![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1785251
¼¼°èÀÇ VaaS(Video As A Sensor) ½ÃÀå : ±Ô¸ð, Á¡À¯À², ¾÷°è ºÐ¼® º¸°í¼ - Á¦°ø ³»¿ëº°, Á¦Ç°º°, ÃÖÁ¾ ¿ëµµº°, ¿ëµµº°, Áö¿ªº° Àü¸Á, ¿¹Ãø(2025-2032³â)Global Video As A Sensor Market Size, Share & Industry Analysis Report By Offering, By Product, By End-Use, By Application, By Regional Outlook and Forecast, 2025 - 2032 |
¼¼°èÀÇ VaaS(Video As A Sensor) ½ÃÀå ±Ô¸ð´Â ¿¹Ãø±â°£ µ¿¾È 8.1%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ½ÃÀå ¼ºÀåÇÏ¿© 2032³â±îÁö 1,317¾ï 3,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í ÀÖ½À´Ï´Ù.
ÁÖ¿ä ÇÏÀ̶óÀÌÆ® :
¿µ»óÀ» ¼¾¼·Î ÀÌ¿ëÇÑ´Ù´Â °³³äÀº Áö³ 1¼¼±â µ¿¾È Å©°Ô ÁøÈÇØ ±âº»ÀûÀÎ °¨½Ã ½Ã½ºÅÛÀ¸·Î ½ÃÀÛÇÏ¿© Áö´ÉÀûÀÎ ¼¾½Ì ¼Ö·ç¼ÇÀ¸·Î ÁøÈÇØ ¿Ô½À´Ï´Ù. Ãʱâ CCTV ½Ã½ºÅÛÀº ÁÖ·Î ¼öµ¿Àû °¨½Ã¸¦ ¸ñÀûÀ¸·Î Çϰí ÀÖÀ¸¸ç, ±× ±â¿øÀº 1927³â¿¡ ±â°è½Ä °¨½Ã ÀåÄ¡°¡ ¹Î°¨ÇÑ ±¸¿ªÀ» °¨½ÃÇÏ´Â µ¥ »ç¿ëµÇ¾ú´Ù´Â °ÍÀÔ´Ï´Ù.
20¼¼±â Á߹ݱîÁö Vericon ½Ã½ºÅÛ°ú °°Àº »ó¿ë ¼Ö·ç¼ÇÀ» ÅëÇØ ¹Î°£ À¯¼± ¸ð´ÏÅ͸µÀÌ °¡´ÉÇØÁ³½À´Ï´Ù. ±×·¯³ª ÁøÁ¤ÇÑ ÀüȯÀº ³×Æ®¿öÅ©ÈµÈ ºñµð¿À ½Ã½ºÅÛÀÇ ÃâÇöÀ¸·Î, ƯÈ÷ 1996³â¿¡ Axis Communications°¡ ÃÖÃÊÀÇ IP Ä«¸Þ¶ó¸¦ µµÀÔÇ߱⠶§¹®¿¡ ¹ß»ýÇß½À´Ï´Ù. ÀÌ Çõ½ÅÀº ÀÎÅÍ³Ý ÇÁ·ÎÅäÄÝÀ» ÅëÇØ ºñµð¿À¸¦ Àü¼ÛÇÏ´Â °³³äÀ» µµÀÔÇÏ¿© ¿ø°Ý ¾×¼¼½º, °íÇØ»óµµ ¹× È®À强À» °¡´ÉÇÏ°Ô ÇÏ¿© ȹ±âÀûÀÎ »ç°ÇÀÌ µÇ¾ú½À´Ï´Ù.
½Ã°£ÀÌ Áö³²¿¡ µû¶ó ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ´õ¿í Á¤±³ÇØÁ³À¸¸ç ÀÓº£µðµå ¸®´ª½º µµÀÔ, Ä«¸Þ¶ó ³» ó¸® ±¸Çö, ±Ã±ØÀûÀ¸·Î ¿§Áö ºÐ¼® ½ÇÇöÀ¸·Î ÁøÇàµÇ¾ú½À´Ï´Ù. 2008³â Axis, Bosch, Sony°¡ ONVIF ÄÁ¼Ò½Ã¾öÀ» ¼³¸³ÇÔÀ¸·Î½á »óÈ£ ¿î¿ë¼º°ú ÀÎÅÍÆäÀ̽º Ç¥ÁØÈ°¡ ÃËÁøµÇ¾úÀ¸¸ç ±â¼ú Çõ½ÅÀÌ ´õ¿í °¡¼ÓȵǾú½À´Ï´Ù. µ¿½Ã¿¡ °¢±¹ Á¤ºÎ´Â AI¸¦ ¿µ»ó ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ´Â °ËÅ並 ½ÃÀÛÇß½À´Ï´Ù.
¹Ì±¹ ±³ÅëºÎ¿Í ¿¡³ÊÁöºÎ ÇÁ·Î±×·¥Àº ±³Åë ¸ð´ÏÅ͸µ, °ø°ø ¾ÈÀü, ÀÎÇÁ¶ó º¸¾È µîÀÇ ¿ëµµ¸¦ À§ÇÑ ½Ç½Ã°£ ¿µ»ó ºÐ¼®¿¡ ÅõÀÚÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ³ë·ÂÀº ½ÃÄ«°íÀÇ ¿î¿µ °¡»ó ½Çµå¿Í ´º¿åÀÇ µµ¸ÞÀÎ ÀÎ½Ä ½Ã½ºÅÛ°ú °°Àº µµ½Ã Àüü¸¦ ´Ù·ç´Â ³×Æ®¿öÅ©¸¦ ¸¸µé¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ³×Æ®¿öÅ©´Â ¼öõ ´ëÀÇ Ä«¸Þ¶ó¿Í µ¥ÀÌÅÍ Çǵ带 »óÈ£ ¿¬°áÇÏ¿© ¿¹Ãø °æÂû Ȱµ¿°ú ±ä±Þ ´ëÀÀ ±â´ÉÀ» Á¦°øÇß½À´Ï´Ù.
µ¿½Ã¿¡ NVIDIA¿Í °°Àº OEMÀº Jetson AI Ç÷§ÆûÀ» ¹ßÇ¥ÇÏ¿© Ä«¸Þ¶ó¸¦ Ŭ¶ó¿ìµå¿¡ Ç×»ó ¾×¼¼½ºÇÒ ÇÊ¿ä ¾øÀÌ ¹°Ã¼ ÀνÄÀ̳ª ÀÌ»ó °¨Áö°¡ °¡´ÉÇÑ Áö´ÉÇü ¿§Áö µð¹ÙÀ̽º·Î º¯¸ð½ÃÄ×½À´Ï´Ù. ±× °á°ú, ºñµð¿À ½Ã½ºÅÛÀº ¾×Ƽºê ¼¾¼·Î¼ ±â´ÉÇϱ⠽ÃÀÛÇÏ¿© ¿òÁ÷ÀÓÀ» °¨ÁöÇϰí, ¹°Ã¼¸¦ ½Äº°Çϰí, ÇൿÀ» ºÐ¼®Çϸç, ±¤¹üÀ§ÇÑ »ç¹° ÀÎÅͳÝ(IoT) »ýŰ迡 µ¥ÀÌÅ͸¦ Àü¼ÛÇÒ ¼ö ÀÖ½À´Ï´Ù.
