼¼°è

  • KBV Cardinal Matrix
  • ÃÖ±Ù ¾÷°è ÀüüÀÇ Àü·«Àû Àü°³
    • ÆÄÆ®³Ê½Ê, Çù¾÷, °è¾à
    • Á¦Ç° ¹ß¸Å¿Í Á¦Ç° È®´ë
    • Àμö¿Í ÇÕº´
  • ÁÖ¿ä ¼º°ø Àü·«
    • ÁÖ¿ä Àü·«
    • ÁÖ¿ä Àü·«Àû Ȱµ¿
  • Porter¡¯s Five Forces ºÐ¼®

Á¦5Àå AI Ãß·Ð ½ÃÀå ¹ë·ùüÀÎ ºÐ¼®

  • ¿¬±¸°³¹ß(R&D) :
  • Çϵå¿þ¾î ¼³°è¿Í Á¦Á¶ :
  • ¼ÒÇÁÆ®¿þ¾î ½ºÅà °³¹ß :
  • ¸ðµ¨ Æ®·¹ÀÌ´×°ú º¯È¯ :
  • ½Ã½ºÅÛ ÅëÇÕ°ú Àü°³ :
  • À¯Åë°ú ä³Î °ü¸® :
  • ÃÖÁ¾»ç¿ëÀÚ ¾ÖÇø®ÄÉÀÌ¼Ç :
  • ¾ÖÇÁÅͼ­ºñ½º¿Í ¼­Æ÷Æ® :

Á¦6Àå AI Ãß·Ð ½ÃÀåÀÇ ÁÖ¿ä °í°´ ±âÁØ

Á¦7Àå ¼¼°èÀÇ AI Ãß·Ð ½ÃÀå : ¸Þ¸ð¸®º°

  • ¼¼°èÀÇ HBM(°í´ë¿ªÆø ¸Þ¸ð¸®) ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ DDR(´õºí µ¥ÀÌÅÍ ·¹ÀÌÆ®) ½ÃÀå : Áö¿ªº°

Á¦8Àå ¼¼°èÀÇ AI Ãß·Ð ½ÃÀå : ÄÄǻƮº°

  • ¼¼°èÀÇ GPU ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ CPU ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ NPU ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ FPGA ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ±âŸ ÄÄǻƮ ½ÃÀå : Áö¿ªº°

Á¦9Àå ¼¼°èÀÇ AI Ãß·Ð ½ÃÀå : ¿ëµµº°

  • ¼¼°èÀÇ ¸Ó½Å·¯´× ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ »ý¼ºÇü AI ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ÀÚ¿¬¾î ó¸®(NLP) ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ÄÄÇ»ÅÍ ºñÀü ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ±âŸ ¿ëµµ ½ÃÀå : Áö¿ªº°

Á¦10Àå ¼¼°èÀÇ AI Ãß·Ð ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

  • ¼¼°èÀÇ IT¡¤Åë½Å ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ BFSI ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ÇコÄÉ¾î ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ¼Ò¸Å¡¤E-Commerce ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ÀÚµ¿Â÷ ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ Á¦Á¶ ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ º¸¾È ½ÃÀå : Áö¿ªº°
  • ¼¼°èÀÇ ±âŸ ÃÖÁ¾ ¿ëµµ ½ÃÀå : Áö¿ªº°

Á¦11Àå ¼¼°èÀÇ AI Ãß·Ð ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ºÏ¹ÌÀÇ ½ÃÀå : ±¹°¡º°
      • ¹Ì±¹
      • ij³ª´Ù
      • ¸ß½ÃÄÚ
      • ±âŸ ºÏ¹Ì
  • À¯·´
    • À¯·´ÀÇ ½ÃÀå : ±¹°¡º°
      • µ¶ÀÏ
      • ¿µ±¹
      • ÇÁ¶û½º
      • ·¯½Ã¾Æ
      • ½ºÆäÀÎ
      • ÀÌÅ»¸®¾Æ
      • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½ÃÀå : ±¹°¡º°
      • Áß±¹
      • ÀϺ»
      • Àεµ
      • Çѱ¹
      • ½Ì°¡Æ÷¸£
      • ¸»·¹À̽þÆ
      • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ½ÃÀå : ±¹°¡º°
      • ºê¶óÁú
      • ¾Æ¸£ÇîÆ¼³ª
      • ¾Æ¶ø¿¡¹Ì¸®Æ®
      • »ç¿ìµð¾Æ¶óºñ¾Æ
      • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
      • ³ªÀÌÁö¸®¾Æ
      • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ±â¾÷ °³¿ä

  • Intel Corporation
  • NVIDIA Corporation
  • Qualcomm Incorporated(Qualcomm Technologies, Inc)
  • Amazon Web Services, Inc(Amazon.com, Inc.)
  • Google LLC(Alphabet Inc)
  • Huawei Technologies Co, Ltd.(Huawei Investment & Holding Co., Ltd.)
  • Microsoft Corporation
  • Samsung Electronics Co, Ltd.(Samsung Group)
  • Advanced Micro Devices, Inc
  • Apple, Inc

Á¦13Àå AI Ãß·Ð ½ÃÀå ¼º°ø Çʼö Á¶°Ç

ksm 25.07.22

The Global AI Inference Market size is expected to reach $349.53 billion by 2032, rising at a market growth of 17.9% CAGR during the forecast period.

In recent years, the adoption of HBM in AI inference has been characterized by a shift towards more complex and resource-intensive neural networks, necessitating memory solutions that can keep pace with the growing computational demands. HBM's unique ability to provide ultra-high bandwidth while maintaining a compact physical footprint is enabling the deployment of larger models and faster inference times, particularly in data center environments.

The major strategies followed by the market participants are Product Launches as the key developmental strategy to keep pace with the changing demands of end users. For instance, Two news of any two random companies apart from leaders and key innovators. In October, 2024, Advanced Micro Devices, Inc. unveiled Ryzen AI PRO 300 Series processors, delivering up to 55 TOPS of AI performance, which are tailored for enterprise PCs to accelerate on-device AI inference tasks. With advanced NPUs and extended battery life, they support AI-driven features like real-time translation and image generation, marking a significant stride in the market. Additionally, In May, 2025, Intel Corporation unveiled new Arc Pro B60 and B50 GPUs and Gaudi 3 AI accelerators, enhancing AI inference capabilities for workstations and data centers. These advancements offer scalable, cost-effective solutions for professionals and enterprises, strengthening Intel's position in the market.

KBV Cardinal Matrix - AI Inference Market Competition Analysis

Based on the Analysis presented in the KBV Cardinal matrix; NVIDIA Corporation, Amazon Web Services, Inc., Google LLC, Microsoft Corporation, and Apple, Inc. are the forerunners in the Market. In May, 2025, NVIDIA Corporation unveiled DGX Spark and DGX Station personal AI supercomputers, powered by the Grace Blackwell platform, bringing data center-level AI inference capabilities to desktops. Collaborating with global manufacturers like ASUS, Dell, and HP, these systems enable developers and researchers to perform real-time AI inference locally, expanding the market. Companies such as Samsung Electronics Co., Ltd., Qualcomm Incorporated, and Advanced Micro Devices, Inc. are some of the key innovators in Market.

COVID 19 Impact Analysis

During the initial phases of the pandemic, several industries scaled back their technology investments due to uncertainty, supply chain disruptions, and budget constraints. Many ongoing projects were either delayed or put on hold, and companies focused on maintaining business continuity rather than new AI deployments. As a result, the growth rate of the market slowed during 2020, compared to previous forecasts. Thus, the COVUD-19 pandemic had a slightly negative impact on the market.

Market Growth Factors

The rapid proliferation of edge computing and Internet of Things (IoT) devices has become one of the foremost drivers shaping the market. As the world moves towards increased digitalization, billions of devices-from smartphones and smart cameras to industrial sensors and autonomous vehicles-are generating massive streams of data at the edge of networks. Traditional cloud-based AI processing models, while powerful, face critical limitations in bandwidth, latency, and privacy when handling this deluge of real-time information. In conclusion, the convergence of edge computing and AI is unlocking unprecedented potential for real-time, decentralized intelligence, cementing this trend as a pivotal driver for the expansion of the market.

Additionally, another critical driver fueling the market is the continuous advancement in AI hardware accelerators. As AI models become increasingly complex, the demand for specialized hardware capable of executing high-speed inference computations efficiently and at scale has intensified. Traditional CPUs, while versatile, are not optimized for the parallelized workloads characteristic of modern neural networks. Hence, relentless advancements in AI hardware accelerators are transforming the economics, efficiency, and scalability of AI inference, firmly positioning hardware innovation as a cornerstone in the growth trajectory of this market.

Market Restraining Factors

However, one of the most significant restraints hampering the widespread adoption of AI inference technologies is the high cost and complexity associated with advanced hardware required for efficient inference processing. AI inference, especially for deep learning models, demands specialized hardware such as Graphics Processing Units (GPUs), Tensor Processing Units (TPUs), Application-Specific Integrated Circuits (ASICs), and Field-Programmable Gate Arrays (FPGAs). Therefore, the prohibitive cost and complexity of advanced AI inference hardware act as a formidable restraint, restricting the democratization and scalable adoption of AI inference solutions worldwide.

Value Chain Analysis

The value chain of the market begins with Research & Development (R&D), which drives innovation in AI algorithms, model optimization, and hardware efficiency. This stage lays the groundwork for subsequent phases. Following this, Hardware Design & Manufacturing involves creating specialized chips and devices tailored for inference workloads, ensuring high performance and low latency. Software Stack Development supports these hardware components with tools, frameworks, and APIs that enable seamless execution of AI models. In the Model Training & Conversion stage, trained models are optimized and converted into formats suitable for deployment in real-time environments. Next, System Integration & Deployment ensures these models and technologies are embedded effectively into user environments. Distribution & Channel Management plays a critical role in delivering these solutions to the market through strategic partnerships and logistics. These solutions are then used in End-User Applications across industries such as healthcare, automotive, and finance. Finally, After-Sales Services & Support provide ongoing assistance and maintenance, generating valuable feedback that informs future R&D and sustains innovation.