KBV Cardinal matrix - VaaS(Video As A Sensor) ½ÃÀå °æÀï ºÐ¼®
KBV Cardinal matrixÀÇ ºÐ¼®¿¡ µû¸£¸é Hangzhou Hikvision Digital Technology Co., Ltd´Â VaaS ½ÃÀåÀÇ ¼±±¸ÀÚÀÔ´Ï´Ù. 2025³â 5¿ù Hangzhou Hikvision Digital Technology Co., Ltd´Â ¹èÅ͸®°¡ ³»ÀåµÈ ¹«¼± Ä«¸Þ¶ó¿Í ž籤 ¹ßÀü ¿É¼ÇÀ» °®Ãá ÄÉÀ̺íÀÌ ÇÊ¿ä ¾ø´Â Â÷¼¼´ë ºñµð¿À º¸¾È Á¦Ç°À» Ãâ½ÃÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ¿ø°ÝÁö³ª ¹è¼±ÀÌ ¾î·Á¿î °÷¿¡¼µµ À¯¿¬ÇÏ°í ½±°Ô ¼³Ä¡ÇÒ ¼ö ÀÖ´Â ¸ð´ÏÅ͸µÀ» Á¦°øÇÏ¿© ÃÖ¼ÒÇÑÀÇ ÀÎÇÁ¶ó ¿ä±¸ »çÇ×À¸·Î º¸¾ÈÀ» °ÈÇÕ´Ï´Ù. Sony Semiconductor Solutions Co., Ltd., Honeywell International Corporation, Johnson Controls International PLC µîÀº VaaS(Video As A Sensor) ½ÃÀåÀÇ ÁÖ¿ä Çõ½ÅÀÚÀÔ´Ï´Ù.
½ÃÀå ÅëÇÕ ºÐ¼® :
ÀΰøÁö´É, ÄÄÇ»ÅÍ ºñÀü, IoT ±â¼úÀÇ ±Þ¼ÓÇÑ ÁøÈ´Â ºñµð¿À °¨½Ã¿Í ¼¾¼ ÀÎÅÚ¸®Àü½ºÀÇ Á¤¼¼¸¦ ±Ùº»ÀûÀ¸·Î ÀçÁ¤ÀÇÇÏ¿© ¼¼°èÀÇ VaaS ½ÃÀåÀ» âÃâÇß½À´Ï´Ù. °ú°Å¿¡´Â ¼öµ¿ÀûÀÎ ½Ã°¢ °¨½Ã¿´´ø °ÍÀÌ ½º¸¶Æ® ½ÃƼ, Á¦Á¶, ¼Ò¸Å ºÐ¼®, ÀÚÀ² ½Ã½ºÅÛ µî ºÐ¾ß¿¡¼ ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» Áö¿øÇÏ´Â Áö´ÉÀûÀÎ µ¥ÀÌÅÍ ÃßÃâ·Î º¯¸ð¸¦ ÀÌ·ç¾ú½À´Ï´Ù. ±×·¯³ª ÀÌ º¯È´Â °³¹æÀûÀΠȯ°æÀ̳ª ±ÕµîÇÏ°Ô ºÐ»êµÈ ȯ°æ¿¡¼´Â ÀϾÁö ¾Ê¾Ò½À´Ï´Ù. ¿ÀÈ÷·Á Çϵå¿þ¾î ¼ÒÇÁÆ®¿þ¾î ½ºÅÃ, µ¥ÀÌÅÍ ÆÄÀÌÇÁ¶óÀÎ, Ŭ¶ó¿ìµå ÀÎÇÁ¶ó µî Áß¿äÇÑ °èÃþÀ» Åë°ýÇÏ´Â ±â¼ú ±â¾÷À¸·Î ±¸¼ºµÈ ÅëÇÕ ¿¡ÄڽýºÅÛ¿¡ ÀÇÇØ Çü¼ºµÇ¾î ¿Ô½À´Ï´Ù.
ÀÌ Àå¿¡¼´Â VaaS ¼½ÅÍ¿¡¼ ½ÃÀå ÅëÇÕÀÇ ¿ªÇÐÀ» ÀÚ¼¼È÷ ºÐ¼®ÇÕ´Ï´Ù. °æÀïÀÇ °ÝÈ, Çõ½Å À庮, º¥´õ ÁýÁßµµ¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ±¸Á¶Àû, Àü·«Àû ¿äÀÎÀ» ü°èÀûÀ¸·Î Æò°¡ÇÕ´Ï´Ù. ½ÇÁ¦ ´º½º, OEM ÃâÆÇ¹°, °ø°³ ±â¼ú ÇÁ·¹ÀÓ¿öÅ©, ±ÔÁ¦ µ¥ÀÌÅÍ¿¡ ±Ù°ÅÇÏ¿©, º» ºÐ¼®Àº Çõ½ÅÀÇ ÁýÁßµµ¿Í °ø±Þ¸Á¿¡ ´ëÇÑ ÀÇÁ¸µµºÎÅÍ ÁöÁ¤ÇÐÀû ¿µÇâ°ú ±â¼ú Ç¥ÁØÈ¿¡ À̸£±â±îÁö ÁÖ¿ä ÅëÇÕ ÁöÇ¥¿¡ ÃøÁ¤ °¡´ÉÇÑ Æò°¡¸¦ ÁÖ°í ÀÖ½À´Ï´Ù.
ÆÄ¶ó¹ÌÅͺ° ½ÃÀå ÅëÇÕ ºÐ¼®
1. Çõ½Å¼º ¼öÁØ - ¡Ú¡Ú¡Ú¡Ú¡Ú(5/5)
VaaS(Video As A Sensor) ½ÃÀåÀÇ Çõ½ÅÀº ƯÈ÷ AI ±â¹ÝÀÇ ¹°Ã¼ ÀνÄ, Çൿ ºÐ¼®, ½Ç½Ã°£ °æ°í ½Ã½ºÅÛ ºÐ¾ß¿¡¼ ºü¸£°Ô ¹ßÀüÇϰí ÀÖ½À´Ï´Ù. Bosch, Hikvision, NVIDIA(Jetson Ç÷§Æû)¿Í °°Àº ¸®´õ ±â¾÷Àº µ¶ÀÚÀûÀÎ Çϵå¿þ¾î ¼ÒÇÁÆ®¿þ¾î ½ºÅÃÀ¸·Î ½ÃÀåÀ» ¼®±ÇÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¾÷µéÀº ³ôÀº R&D ÅõÀÚ¸¦ ÅëÇØ Çõ½ÅÀÇ Àå¾Ö¹°À» Áö¼ÓÀûÀ¸·Î ²ø¾î¿Ã¸®°í ÀÖÀ¸¸ç, ½ºÅ¸Æ®¾÷ ±â¾÷µéÀÌ ±× ¼Óµµ¸¦ µû¶óÀâ±â ¾î·Æ½À´Ï´Ù.
±Ù°Å :
Çõ½ÅÀº ÁÖ·Î ¼öÁ÷ ÅëÇÕ Á¦Ç° ¶óÀΰú µ¥ÀÌÅÍ ÆÄÀÌÇÁ¶óÀÎÀ» Á¦¾îÇÏ´Â ÁÖ¿ä °ø±Þ¾÷ü¿¡ ÁýÁߵǾî ÀÖÀ¸¸ç ¼öÆò Âü°¡ÀÚÀÇ ¿©Áö°¡ Å©°Ô Á¦Çѵ˴ϴÙ.