Memory Outlook

Based on memory, the market is characterized into HBM (High Bandwidth Memory) and DDR (Double Data Rate). The DDR (Double Data Rate) segment garnered 40% revenue share in the market in 2024. The DDR (Double Data Rate) segment also holds a significant position in the market. DDR memory is known for its widespread availability, cost-effectiveness, and dependable performance across a broad spectrum of AI applications.

Compute Outlook

On the basis of compute, the market is classified into GPU, CPU, NPU, FPGA, and others. The CPU segment recorded 29% revenue share in the market in 2024. CPUs remain a critical component of the AI inference landscape, offering a balance of flexibility, compatibility, and accessibility. Unlike highly specialized processors, CPUs are designed for general-purpose computing and can efficiently execute a wide range of AI algorithms and workloads.

Application Outlook

By application, the market is divided into machine learning, generative AI, natural language processing (NLP), computer vision, and others. The generative AI segment garnered 27% revenue share in the market in 2024. The generative AI segment is rapidly emerging as a major force in the market. Generative AI technologies are capable of producing new content such as images, text, audio, and video, opening up a wide array of possibilities for creative, commercial, and industrial uses.

End Use Outlook

Based on end use, the market is segmented into IT & Telecommunications, BFSI, healthcare, retail & e-commerce, automotive, manufacturing, security, and others. The BFSI segment acquired 16% revenue share in the market in 2024. The banking, financial services, and insurance (BFSI) sector is increasingly utilizing AI inference to streamline operations, enhance risk management, and improve customer engagement. AI-powered inference models assist in detecting fraudulent transactions, automating loan approvals, enabling real-time credit scoring, and delivering personalized financial products.

Regional Outlook

Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The North America segment recorded 37% revenue share in the market in 2024. North America stands as a prominent region in the market, supported by the presence of leading technology companies, substantial investment in AI research and development, and robust digital infrastructure. The region's dynamic innovation ecosystem drives the adoption of advanced AI solutions across industries such as healthcare, finance, telecommunications, and automotive.

Market Competition and Attributes

The Market remains highly competitive with a growing number of startups and mid-sized companies driving innovation. These players focus on specialized hardware, efficient algorithms, and niche applications to gain market share. Open-source frameworks and lower entry barriers further intensify competition, fostering rapid technological advancements and diversified solutions across industries like healthcare, automotive, and finance.

Recent Strategies Deployed in the Market

  • May-2025: Intel Corporation partnered with NetApp and introduced the AIPod Mini, an integrated AI inferencing solution designed to simplify and accelerate enterprise AI adoption. Targeting departmental and team-level deployments, it offers affordability, scalability, and ease of use, enabling businesses to leverage AI for applications like legal document automation, personalized retail experiences, and manufacturing optimization.
  • May-2025: NVIDIA Corporation unveiled NVLink Fusion, enabling industries to build semi-custom AI infrastructures by integrating third-party CPUs and custom AI chips with NVIDIA GPUs. This initiative enhances scalability and performance for AI inference workloads, fostering a flexible ecosystem for advanced AI applications.
  • May-2025: Amazon Web Services, Inc. teamed up with HUMAIN and launched the AI Zone, a pioneering initiative to boost AI adoption in Saudi Arabia and worldwide. This collaboration aims to accelerate AI innovation, provide advanced resources, and support businesses in leveraging AI technologies for growth and digital transformation on a global scale.
  • May-2025: Microsoft Corporation teamed up with Qualcomm to develop Windows 11 Copilot+ PCs, integrating Qualcomm's Snapdragon X Elite processors featuring dedicated neural processing units (NPUs) capable of over 40 trillion operations per second (TOPS). This collaboration aims to enhance on-device AI inference capabilities, reducing reliance on cloud computing and improving performance and privacy.
  • May-2025: Microsoft Corporation teamed up with Hugging Face to boost open-source AI innovation through Azure AI Foundry. This collaboration aims to simplify AI model deployment, enhance developer tools, and accelerate AI solutions adoption, fostering faster, more accessible innovation across industries using open-source technologies on Microsoft's cloud platform.

List of Key Companies Profiled

  • Intel Corporation
  • NVIDIA Corporation
  • Qualcomm Incorporated (Qualcomm Technologies, Inc.)
  • Amazon Web Services, Inc. (Amazon.com, Inc.)
  • Google LLC (Alphabet Inc.)
  • Huawei Technologies Co., Ltd. (Huawei Investment & Holding Co., Ltd.)
  • Microsoft Corporation
  • Samsung Electronics Co., Ltd. (Samsung Group)
  • Advanced Micro Devices, Inc.
  • Apple, Inc.