Á¦Ç° ¼ö¸íÁֱ⠺м® :
ÇöÀçÀÇ µµÀÔ ÆÐÅÏ, ±â¼úÀÇ Áøº¸, ´Ù¾çÇÑ ¼½ÅÍÀÇ µµÀÔ ±Ô¸ð¿¡ ±Ù°ÅÇØ, VaaS(Video As A Sensor) ½ÃÀåÀº Á¦Ç° ¶óÀÌÇÁ »çÀÌŬÀÇ ¼ºÀå ´Ü°è¿Í ¼º¼÷ ´Ü°è »çÀÌ¿¡ À§Ä¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº Ãʱ⠰³³ä ½ÇÁõ ´Ü°è¸¦ Áö³ª ÇöÀç ½º¸¶Æ® ½ÃƼ ÀÎÇÁ¶ó, ±³Åë °ü¸®, »ê¾÷ ÀÚµ¿È, ¼Ò¸Å ºÐ¼® µî ºÐ¾ß¿¡¼ ƯÈ÷ ¼±Áø Áö¿ªÀ̳ª ±Þ¼ÓÈ÷ µµ½ÃȰ¡ ÁøÇàµÇ´Â Áö¿ª¿¡¼ ³Î¸® µµÀԵǰí ÀÖ½À´Ï´Ù. Bosch, Axis Communications, Hikvision°ú °°Àº ´ë±â¾÷Àº ÅëÇÕ ºÐ¼® ±â´ÉÀ» °®Ãá AI ±¸µ¿Çü ºñµð¿À ¼¾¼¸¦ ÁÖ·ùÈÇϰí ÀÖÀ¸¸ç, °ø°ø °¨½Ã³ª »ó¾÷½Ã¼³ µî ºÐ¾ß¿¡¼ ¼º¼÷ÀÌ ÁøÇàµÇ°í ÀÖÀ½À» º¸¿©ÁÝ´Ï´Ù.
±×·¯³ª ¿§Áö ÄÄÇ»ÆÃ, 5G ÅëÇÕ, AI ¸ðµ¨¸µÀÇ Áö¼ÓÀûÀÎ Çõ½Å, ƯÈ÷ ÀÚÀ² ÁÖÇà ¸ðºô¸®Æ¼, ÀÇ·á Áø´Ü, Á¤¹Ð Á¦Á¶ µî ½ÅÈï ¿ëµµÀÇ Çõ½ÅÀº Áö¼ÓÀûÀÎ ¼ºÀåÀ» ¹Ý¿µÇÕ´Ï´Ù. ½ÃÀåÀº ¾ÆÁ÷ Æ÷È »óÅ¿¡ À̸£Áö ¸øÇßÀ¸¸ç, ƯÈ÷ LAMEA ¹× ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀϺο¡¼´Â Áö¸®ÀûÀ¸·Î³ª ±â´ÉÀûÀ¸·Î È®´ë¸¦ °è¼ÓÇϰí ÀÖÀ¸¸ç, ¼ºÀå ÈıâºÎÅÍ ¼º¼÷ Ãʱâ·ÎÀÇ ÀüȯÁ¡¿¡ ÀÖÀ½À» ½Ã»çÇϰí ÀÖ½À´Ï´Ù.
ºñµð¿À ±â¼úÀÇ ÁøÈ´Â ±âÁ¸ÀÇ ¸ð´ÏÅ͸µ ¹× ¸ð´ÏÅ͸µ ±â´ÉÀÇ ¹üÀ§¸¦ ¹þ¾î³µ½À´Ï´Ù. ¿À´Ã³¯ ÀΰøÁö´É(AI), ¸Ó½Å·¯´×(ML), ¿§Áö ÄÄÇ»ÆÃÀÇ ÅëÇÕÀ¸·Î ºñµð¿À ½Ã½ºÅÛÀº ½Ã°¢ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ÇØ¼®Çϰí À̸¦ ±â¹ÝÀ¸·Î ÇൿÇÒ ¼ö ÀÖ´Â Áö´ÉÇü ¼¾¼·Î º¯¸ðÇϰí ÀÖ½À´Ï´Ù. ÀÌ ÆÐ·¯´ÙÀÓ ½ÃÇÁÆ®´Â "VaaS"½ÃÀåÀ̶ó´Â »õ·Î¿î ºÐ¾ß¸¦ ź»ý½ÃÄ×½À´Ï´Ù.
ÀÌ Àå¿¡¼´Â VaaS(Video As A Sensor) ½ÃÀå¿¡¼ Á¾ÇÕÀûÀÎ Á¦Ç° ¼ö¸íÁÖ±â(PLC) ºÐ¼®À» Á¦½ÃÇÏ°í ½ÃÀåÀÌ ¼Ò°³, ¼ºÀå±â, ¼º¼÷±â, ¼èÅð±âÀÇ ÁÖ¿ä ´Ü°è¸¦ °ÅÃÄ ¾î¶»°Ô ¹ßÀüÇØ ¿Ô´ÂÁö º¸¿©ÁÝ´Ï´Ù. ±â¼ú, ÀÌ¿ë »ç·Ê, °æÀï Àü·«ÀÇ ÁøÈ¸¦ ºÐ¼®ÇÔÀ¸·Î½á, º» ºÐ¼®Àº ½ÃÀåÀÇ °³¹ß ±Ëµµ¿Í Àü·«Àû º¯°îÁ¡À» ´õ ±íÀÌ ÀÌÇØÇÒ ¼ö ÀÖ°Ô ÇÕ´Ï´Ù.
1. ¼Ò°³ ´Ü°è
ÀÌ Ãʱ⠴ܰ迡¼ VaaS(Video As A Sensor) ±â¼úÀº ÁÖ·Î ¹æ¾î ¹× Áß¿ä ÀÎÇÁ¶ó¿Í °°Àº Ư¼ö ºÐ¾ß¿¡¼ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù. µµÀÔÀº ½ÃÇèÀûÀÎ ´Ü°èÀ̸ç, ¿¬±¸ °³¹ßºñ´Â °í¾×ÀÌ¸ç ½ÃÀå ħÅõ´Â ÇÑÁ¤ÀûÀÔ´Ï´Ù.
¿¹ :
2. ¼ºÀå ´Ü°è
ÀÌ ´Ü°è¿¡¼´Â º¸¾È °È¿Í AI ±â¼úÀÇ ÅëÇÕ¿¡ ´ëÇÑ Çʿ伺ÀÌ ³ô¾ÆÁö°í ´Ù¾çÇÑ ºÐ¾ß¿¡¼ AI µµÀÔÀÌ ±Þ¼ÓÈ÷ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. Á¤ºÎ ±â°ü°ú ±â¾÷Àº ´ë±Ô¸ð µµÀÔÀ» ½ÃÀÛÇÕ´Ï´Ù.
¿¹ :
3. ¼º¼÷ ´Ü°è
±â¼úÀº ÁÖ·ù°¡ µÇ¾î »ó¾÷, °ø¾÷, ÁÖÅÃÀÇ °¢ ºÐ¾ß¿¡¼ ³Î¸® ä¿ëµÇ°Ô µË´Ï´Ù. ÃÊÁ¡Àº Çâ»ó, ÅëÇÕ ´É·Â ¹× ºñ¿ë ÃÖÀûÈ·Î À̵¿ÇÕ´Ï´Ù.
¿¹ :
4. ¼èÅð±â
µðÁöÅÐ ±â¼ú°ú AI ±â¼úÀÇ ¹ßÀüÀ¸·Î ±âÁ¸ÀÇ ¾Æ³¯·Î±× ½Ã½ºÅÛÀº ÁøºÎÈÀÇ À§±â¿¡ Ã³ÇØ ÀÖ½À´Ï´Ù. ½ÃÀå¿¡¼´Â IP ±â¹Ý ¹× Ŭ¶ó¿ìµå ÅëÇÕ ¼Ö·ç¼ÇÀ¸·ÎÀÇ ÀüȯÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.
¿¹ :
½ÃÀå ¼ºÀå ¿äÀÎ
¼¼°è °¢±¹ÀÇ Á¤ºÎ´Â °ø°ø¾ÈÀü, ¹æ¹ü, ±³Åë°üÁ¦, ¹æÀç°ü¸® °È¸¦ ¸ñÀûÀ¸·Î ÇÑ °¨½Ã ÀÎÇÁ¶ó¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ¸¦ ÅëÇØ ºñµð¿À ¼¾¼ ±â¼úÀÇ µµÀÔ ÃËÁø¿¡ Å©°Ô ±â¿©ÇØ ¿Ô½À´Ï´Ù. ¾Æ³¯·Î±× °¨½Ã¿¡¼ IP ¹× AI¸¦ Ȱ¿ëÇÑ ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀº °ø°ø ºÎ¹®ÀÇ ³ë·ÂÀ¸·Î Å©°Ô °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ºñµð¿À ¼¾¼´Â ÀÌÁ¦ ´Ü¼øÇÑ º¸¾È µµ±¸°¡ ¾Æ´Ï¶ó ½º¸¶Æ® ½ÃƼ ¹× ±¹°¡ ¾Èº¸ ½Ã½ºÅÛ¿¡ ÅëÇÕµÈ ½Ç½Ã°£ µ¥ÀÌÅÍ »ý¼º ÀåÄ¡·Î Àνĵǰí ÀÖ½À´Ï´Ù. °¢±¹ Á¤ºÎ°¡ ½Ç½Ã°£ °¨½Ã, ÀνôøÆ® °ËÁö, ±ä±Þ ´ëÀÀ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÀÚ±Ý Á¦°øÀ» °è¼ÓÇÏ´Â °¡¿îµ¥, ¼¼°èÀÇ VaaS ½ÃÀå ±Ô¸ð¿Í °íµµÈ¸¦ °¡¼ÓÈÇÏ´Â Áß¿äÇÑ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¶ÇÇÑ ¼¼°èÀÇ VaaS ½ÃÀå¿¡¼ °¡Àå ¸Å·ÂÀûÀÎ ÃËÁø¿äÀÎ Áß Çϳª´Â ½º¸¶Æ® ½ÃƼÀÇ ±³Åë ¹× ÀÎÇÁ¶ó ÃÖÀûÈ¿¡¼ ºñµð¿À Ȱ¿ë ½Ã½ºÅÛÀÇ ±¤¹üÀ§ÇÑ µµÀÔÀÔ´Ï´Ù. ¿§Áö AI¸¦ žÀçÇÑ Ä«¸Þ¶ó°¡ µµ½ÃÀÇ À̵¿¼º, Á¤Ã¼ °ü¸®, °ø°ø ¼ºñ½º¸¦ º¯È½Ã۰í ÀÖ½À´Ï´Ù. Àεµ, È£ÁÖ, ¹Ì±¹ ¹× À¯·´ µµ½Ã¿¡¼´Â ´ë±Ô¸ð ÆÄÀÏ·µ ÇÁ·Î±×·¥°ú º»°ÝÀûÀÎ ÇÁ·Î±×·¥ÀÌ ½ÃÀÛµÇ¾î ºñµð¿À ¼¾¼°¡ ¼öµ¿ ³ìÈ ÀåÄ¡¿¡¼ ´Éµ¿ÀûÀÎ ½Ç½Ã°£ ±³Åë °ü¸® ÀåÄ¡·Î ÁøÈÇϰí ÀÖ´Ù´Â Á¡ÀÌ µ¸º¸ÀÔ´Ï´Ù. ¼¼°è Á¤ºÎ°¡ °ø°ø ¾ÈÀü, ±âÈÄ º¯È ´ëÃ¥, Åë±Ù È¿À²¼º Çâ»óÀ» À§ÇØ ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀ» äÅÃÇϰí ÀÖ´Â °ÍÀº ¼¼°èÀÇ VaaS(Video As A Sensor) ½ÃÀå¿¡ Áö¼ÓÀûÀ̰í È®´ëÇÏ´Â ÅõÀÚ¸¦ Áö¿øÇϰí ÀÖ½À´Ï´Ù.
½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
VaaS(Video As A Sensor) ½ÃÀåÀÌ Á÷¸éÇÏ´Â °¡Àå Å« Á¦¾àÀº °ø°ø °ø°£°ú »çÀû °ø°£¿¡¼ÀÇ °¨½Ã¿Í ¿µ»ó ºÐ¼®¿¡ ´ëÇÑ °¨½ÃÀÇ ¾ö°ÝÇÔÀÔ´Ï´Ù. ¿¡Áö Ä«¸Þ¶ó¿Í AI žÀç Ä«¸Þ¶óÀÇ º¸±Þ¿¡ µû¶ó Á¤ºÎ¿Í ±ÔÁ¦ ´ç±¹Àº ÇÁ¶óÀ̹ö½Ã±Ç º¸È£¸¦ À§ÇØ º¸´Ù ¾ö°ÝÇÑ ±ÔÄ¢À» ºÎ°úÇÏ°í µµÀÔ Áö¿¬°ú ÄÄÇöóÀ̾𽺠ºñ¿ë Áõ°¡·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î ¹Ì±¹¿¡¼´Â º¸¾È »ê¾÷ Çùȸ(SIAA)°¡ ¹ßÇàÇÑ '°¨½Ã Ä«¸Þ¶ó ÇÁ¶óÀ̹ö½Ã ½Çõ ±Ô¹ü'¿¡¼ µ¥ÀÌÅÍ ¾×¼¼½º °ü¸®, ¾ÏÈ£È Àû¿ë, ÇöÁö ¹ý·ü ¹× »çȸ ±â´ë¿¡ µû¸¥ µ¥ÀÌÅÍ º¸Á¸ ±â°£ÀÇ Á¦ÇÑÀÌ Á߽õǰí ÀÖ½À´Ï´Ù. ÀÌ·Î ÀÎÇØ º¹À⼺, ½Ã°£, ºñ¿ëÀÌ Áõ°¡Çϰí Á¾Á¾ ÇÁ·ÎÁ§Æ® ¿¹»ê Áõ°¡¿Í Á¶´Þ »çÀÌŬ Áö¿¬¿¡ Á÷°áµË´Ï´Ù.
¹ë·ùüÀÎ ºÐ¼®
VaaS(Video As A Sensor) ½ÃÀåÀÇ ¹ë·ùüÀÎÀº À̹ÌÁö ó¸®, ¼¾¼ ¹× ºñµð¿À ó¸® ±â¼úÀÇ °íµµÈ¿¡ ÁßÁ¡À» µÐ R&D ¹× ±â¼ú °³¹ß·Î ½ÃÀ۵˴ϴÙ. ±×·± ´ÙÀ½ ¼¾¼¿Í Ä«¸Þ¶ó¿Í °°Àº Çʼö Çϵå¿þ¾î¸¦ Á¦Á¶ÇÏ´Â ºÎǰ Á¦Á¶°¡ À̾îÁý´Ï´Ù. ´ÙÀ½ ´Ü°è´Â ½Ã½ºÅÛ ÅëÇÕÀ¸·Î Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾î¸¦ °áÇÕÇÏ¿© ¿Ïº®ÇÑ ¼Ö·ç¼ÇÀ» ±¸ÃàÇÕ´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ¹× ºÐ¼® °³¹ßÀº ºñµð¿À ºÐ¼® ¹× µ¥ÀÌÅÍ ºÐ¼®°ú °°Àº Áö´ÉÀûÀÎ ±â´ÉÀ¸·Î ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» °ÈÇÕ´Ï´Ù. ±× ÈÄ, Á¦Ç°Àº À¯Åë ¹× ÆÇ¸Å ä³ÎÀ» ÅëÇØ ¹èÆ÷µÇ¾î °í°´ »çÀÌÆ®¿¡¼ÀÇ µµÀÔ°ú ¼³Ä¡°¡ ÀÌ·ç¾îÁý´Ï´Ù. ¿î¿µ ¹× ¼ºñ½º´Â ½Ã½ºÅÛÀÇ ±â´É°ú À¯Áöº¸¼ö¸¦ º¸ÀåÇϸç, ÃÖÁ¾ »ç¿ëÀÚ ¿ëµµ´Â º¸¾È, ±³Åë, ½º¸¶Æ® ½ÃƼ µîÀÇ ºÐ¾ß¿¡¼ ½Ç¿ëȸ¦ ÃßÁøÇϰí Áö¼ÓÀûÀÎ °³¼±À» À§ÇÑ Çǵå¹éÀ» Á¦°øÇÕ´Ï´Ù.