Global AI Inference Market Report Segmentation

By Memory

  • HBM (High Bandwidth Memory)
  • DDR (Double Data Rate)

By Compute

  • GPU
  • CPU
  • NPU
  • FPGA
  • Other Compute

By Application

  • Machine Learning
  • Generative AI
  • Natural Language Processing (NLP)
  • Computer Vision
  • Other Application

By End Use

  • IT & Telecommunications
  • BFSI
  • Healthcare
  • Retail & E-commerce
  • Automotive
  • Manufacturing
  • Security
  • Other End Use

By Geography

  • North America
    • US
    • Canada
    • Mexico
    • Rest of North America
  • Europe
    • Germany
    • UK
    • France
    • Russia
    • Spain
    • Italy
    • Rest of Europe
  • Asia Pacific
    • China
    • Japan
    • India
    • South Korea
    • Singapore
    • Malaysia
    • Rest of Asia Pacific
  • LAMEA
    • Brazil
    • Argentina
    • UAE
    • Saudi Arabia
    • South Africa
    • Nigeria
  • Rest of LAMEA

Table of Contents

Chapter 1. Market Scope & Methodology

  • 1.1 Market Definition
  • 1.2 Objectives
  • 1.3 Market Scope
  • 1.4 Segmentation
    • 1.4.1 Global AI Inference Market, by Memory
    • 1.4.2 Global AI Inference Market, by Compute
    • 1.4.3 Global AI Inference Market, by Application
    • 1.4.4 Global AI Inference Market, by End Use
    • 1.4.5 Global AI Inference Market, by Geography
  • 1.5 Methodology for the research

Chapter 2. Market at a Glance

  • 2.1 Key Highlights

Chapter 3. Market Overview

  • 3.1 Introduction
    • 3.1.1 Overview
      • 3.1.1.1 Market Composition and Scenario
  • 3.2 Key Factors Impacting the Market
    • 3.2.1 Market Drivers
    • 3.2.2 Market Restraints
    • 3.2.3 Market Opportunities
    • 3.2.4 Market Challenges

Chapter 4. Competition Analysis - Global

  • 4.1 KBV Cardinal Matrix
  • 4.2 Recent Industry Wide Strategic Developments
    • 4.2.1 Partnerships, Collaborations and Agreements
    • 4.2.2 Product Launches and Product Expansions
    • 4.2.3 Acquisition and Mergers
  • 4.3 Top Winning Strategies
    • 4.3.1 Key Leading Strategies: Percentage Distribution (2021-2025)
    • 4.3.2 Key Strategic Move: (Product Launches and Product Expansions: 2023, Mar - 2025, May) Leading Players
  • 4.4 Porter Five Forces Analysis

Chapter 5. Value Chain Analysis of AI Inference Market

  • 5.1 Research & Development (R&D):
  • 5.2 Hardware Design & Manufacturing:
  • 5.3 Software Stack Development:
  • 5.4 Model Training & Conversion:
  • 5.5 System Integration & Deployment:
  • 5.6 Distribution & Channel Management:
  • 5.7 End-User Applications:
  • 5.8 After-Sales Services & Support:

Chapter 6. Key Costumer Criteria of AI Inference Market

Chapter 7. Global AI Inference Market by Memory

  • 7.1 Global HBM (High Bandwidth Memory) Market by Region
  • 7.2 Global DDR (Double Data Rate) Market by Region

Chapter 8. Global AI Inference Market by Compute

  • 8.1 Global GPU Market by Region
  • 8.2 Global CPU Market by Region
  • 8.3 Global NPU Market by Region
  • 8.4 Global FPGA Market by Region
  • 8.5 Global Other Compute Market by Region

Chapter 9. Global AI Inference Market by Application

  • 9.1 Global Machine Learning Market by Region
  • 9.2 Global Generative AI Market by Region
  • 9.3 Global Natural Language Processing (NLP) Market by Region
  • 9.4 Global Computer Vision Market by Region
  • 9.5 Global Other Application Market by Region

Chapter 10. Global AI Inference Market by End Use

  • 10.1 Global IT & Telecommunications Market by Region
  • 10.2 Global BFSI Market by Region
  • 10.3 Global Healthcare Market by Region
  • 10.4 Global Retail & E-commerce Market by Region
  • 10.5 Global Automotive Market by Region
  • 10.6 Global Manufacturing Market by Region
  • 10.7 Global Security Market by Region
  • 10.8 Global Other End Use Market by Region

Chapter 11. Global AI Inference Market by Region

  • 11.1 North America AI Inference Market
    • 11.1.1 North America AI Inference Market by Memory
      • 11.1.1.1 North America HBM (High Bandwidth Memory) Market by Region
      • 11.1.1.2 North America DDR (Double Data Rate) Market by Region
    • 11.1.2 North America AI Inference Market by Compute
      • 11.1.2.1 North America GPU Market by Country
      • 11.1.2.2 North America CPU Market by Country
      • 11.1.2.3 North America NPU Market by Country
      • 11.1.2.4 North America FPGA Market by Country
      • 11.1.2.5 North America Other Compute Market by Country
    • 11.1.3 North America AI Inference Market by Application
      • 11.1.3.1 North America Machine Learning Market by Country
      • 11.1.3.2 North America Generative AI Market by Country
      • 11.1.3.3 North America Natural Language Processing (NLP) Market by Country
      • 11.1.3.4 North America Computer Vision Market by Country
      • 11.1.3.5 North America Other Application Market by Country
    • 11.1.4 North America AI Inference Market by End Use
      • 11.1.4.1 North America IT & Telecommunications Market by Country
      • 11.1.4.2 North America BFSI Market by Country
      • 11.1.4.3 North America Healthcare Market by Country
      • 11.1.4.4 North America Retail & E-commerce Market by Country
      • 11.1.4.5 North America Automotive Market by Country
      • 11.1.4.6 North America Manufacturing Market by Country
      • 11.1.4.7 North America Security Market by Country
      • 11.1.4.8 North America Other End Use Market by Country
    • 11.1.5 North America AI Inference Market by Country
      • 11.1.5.1 US AI Inference Market
        • 11.1.5.1.1 US AI Inference Market by Memory
        • 11.1.5.1.2 US AI Inference Market by Compute
        • 11.1.5.1.3 US AI Inference Market by Application
        • 11.1.5.1.4 US AI Inference Market by End Use
      • 11.1.5.2 Canada AI Inference Market
        • 11.1.5.2.1 Canada AI Inference Market by Memory
        • 11.1.5.2.2 Canada AI Inference Market by Compute
        • 11.1.5.2.3 Canada AI Inference Market by Application
        • 11.1.5.2.4 Canada AI Inference Market by End Use
      • 11.1.5.3 Mexico AI Inference Market
        • 11.1.5.3.1 Mexico AI Inference Market by Memory
        • 11.1.5.3.2 Mexico AI Inference Market by Compute
        • 11.1.5.3.3 Mexico AI Inference Market by Application
        • 11.1.5.3.4 Mexico AI Inference Market by End Use
      • 11.1.5.4 Rest of North America AI Inference Market
        • 11.1.5.4.1 Rest of North America AI Inference Market by Memory
        • 11.1.5.4.2 Rest of North America AI Inference Market by Compute
        • 11.1.5.4.3 Rest of North America AI Inference Market by Application
        • 11.1.5.4.4 Rest of North America AI Inference Market by End Use
  • 11.2 Europe AI Inference Market
    • 11.2.1 Europe AI Inference Market by Memory
      • 11.2.1.1 Europe HBM (High Bandwidth Memory) Market by Country
      • 11.2.1.2 Europe DDR (Double Data Rate) Market by Country
    • 11.2.2 Europe AI Inference Market by Compute
      • 11.2.2.1 Europe GPU Market by Country
      • 11.2.2.2 Europe CPU Market by Country
      • 11.2.2.3 Europe NPU Market by Country
      • 11.2.2.4 Europe FPGA Market by Country
      • 11.2.2.5 Europe Other Compute Market by Country
    • 11.2.3 Europe AI Inference Market by Application
      • 11.2.3.1 Europe Machine Learning Market by Country
      • 11.2.3.2 Europe Generative AI Market by Country
      • 11.2.3.3 Europe Natural Language Processing (NLP) Market by Country
      • 11.2.3.4 Europe Computer Vision Market by Country
      • 11.2.3.5 Europe Other Application Market by Country
    • 11.2.4 Europe AI Inference Market by End Use
      • 11.2.4.1 Europe IT & Telecommunications Market by Country
      • 11.2.4.2 Europe BFSI Market by Country
      • 11.2.4.3 Europe Healthcare Market by Country
      • 11.2.4.4 Europe Retail & E-commerce Market by Country
      • 11.2.4.5 Europe Automotive Market by Country
      • 11.2.4.6 Europe Manufacturing Market by Country
      • 11.2.4.7 Europe Security Market by Country
      • 11.2.4.8 Europe Other End Use Market by Country
    • 11.2.5 Europe AI Inference Market by Country
      • 11.2.5.1 Germany AI Inference Market
        • 11.2.5.1.1 Germany AI Inference Market by Memory
        • 11.2.5.1.2 Germany AI Inference Market by Compute
        • 11.2.5.1.3 Germany AI Inference Market by Application