½ÃÀå Á¡À¯À² ºÐ¼®
Á¦°ø ³»¿ëÀÇ Àü¸Á
Á¦°ø ³»¿ë¿¡ µû¶ó ½ÃÀåÀº Çϵå¿þ¾î, ¼ÒÇÁÆ®¿þ¾î ¹× ¼ºñ½º·Î ºÐ·ùµË´Ï´Ù.
Çϵå¿þ¾î - Edge AI ½º¸¶Æ® Ä«¸Þ¶ó ¹× Ư¼ö ¼¾¼
¼Ò°³ :
Çϵå¿þ¾î´Â °í±Þ ½º¸¶Æ® Ä«¸Þ¶ó, AI°¡ ³»ÀåµÈ ¼¾¼, Àü¿ë Ã߷РĨ µîÀ¸·Î ±¸¼ºµÈ VaaS ¿¡ÄڽýºÅÛÀÇ ±â¹ÝÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀåÄ¡´Â ¿¡Áö¿¡¼ Ãʱ⠵¥ÀÌÅÍ Ä¸Ã³ ¹× ÃÊÀú Áö¿¬ 󸮸¦ ¼öÇàÇÏ¿© Ŭ¶ó¿ìµå ¿¬°á¿¡ ´ëÇÑ ÀÇÁ¸¼ºÀ» ÁÙÀÌ¸é¼ À̺¥Æ®¸¦ Áï½Ã °¨ÁöÇÏ°í °³ÀÎ Á¤º¸¸¦ °ÈÇÕ´Ï´Ù.
ÁÖ¿ä µ¿Çâ°ú µ¿Çâ :
¼ÒÇÁÆ®¿þ¾î - ¿¹Ãø ¹× ÄÁÅØ½ºÆ® ºñµð¿À ºÐ¼®
¼Ò°³ :
¼ÒÇÁÆ®¿þ¾î´Â ¹°Ã¼ °¨Áö, Çൿ ¸ðµ¨¸µ, ºñÁ¤»ó ¿¹Ãø°ú °°Àº ºÐ¼® µµ±¸¸¦ »ç¿ëÇÏ¿© ¿ø½Ã ½Ã°¢ µ¥ÀÌÅ͸¦ ½Ç¿ëÀûÀÎ ÀÎÅÚ¸®Àü½º·Î º¯È¯ÇÕ´Ï´Ù. ÀÌ ·¹À̾ ÅëÇØ VaaS ½Ã½ºÅÛÀº ´Ü¼øÈ÷ ¼öµ¿ÀûÀ¸·Î ±â·ÏÇÒ »Ó¸¸ ¾Æ´Ï¶ó ÀνôøÆ®¸¦ °¨ÁöÇÏ°í ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÁÖ¿ä µ¿Çâ°ú µ¿Çâ :
Á¦Ç° Àü¸Á
Á¦Ç°À» ±â¹ÝÀ¸·Î ½ÃÀåÀº ºñµð¿À °¨½Ã, ¸Ó½Å ºñÀü ¹× ¸ð´ÏÅ͸µ, ¿ À̹Ì¡ ¹× ÇÏÀÌÆÛ ½ºÆåÆ®·³ À̹Ì¡À¸·Î ºÐ·ùµË´Ï´Ù.
ºñµð¿À °¨½Ã
ºñµð¿À ¸ð´ÏÅ͸µÀº VaaS ¿¡ÄڽýºÅÛÀÇ ÇÙ½É ¿ëµµÀ¸·Î, ±âÁ¸ÀÇ CCTV¸¦ ÀÚÀ²¼º°ú ºÐ¼® ±â´ÉÀÌ Çâ»óµÈ Áö´ÉÇü ½Ç½Ã°£ ¼¾¼·Î º¯È¯ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ½º¸¶Æ®½ÃƼ, ±³Åë¸Á, ¼Ò¸Å¾÷, Áß¿äÇÑ ÀÎÇÁ¶ó¿¡¼ º¸¾È À§ÇùÀÇ °¨Áö, Çൿ µ¿Çâ ¸ð´ÏÅ͸µ, °ø°ø ¾ÈÀü °ü¸®¿¡ Ȱ¿ëµÇ°í ÀÖ½À´Ï´Ù.
AI ±¸µ¿ ¿¡Áö ºÐ¼® - °¨½Ã Ä«¸Þ¶ó¿¡´Â ¹°Ã¼ °¨Áö, µ¿ÀÛ ºÐ¼® ¹× À̺¥Æ® Æ®¸®°Å¸µÀ» À§ÇÑ Ä«¸Þ¶ó ³» ºÐ¼® ±â´ÉÀÌ ³»ÀåµÇ¾î ÀÖ¾î Áö¼ÓÀûÀΠŬ¶ó¿ìµå ½ºÆ®¸®¹ÖÀÇ Çʿ伺ÀÌ ÁÙ¾îµì´Ï´Ù.
¿¹ :
CES 2025ÀÇ Bosch Sensortec¿¡ ´ëÇÑ Fierce ElectronicsÀÇ º¸°í¼´Â °¡ÀåÀÚ¸®¿¡¼ AI Ãß·ÐÀ» ¼öÇàÇÏ´Â MEMS ¼¾¼°¡ Á¦½ºÃ³ °¨Áö ¹× ³«ÇÏ °æ°í¿Í °°Àº ½º¸¶Æ® ¸ð´ÏÅ͸µ ±â´ÉÀ» Ä«¸Þ¶ó ¸ðµâ¿¡¼ Á÷Á¢ °¡´ÉÇÏ°Ô ÇÑ´Ù°í ¼³¸íÇÕ´Ï´Ù.
ÇÏÀÌÆÛ ½ºÆåÆ®·³ À̹Ì¡
Ãʺб¤ ¿µ»ó ¼¾¼´Â ±¤¹üÀ§ÇÑ ½Ã°¢ Á¤º¸¸¦ ĸóÇÏ¿© VaaS ¼Ö·ç¼ÇÀ¸·Î ÈÇÐÀû Ư¼º, Àç·á Ư¼º, ½Ä¹°ÀÇ °Ç° »óÅ ¹× ȯ°æ ÀÌ»óÀ» °¨ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù. À̰ÍÀº ³ó¾÷, ¹æÀ§, ±¤¾÷, ȯ°æ ¸ð´ÏÅ͸µ¿¡ Áß¿äÇÕ´Ï´Ù.
¿ìÁÖ ±â¹Ý ±â´É - ¼ÒÇüÈµÈ ÇÏÀÌÆÛ½ºÆåÆ®·³ ¼¾¼ ÆÐŰÁö°¡ Áö±¸ ±Ô¸ðÀÇ ¸ð´ÏÅ͸µÀ» À§ÇÑ ¼ÒÇü À§¼º¿¡ ÀåÂøµÇ¾ú½À´Ï´Ù.
¿¹ :
ÀεµÀÇ ¿ìÁÖ ±â¼ú ±â¾÷ÀÎ PixxelÀº Áö±¸°üÃøÀ» À§ÇÑ ÇÏÀÌÆÛ½ºÆåÆ®·³ CubeSatÀ» Ãâ½ÃÇÏ´Â °è¾àÀ» 2024³â 9¿ù¿¡ NASA¿¡¼ ȹµæÇß½À´Ï´Ù. À̰ÍÀº Á¤ºÎ¿Í ¹Î°£ ºÎ¹®ÀÇ ÅõÀÚ¸¦ »ó¡ÇÏ´Â °ÍÀÔ´Ï´Ù.