        • 11.2.5.1.4 Germany AI Inference Market by End Use
      • 11.2.5.2 UK AI Inference Market
        • 11.2.5.2.1 UK AI Inference Market by Memory
        • 11.2.5.2.2 UK AI Inference Market by Compute
        • 11.2.5.2.3 UK AI Inference Market by Application
        • 11.2.5.2.4 UK AI Inference Market by End Use
      • 11.2.5.3 France AI Inference Market
        • 11.2.5.3.1 France AI Inference Market by Memory
        • 11.2.5.3.2 France AI Inference Market by Compute
        • 11.2.5.3.3 France AI Inference Market by Application
        • 11.2.5.3.4 France AI Inference Market by End Use
      • 11.2.5.4 Russia AI Inference Market
        • 11.2.5.4.1 Russia AI Inference Market by Memory
        • 11.2.5.4.2 Russia AI Inference Market by Compute
        • 11.2.5.4.3 Russia AI Inference Market by Application
        • 11.2.5.4.4 Russia AI Inference Market by End Use
      • 11.2.5.5 Spain AI Inference Market
        • 11.2.5.5.1 Spain AI Inference Market by Memory
        • 11.2.5.5.2 Spain AI Inference Market by Compute
        • 11.2.5.5.3 Spain AI Inference Market by Application
        • 11.2.5.5.4 Spain AI Inference Market by End Use
      • 11.2.5.6 Italy AI Inference Market
        • 11.2.5.6.1 Italy AI Inference Market by Memory
        • 11.2.5.6.2 Italy AI Inference Market by Compute
        • 11.2.5.6.3 Italy AI Inference Market by Application
        • 11.2.5.6.4 Italy AI Inference Market by End Use
      • 11.2.5.7 Rest of Europe AI Inference Market
        • 11.2.5.7.1 Rest of Europe AI Inference Market by Memory
        • 11.2.5.7.2 Rest of Europe AI Inference Market by Compute
        • 11.2.5.7.3 Rest of Europe AI Inference Market by Application
        • 11.2.5.7.4 Rest of Europe AI Inference Market by End Use
  • 11.3 Asia Pacific AI Inference Market
    • 11.3.1 Asia Pacific AI Inference Market by Memory
      • 11.3.1.1 Asia Pacific HBM (High Bandwidth Memory) Market by Country
      • 11.3.1.2 Asia Pacific DDR (Double Data Rate) Market by Country
    • 11.3.2 Asia Pacific AI Inference Market by Compute
      • 11.3.2.1 Asia Pacific GPU Market by Country
      • 11.3.2.2 Asia Pacific CPU Market by Country
      • 11.3.2.3 Asia Pacific NPU Market by Country
      • 11.3.2.4 Asia Pacific FPGA Market by Country
      • 11.3.2.5 Asia Pacific Other Compute Market by Country
    • 11.3.3 Asia Pacific AI Inference Market by Application
      • 11.3.3.1 Asia Pacific Machine Learning Market by Country
      • 11.3.3.2 Asia Pacific Generative AI Market by Country
      • 11.3.3.3 Asia Pacific Natural Language Processing (NLP) Market by Country
      • 11.3.3.4 Asia Pacific Computer Vision Market by Country
      • 11.3.3.5 Asia Pacific Other Application Market by Country
    • 11.3.4 Asia Pacific AI Inference Market by End Use
      • 11.3.4.1 Asia Pacific IT & Telecommunications Market by Country
      • 11.3.4.2 Asia Pacific BFSI Market by Country
      • 11.3.4.3 Asia Pacific Healthcare Market by Country
      • 11.3.4.4 Asia Pacific Retail & E-commerce Market by Country
      • 11.3.4.5 Asia Pacific Automotive Market by Country
      • 11.3.4.6 Asia Pacific Manufacturing Market by Country
      • 11.3.4.7 Asia Pacific Security Market by Country
      • 11.3.4.8 Asia Pacific Other End Use Market by Country
    • 11.3.5 Asia Pacific AI Inference Market by Country
      • 11.3.5.1 China AI Inference Market
        • 11.3.5.1.1 China AI Inference Market by Memory
        • 11.3.5.1.2 China AI Inference Market by Compute
        • 11.3.5.1.3 China AI Inference Market by Application
        • 11.3.5.1.4 China AI Inference Market by End Use
      • 11.3.5.2 Japan AI Inference Market
        • 11.3.5.2.1 Japan AI Inference Market by Memory
        • 11.3.5.2.2 Japan AI Inference Market by Compute
        • 11.3.5.2.3 Japan AI Inference Market by Application
        • 11.3.5.2.4 Japan AI Inference Market by End Use
      • 11.3.5.3 India AI Inference Market
        • 11.3.5.3.1 India AI Inference Market by Memory
        • 11.3.5.3.2 India AI Inference Market by Compute
        • 11.3.5.3.3 India AI Inference Market by Application
        • 11.3.5.3.4 India AI Inference Market by End Use
      • 11.3.5.4 South Korea AI Inference Market
        • 11.3.5.4.1 South Korea AI Inference Market by Memory
        • 11.3.5.4.2 South Korea AI Inference Market by Compute
        • 11.3.5.4.3 South Korea AI Inference Market by Application
        • 11.3.5.4.4 South Korea AI Inference Market by End Use
      • 11.3.5.5 Singapore AI Inference Market
        • 11.3.5.5.1 Singapore AI Inference Market by Memory
        • 11.3.5.5.2 Singapore AI Inference Market by Compute
        • 11.3.5.5.3 Singapore AI Inference Market by Application
        • 11.3.5.5.4 Singapore AI Inference Market by End Use
      • 11.3.5.6 Malaysia AI Inference Market
        • 11.3.5.6.1 Malaysia AI Inference Market by Memory
        • 11.3.5.6.2 Malaysia AI Inference Market by Compute
        • 11.3.5.6.3 Malaysia AI Inference Market by Application
        • 11.3.5.6.4 Malaysia AI Inference Market by End Use
      • 11.3.5.7 Rest of Asia Pacific AI Inference Market
        • 11.3.5.7.1 Rest of Asia Pacific AI Inference Market by Memory
        • 11.3.5.7.2 Rest of Asia Pacific AI Inference Market by Compute
        • 11.3.5.7.3 Rest of Asia Pacific AI Inference Market by Application
        • 11.3.5.7.4 Rest of Asia Pacific AI Inference Market by End Use
  • 11.4 LAMEA AI Inference Market
    • 11.4.1 LAMEA AI Inference Market by Memory
      • 11.4.1.1 LAMEA HBM (High Bandwidth Memory) Market by Country
      • 11.4.1.2 LAMEA DDR (Double Data Rate) Market by Country
    • 11.4.2 LAMEA AI Inference Market by Compute
      • 11.4.2.1 LAMEA GPU Market by Country
      • 11.4.2.2 LAMEA CPU Market by Country
      • 11.4.2.3 LAMEA NPU Market by Country
      • 11.4.2.4 LAMEA FPGA Market by Country
      • 11.4.2.5 LAMEA Other Compute Market by Country
    • 11.4.3 LAMEA AI Inference Market by Application
      • 11.4.3.1 LAMEA Machine Learning Market by Country
      • 11.4.3.2 LAMEA Generative AI Market by Country
      • 11.4.3.3 LAMEA Natural Language Processing (NLP) Market by Country
      • 11.4.3.4 LAMEA Computer Vision Market by Country
      • 11.4.3.5 LAMEA Other Application Market by Country
    • 11.4.4 LAMEA AI Inference Market by End Use
      • 11.4.4.1 LAMEA IT & Telecommunications Market by Country
      • 11.4.4.2 LAMEA BFSI Market by Country
      • 11.4.4.3 LAMEA Healthcare Market by Country
      • 11.4.4.4 LAMEA Retail & E-commerce Market by Country
      • 11.4.4.5 LAMEA Automotive Market by Country
      • 11.4.4.6 LAMEA Manufacturing Market by Country
      • 11.4.4.7 LAMEA Security Market by Country
      • 11.4.4.8 LAMEA Other End Use Market by Country
    • 11.4.5 LAMEA AI Inference Market by Country
      • 11.4.5.1 Brazil AI Inference Market
        • 11.4.5.1.1 Brazil AI Inference Market by Memory
        • 11.4.5.1.2 Brazil AI Inference Market by Compute
        • 11.4.5.1.3 Brazil AI Inference Market by Application
        • 11.4.5.1.4 Brazil AI Inference Market by End Use
      • 11.4.5.2 Argentina AI Inference Market
        • 11.4.5.2.1 Argentina AI Inference Market by Memory
        • 11.4.5.2.2 Argentina AI Inference Market by Compute
        • 11.4.5.2.3 Argentina AI Inference Market by Application
        • 11.4.5.2.4 Argentina AI Inference Market by End Use
      • 11.4.5.3 UAE AI Inference Market
        • 11.4.5.3.1 UAE AI Inference Market by Memory
        • 11.4.5.3.2 UAE AI Inference Market by Compute
        • 11.4.5.3.3 UAE AI Inference Market by Application
        • 11.4.5.3.4 UAE AI Inference Market by End Use
      • 11.4.5.4 Saudi Arabia AI Inference Market
        • 11.4.5.4.1 Saudi Arabia AI Inference Market by Memory
        • 11.4.5.4.2 Saudi Arabia AI Inference Market by Compute
        • 11.4.5.4.3 Saudi Arabia AI Inference Market by Application
        • 11.4.5.4.4 Saudi Arabia AI Inference Market by End Use
      • 11.4.5.5 South Africa AI Inference Market
        • 11.4.5.5.1 South Africa AI Inference Market by Memory
        • 11.4.5.5.2 South Africa AI Inference Market by Compute
        • 11.4.5.5.3 South Africa AI Inference Market by Application
        • 11.4.5.5.4 South Africa AI Inference Market by End Use
      • 11.4.5.6 Nigeria AI Inference Market
        • 11.4.5.6.1 Nigeria AI Inference Market by Memory
        • 11.4.5.6.2 Nigeria AI Inference Market by Compute
        • 11.4.5.6.3 Nigeria AI Inference Market by Application
        • 11.4.5.6.4 Nigeria AI Inference Market by End Use
      • 11.4.5.7 Rest of LAMEA AI Inference Market
        • 11.4.5.7.1 Rest of LAMEA AI Inference Market by Memory
        • 11.4.5.7.2 Rest of LAMEA AI Inference Market by Compute
        • 11.4.5.7.3 Rest of LAMEA AI Inference Market by Application
        • 11.4.5.7.4 Rest of LAMEA AI Inference Market by End Use