ÃÖÁ¾ ¿ëµµ Àü¸Á
ÃÖÁ¾ ¿ëµµ¿¡ µû¶ó ½ÃÀåÀº »ó¾÷, »ê¾÷, Á¤ºÎ ¹× ±âŸ ÃÖÁ¾ ¿ëµµ·Î ºÐ·ùµË´Ï´Ù.
Á¤ºÎ
VaaS Á¤ºÎ ±â°üÀÇ ÃÖÁ¾ ¿ëµµ´Â °ø°ø ¾ÈÀü, ¹ý ÁýÇà, ±¹°æ °ü¸®, ÀÎÇÁ¶ó ¸ð´ÏÅ͸µ µî ´Ù¾çÇÕ´Ï´Ù. ¼¼°è Á¤ºÎ ±â°üÀº ¿¡Áö ÀΰøÁö´ÉÀ» °®Ãá Áö´ÉÇü ºñµð¿À ½Ã½ºÅÛÀ» µµÀÔÇÏ¿© À§Çù °¨Áö ÀÚµ¿È, »óȲ ÀÎ½Ä Çâ»ó ¹× ±ä±Þ ´ëÀÀ °³¼±À» À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼Ö·ç¼ÇÀº ¸ð´ÏÅ͸µ ³×Æ®¿öÅ©, ±³Åë Çãºê ¹× Áß¿äÇÑ °ø°ø Àڻ꿡 ÅëÇյǾî Áõ°¡ÇÏ´Â º¸¾È ¹®Á¦¿Í °ø°ø ¾ÈÀü Àǹ«¸¦ ÇØ°áÇÕ´Ï´Ù.
ÁÖ¿ä µ¿Çâ°ú µ¿Çâ :
¿¹¸¦ µé¾î ·±´øÀº 2025³â 3¿ù °¢ ÇàÁ¤±¸ÀÇ CCTV ³×Æ®¿öÅ©¸¦ AI°¡ ÀåÂøµÈ Ä«¸Þ¶ó·Î ¾÷±×·¹À̵åÇϱâ À§ÇØ 3,040¸¸ ÆÄ¿îµå¸¦ ÅõÀÚÇß½À´Ï´Ù. À̰ÍÀº ¹Ý»çȸÀû Çൿ, ¹«±â, ±ºÁßÀÇ ÀÌ»óÀ» È®ÀÎÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù. ÇØ¸Ó ½º¹Ì½º & Ç®·³ Áö¿ªÀÇ 2,500´ëÀÇ Ä«¸Þ¶ó¸¦ Æ÷ÇÔÇÑ ÀÌ ½Ã½ºÅÛÀº ¿¹¹æ °æÂû Ȱµ¿À» Áö¿øÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù.
»ó¾÷
»ó¾÷¿ë VaaSÀÇ ÃÖÁ¾ ¿ëµµ´Â ¿ÀÇǽº ºôµù, Ä·ÆÛ½º, ¼îÇθô, È£ÅÚ, ±³Åë Çãºê µî ´Ù¾çÇÕ´Ï´Ù. »ó¾÷½Ã¼³ÀÇ VaaS´Â º¸¾È, ½Ã¼³ °ü¸®, Á¡À¯ »óȲ ÃßÀû, ¿î¿µ È¿À²¼º Çâ»ó¿¡ Ȱ¿ëµÇ°í ÀÖÀ¸¸ç, ½Ç½Ã°£ ºñÁÖ¾ó ÀÎÅÚ¸®Àü½º¸¦ Ȱ¿ëÇÑ ½º¸¶Æ® ºôµù°ú ESG ÀÌ´Ï¼ÅÆ¼ºêÀÇ Áß¿äÇÑ ÃßÁø·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹¸¦ µé¾î, 2023³â CBRE º¸°í¼¿¡ µû¸£¸é »ç¹«½ÇÀÇ Æò±Õ °¡µ¿·üÀº 35%·Î ¶³¾îÁ³À¸¸ç »ó¾÷ ºÎµ¿»ê¾÷°è¿¡¼´Â VaaS ½Ã½ºÅÛÀÇ µµÀÔÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® ºôµù ºÐ¼® Ç÷§ÆûÀº ESG ¸ñÇ¥ ´Þ¼ºÀ» À§ÇØ °¡µ¿·ü°ú HVAC(³¹æ ȯ±â °ø±â Á¶È) ¹× Á¶¸íÀ» ¿¬°èÇÕ´Ï´Ù.
¿ëµµ Àü¸Á
¿ëµµ¸¦ ±â¹ÝÀ¸·Î ½ÃÀåÀº º¸¾È ¹× ¸ð´ÏÅ͸µ, ±³Åë °ü¸®, ¼Ò¸Å ºÐ¼®, ÀÇ·á, Á¦Á¶, ¸ÅÇÎ ¹× ±âŸ ¿ëµµÀ¸·Î ºÐ·ùµË´Ï´Ù.
º¸¾È ¹× ¸ð´ÏÅ͸µ
º¸¾È ¹× ¸ð´ÏÅ͸µ ¾ÖÇø®ÄÉÀ̼ÇÀº Àü ¼¼°èÀûÀ¸·Î VaaS ±â¼úÀÇ µµÀÔÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ÀÌ¿ë »ç·Ê·Î °è¼ÓµÇ°í ÀÖ½À´Ï´Ù. µµ½ÃÈÀÇ ÁøÀü, ÁöÁ¤ÇÐÀû ±äÀå, ´Ù¾çÇÑ Áö¿ª¿¡¼ÀÇ ¹üÁËÀ²ÀÇ »ó½Â¿¡ µû¶ó, ¿§Áö ºÐ¼®°ú ½Ç½Ã°£ °æº¸ ½Ã½ºÅÛÀ» ÅëÇÕÇÑ ½º¸¶Æ® °¨½Ã ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ CCTV ½Ã½ºÅÛ¿¡¼ AI¸¦ Ȱ¿ëÇÑ ¼¾¼ ±¸µ¿ ºñµð¿À ³×Æ®¿öÅ©·ÎÀÇ ÀüȯÀº °ø°ø ºÎ¹®°ú ¹Î°£ ºÎ¹® ¸ðµÎÀÇ º¸¾È ÀÎÇÁ¶ó¿¡ º¯È¸¦ °¡Á®¿Ô½À´Ï´Ù.
¿¹¸¦ µé¾î, 2025³â 3¿ù, ½Ì°¡Æ÷¸£ÀÇ Ã¢ÀÌ °øÇ×Àº ½Â°´ÀÇ ºÒ±ÔÄ¢ÇÑ ¿òÁ÷ÀÓÀ» ÀνÄÇÏ°í ´ç±¹¿¡ Áï°¢ÀûÀ¸·Î °æ°íÇÒ ¼ö ÀÖ´Â Â÷¼¼´ë AI ±â¹Ý ºñµð¿À °¨½Ã ½Ã½ºÅÛÀ» µµÀÔÇß½À´Ï´Ù. ÀÌ·¸°Ô Çϸé 󸮷®À» ¼Õ»ó½ÃŰÁö ¾Ê°í Ç×°ø ¾ÈÀü¼ºÀÌ Çâ»óµË´Ï´Ù.
±³Åë °ü¸®
VaaS ±â¼úÀº ±³Åë ½Ã½ºÅÛÀÇ ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿¹Ãø ºÐ¼® ¹× ÀÚÀ² Á¦¾î¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© ±³Åë °ü¸®¿¡ Çõ¸íÀ» °¡Á®¿É´Ï´Ù. ¼¼°è µµ½ÃÈ¿Í Â÷·® ¹Ðµµ°¡ Áõ°¡ÇÔ¿¡ µû¶ó ±âÁ¸ÀÇ ±³Åë °ü¸® ¼Ö·ç¼ÇÀº ´õ ÀÌ»ó »ç¿ëµÇÁö ¾Ê½À´Ï´Ù. ½º¸¶Æ® ½ÃƼ´Â ±³Åë üÁõ °ü¸®, µµ·Î ¾ÈÀü °³¼±, ´ëÁß ±³Åë ³×Æ®¿öÅ© ÃÖÀûȸ¦ À§ÇØ ºñµð¿À ±â¹Ý ¼¾¼¿Í AI ±¸µ¿ Ç÷§ÆûÀ» ÅëÇÕÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» ÅëÇØ ´ç±¹Àº »ç°í °¨Áö, Â÷·® È帧 ¸ð´ÏÅ͸µ, ±³Åë ±ÔÄ¢ ½ÃÇà, µ¿Àû °æ·Î ¾È³» µîÀ» ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÁÖ¿ä µ¿Çâ°ú µ¿Çâ :
¿¹¸¦ µé¾î, 2025³â 2¿ù, ¸¶µå¸®µå´Â À§¹ÝÀ» ÀÚµ¿À¸·Î °¨ÁöÇÏ¿© ¿µ»óÀ» ½Ã ´ç±¹¿¡ Àü¼ÛÇÏ´Â °í±Þ AI ±³Åë ¸ð´ÏÅ͸µ ½Ã½ºÅÛÀ» µµÀÔÇÏ¿© ó¸® ½Ã°£À» 70% ÁÙ¿´½À´Ï´Ù.
Áö¿ª Àü¸Á
Áö¿ªº°·Î º¼ ¶§ ½ÃÀåÀº ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, LAMEAÀÇ 4°³ Áö¿ª¿¡ °ÉÃÄ ºÐ¼®µË´Ï´Ù. ºÏ¹Ì ºÎ¹®Àº 2024³â VaaS(Video As A Sensor) ½ÃÀå¿¡¼ 34.2%ÀÇ ¼öÀÍ Á¡À¯À²À» ±â·ÏÇß½À´Ï´Ù. °í±Þ ¸ð´ÏÅ͸µ ±â¼úÀÇ º¸±Þ°ú º¸¾È ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ÀÌ Áö¿ª Àüü ½ÃÀå ¼ºÀåÀ» À̲ø°í ÀÖ½À´Ï´Ù. ¹æÀ§, ¿î¼Û, Áß¿ä ÀÎÇÁ¶ó µî ¸¹Àº ¾÷°è¿¡¼´Â ¸ð´ÏÅ͸µ ¹× »óȲ ÀνÄÀ» °ÈÇϱâ À§ÇØ ºñµð¿À ±â¹Ý ¼¾¼ ±â¼úÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù.
½ÃÀå °æÀï°ú Ư¼º
VaaS(Video As A Sensor) ½ÃÀåÀº Çõ½ÅÀûÀÎ ½Å»ý ±â¾÷°ú Áö¿ª ±â¾÷ÀÇ °ÇÀüÇÑ °æÀïÀÌ ÆîÃÄÁö°í ÀÖ½À´Ï´Ù. ÀÌ È¸»çµéÀº ±³Åë ¸ð´ÏÅ͸µ, ½º¸¶Æ® ½ÃƼ, »ê¾÷ °¨½Ã¿Í °°Àº Ư¼ö ¿ëµµ¿¡ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀº AI¸¦ Ȱ¿ëÇÑ ºñµð¿À ºÐ¼®, ¿§Áö ÄÄÇ»ÆÃ, ½Ç½Ã°£ µ¥ÀÌÅÍ Ã³¸® µîÀÇ ±â¼ú Çõ½ÅÀ» ÃËÁøÇϰí, ¹ÎøÇÏ°í Æ´»õ ºÐ¾ß¿¡ Æ¯ÈµÈ ±â¾÷ÀÌ Á¸Àç°¨À» È®¸³Çϱâ À§ÇÑ ¼ºÀå ±âȸ¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù.
The Global Video as a Sensor Market size is expected to reach $131.73 billion by 2032, rising at a market growth of 8.1% CAGR during the forecast period.
Key Highlights:
The concept of using video as a sensor has evolved significantly over the past century, starting from basic surveillance systems and transforming into intelligent sensing solutions. Early CCTV systems were primarily used for passive observation, with origins dating back to 1927 when mechanical surveillance was used to monitor sensitive areas.
By the mid-20th century, commercial solutions like the Vericon system enabled wired monitoring in civilian settings. However, the true shift occurred with the advent of networked video systems, particularly following Axis Communications' introduction of the first IP camera in 1996. This innovation marked a pivotal moment, as it introduced the idea of transmitting video over internet protocols, allowing for remote access, better resolution, and scalability.
Over time, these systems became more sophisticated, incorporating embedded Linux, enabling in-camera processing, and eventually facilitating edge analytics. The formation of the ONVIF consortium by Axis, Bosch, and Sony in 2008 further accelerated progress by promoting interoperability and standardized interfaces. Simultaneously, governments began exploring the integration of AI into video systems.
U.S. Department of Transportation and Department of Energy programs invested in real-time video analysis for applications like traffic monitoring, public safety, and infrastructure security. These efforts gave rise to city-wide networks such as Chicago's Operation Virtual Shield and New York's Domain Awareness System, which interconnected thousands of cameras and data feeds to provide predictive policing and emergency response capabilities.
Concurrently, OEMs such as NVIDIA launched the Jetson AI platform, transforming cameras into intelligent edge devices capable of object recognition and anomaly detection without requiring constant cloud access. As a result, video systems began to function as active sensors, detecting motion, identifying objects, analyzing behaviors, and feeding data into broader Internet of Things (IoT) ecosystems.
The major strategies followed by the market participants are Product Launches as the key developmental strategy to keep pace with the changing demands of end users. For instance, In June, 2025, Honeywell International Inc. unveiled a new line of CCTV cameras manufactured in India, incorporating AI-driven analytics for enhanced surveillance. These cameras are designed to deliver high-resolution video feeds, enabling real-time monitoring and intelligent data analysis. This initiative supports the growing demand for advanced video surveillance solutions in India. Moreover, In May, 2025, Axis Communications AB unveiled a new D6210 Air Quality Sensor that integrates with existing IP-based surveillance infrastructure using portcast technology. It overlays air quality data onto live video streams, enabling real-time detection of environmental issues like vaping or smoking. This fusion of environmental sensing with video analytics exemplifies the VaaS market's evolution.
KBV Cardinal Matrix - Video as a Sensor Market Competition Analysis
Based on the Analysis presented in the KBV Cardinal matrix; Hangzhou Hikvision Digital Technology Co., Ltd. is the forerunner in the Video As A Sensor Market. In May, 2025, Hangzhou Hikvision Digital Technology Co., Ltd. unveiled a new generation of cable-free video security products, featuring wireless cameras with built-in batteries and solar-powered options. These solutions offer flexible, easy-to-install surveillance for remote or hard-to-wire locations, enhancing security with minimal infrastructure requirements. Companies such as Sony Semiconductor Solutions Corporation, Honeywell International Inc., and Johnson Controls International PLC are some of the key innovators in Video As A Sensor Market.
Market Consolidation Analysis:
The rapid evolution of artificial intelligence, computer vision, and IoT technologies has fundamentally redefined the landscape of video surveillance and sensory intelligence, giving rise to the global Video as a Sensor (VaaS) Market. What was once passive visual monitoring has transformed into intelligent data extraction-powering real-time decisions across domains such as smart cities, manufacturing, retail analytics, and autonomous systems. However, this transformation has not unfolded in an open or evenly distributed environment. Instead, it is shaped by a consolidated ecosystem of technology incumbents who control critical layers of the hardware-software stack, data pipelines, and cloud infrastructure.