Chapter 12. Company Profiles

  • 12.1 Intel Corporation
    • 12.1.1 Company Overview
    • 12.1.2 Financial Analysis
    • 12.1.3 Segmental and Regional Analysis
    • 12.1.4 Research & Development Expenses
    • 12.1.5 Recent strategies and developments:
      • 12.1.5.1 Partnerships, Collaborations, and Agreements:
      • 12.1.5.2 Product Launches and Product Expansions:
    • 12.1.6 SWOT Analysis
  • 12.2 NVIDIA Corporation
    • 12.2.1 Company Overview
    • 12.2.2 Financial Analysis
    • 12.2.3 Segmental and Regional Analysis
    • 12.2.4 Research & Development Expenses
    • 12.2.5 Recent strategies and developments:
      • 12.2.5.1 Partnerships, Collaborations, and Agreements:
      • 12.2.5.2 Product Launches and Product Expansions:
    • 12.2.6 SWOT Analysis
  • 12.3 Qualcomm Incorporated (Qualcomm Technologies, Inc.)
    • 12.3.1 Company Overview
    • 12.3.2 Financial Analysis
    • 12.3.3 Segmental and Regional Analysis
    • 12.3.4 Research & Development Expense
    • 12.3.5 Recent strategies and developments:
      • 12.3.5.1 Partnerships, Collaborations, and Agreements:
      • 12.3.5.2 Product Launches and Product Expansions:
    • 12.3.6 SWOT Analysis
  • 12.4 Amazon Web Services, Inc. (Amazon.com, Inc.)
    • 12.4.1 Company Overview
    • 12.4.2 Financial Analysis
    • 12.4.3 Segmental and Regional Analysis
    • 12.4.4 Recent strategies and developments:
      • 12.4.4.1 Partnerships, Collaborations, and Agreements:
      • 12.4.4.2 Product Launches and Product Expansions:
      • 12.4.4.3 Acquisition and Mergers:
    • 12.4.5 SWOT Analysis
  • 12.5 Google LLC (Alphabet Inc.)
    • 12.5.1 Company Overview
    • 12.5.2 Financial Analysis
    • 12.5.3 Segmental and Regional Analysis
    • 12.5.4 Research & Development Expenses
    • 12.5.5 Recent strategies and developments:
      • 12.5.5.1 Partnerships, Collaborations, and Agreements:
      • 12.5.5.2 Product Launches and Product Expansions:
    • 12.5.6 SWOT Analysis
  • 12.6 Huawei Technologies Co., Ltd. (Huawei Investment & Holding Co., Ltd.)
    • 12.6.1 Company Overview
    • 12.6.2 Financial Analysis
    • 12.6.3 Segmental and Regional Analysis
    • 12.6.4 Research & Development Expenses
    • 12.6.5 Recent strategies and developments:
      • 12.6.5.1 Product Launches and Product Expansions:
    • 12.6.6 SWOT Analysis
  • 12.7 Microsoft Corporation
    • 12.7.1 Company Overview
    • 12.7.2 Financial Analysis
    • 12.7.3 Segmental and Regional Analysis
    • 12.7.4 Research & Development Expenses
    • 12.7.5 Recent strategies and developments:
      • 12.7.5.1 Partnerships, Collaborations, and Agreements:
    • 12.7.6 SWOT Analysis
  • 12.8 Samsung Electronics Co., Ltd. (Samsung Group)
    • 12.8.1 Company Overview
    • 12.8.2 Financial Analysis
    • 12.8.3 Segmental and Regional Analysis
    • 12.8.4 Research & Development Expenses
    • 12.8.5 Recent strategies and developments:
      • 12.8.5.1 Partnerships, Collaborations, and Agreements:
    • 12.8.6 SWOT Analysis
  • 12.9 Advanced Micro Devices, Inc.
    • 12.9.1 Company Overview
    • 12.9.2 Financial Analysis
    • 12.9.3 Segmental and Regional Analysis
    • 12.9.4 Research & Development Expenses
    • 12.9.5 Recent strategies and developments:
      • 12.9.5.1 Partnerships, Collaborations, and Agreements:
      • 12.9.5.2 Product Launches and Product Expansions:
      • 12.9.5.3 Acquisition and Mergers:
  • 12.10. Apple, Inc.
    • 12.10.1 Company Overview
    • 12.10.2 Financial Analysis
    • 12.10.3 Regional Analysis
    • 12.10.4 Research & Development Expense
    • 12.10.5 Recent strategies and developments:
      • 12.10.5.1 Product Launches and Product Expansions:
    • 12.10.6 SWOT Analysis

Chapter 13. Winning Imperatives of AI Inference Market

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