This chapter presents a detailed analysis of market consolidation dynamics within the Video as a Sensor sector. It systematically evaluates structural and strategic factors that influence competitive intensity, innovation barriers, and vendor concentration. Drawing from real-world news, OEM publications, public technology frameworks, and regulatory data, the analysis assigns measurable ratings to key consolidation indicators-ranging from innovation concentration and supply chain dependency to geopolitical influences and technological standardization.
Market Consolidation Analysis by Parameter
1. Level of Innovation - ¡Ú¡Ú¡Ú¡Ú¡Ú (5/5)
Innovation in the Video-as-a-Sensor market is advancing rapidly, especially with AI-based object recognition, behavioral analytics, and real-time alert systems. Leaders like Bosch, Hikvision, and NVIDIA (Jetson platform) dominate with proprietary hardware-software stacks. These firms continuously raise the innovation threshold through high R&D intensity, making it difficult for startups to keep pace.
Justification:
The innovation is largely centralized among major vendors who have vertically integrated product lines and control of data pipelines, significantly limiting the room for horizontal entrants.
Product Life Cycle Analysis:
Based on current adoption patterns, technological advancements, and deployment scale across sectors, the Video as a Sensor Market is positioned between the Growth and Maturity stages of the Product Life Cycle. The technology has moved beyond early proof-of-concept deployments and is now widely implemented in smart city infrastructure, traffic management, industrial automation, and retail analytics, particularly in developed and rapidly urbanizing regions. Major players like Bosch, Axis Communications, and Hikvision have mainstreamed AI-driven video sensors with integrated analytics, indicating maturity in sectors such as public surveillance and commercial facilities.
However, continued innovation in edge computing, 5G integration, and AI modeling-especially in emerging applications like autonomous mobility, healthcare diagnostics, and precision manufacturing-reflects ongoing growth. The market is not yet saturated and is still expanding geographically and functionally, especially across LAMEA and parts of Asia Pacific, suggesting that it is at a late growth to early maturity inflection point.
The evolution of video technology has progressed beyond traditional surveillance and monitoring functions. Today, with the integration of artificial intelligence (AI), machine learning (ML), and edge computing, video systems are transforming into intelligent sensors capable of interpreting and acting on visual data in real time. This paradigm shift is giving rise to the emergent field known as the Video-as-a-Sensor (VaaS) Market.
This chapter presents a comprehensive Product Life Cycle (PLC) analysis of the Video-as-a-Sensor Market, illustrating the market's progression through its key phases: Introduction, Growth, Maturity, and Decline. By examining the evolution of technologies, use cases, and competitive strategies, this analysis enables a deeper understanding of the market's development trajectory and strategic inflection points.
1. Introduction Stage
In this nascent phase, video-as-a-sensor technologies are primarily utilized in specialized sectors such as defense and critical infrastructure. Deployments are experimental, with high R&D investments and limited market penetration.
For instance:
2. Growth Stage
This stage is marked by rapid adoption across various sectors, driven by the need for enhanced security and the integration of AI technologies. Governments and enterprises begin large-scale implementations.
For instance:
3. Maturity Stage
Technology becomes mainstream, with widespread adoption in commercial, industrial, and residential sectors. The focus shifts to feature enhancements, integration capabilities, and cost optimization.
For instance:
4. Decline Stage
Traditional analog systems face obsolescence due to advancements in digital and AI-driven technologies. The market sees a shift towards IP-based and cloud-integrated solutions.
For instance:
Market Growth Factors
Governments across the globe have been pivotal in driving the adoption of video as a sensor technologies through large-scale investments in surveillance infrastructure aimed at enhancing public safety, crime prevention, traffic control, and disaster management. The transition from analog surveillance to IP and AI-powered systems has been significantly accelerated by public-sector initiatives. Video sensors are now seen not merely as security tools but as real-time data generators embedded into the fabric of smart cities and national safety systems. As governments continue to fund real-time surveillance, incident detection, and emergency response systems, they remain a crucial force accelerating the scale and sophistication of the global video-as-a-sensor market.
Additionally, One of the most compelling growth drivers in the Global Video as a Sensor market is the extensive adoption of video-powered systems in smart city traffic and infrastructure optimization-where cameras equipped with edge AI are transforming urban mobility, congestion control, and civic services. Cities across India, Australia, the U.S., and Europe are launching major pilots and full-scale programs, highlighting how video sensors have moved from passive recording devices to active real-time traffic managers. As governments worldwide embrace such solutions for public safety, climate goals and commuting efficiency, they underpin sustained and expanding investment into the Global Video as a Sensor market.
Market Restraining Factors
A primary restraint facing the Video-as-a-Sensor market is the escalating scrutiny over surveillance and video analytics in public and private spaces. As edge and AI-powered cameras proliferate, governments and regulatory bodies are imposing stricter rules to protect privacy rights, often slowing deployment and increasing compliance costs. In the U.S., for example, the Surveillance Camera Privacy Code of Practice published by the Security Industry Association emphasizes managing data access, applying encryption, and limiting retention in accordance with local laws and public expectations. This adds complexity, time, and cost that, in many cases, translate directly into increased project budgets and slower procurement cycles.
Value Chain Analysis
The value chain of the Video as a Sensor Market begins with R&D and Technology Development, focusing on advancing imaging, sensor, and video processing technologies. This is followed by Component Manufacturing, where essential hardware such as sensors and cameras are produced. The next stage is System Integration, combining hardware and software to create complete solutions. Software & Analytics Development enhances these systems with intelligent features like video analytics and data interpretation. Products are then distributed through Distribution & Sales channels, followed by Deployment & Installation at customer sites. Operations & Services ensure system functionality and maintenance, while End-Use Applications drive practical implementation in sectors like security, transportation, and smart cities, providing feedback for continuous improvement.
Market Share Analysis
Offering Outlook
Based on Offering, the market is segmented into Hardware, Software, and Services.
Hardware - Edge AI Smart Cameras & Specialized Sensors
Introduction:
Hardware remains the backbone of the Video-as-a-Sensor (VaaS) ecosystem, comprising advanced smart cameras, sensors with embedded AI, and purpose-built inference chips. These devices perform initial data capture and ultra-low-latency processing at the edge, enabling immediate detection of events while reducing reliance on cloud connectivity and ensuring better privacy.
Key Trends and Developments:
Software - Predictive & Contextual Video Analytics
Introduction:
Software transforms raw visual data into actionable intelligence by using analytics tools like object detection, behavioral modeling, and anomaly prediction. This layer equips VaaS systems to detect and anticipate incidents rather than simply passively record.
Key Trends and Developments:
Product Outlook
Based on Product, the market is segmented into Video Surveillance, Machine Vision & Monitoring, Thermal Imaging, and Hyperspectral Imaging.
Video Surveillance
Video Surveillance remains the core application in the VaaS ecosystem, transforming traditional CCTV into intelligent, real-time sensors with increasing autonomy and analytics capabilities. These systems are used across smart cities, transportation networks, retail, and critical infrastructure to detect security threats, monitor behavior trends, and manage public safety.
AI-Driven Edge Analytics - Surveillance cameras now incorporate on-camera analytics for object detection, behavior analysis, and event triggering, reducing the need for constant cloud streaming.
For instance:
A Fierce Electronics report on Bosch Sensortec at CES 2025 described MEMS sensors performing AI inference at the edge, enabling smart surveillance features such as gesture detection and fall alerts directly on camera modules.
Hyperspectral Imaging
Hyperspectral imaging sensors capture a broad spectrum of visual information, allowing VaaS solutions to detect chemical signatures, material properties, plant health, and environmental anomalies-critical for agriculture, defense, mining, and environmental monitoring.
Space-Based Capabilities - Miniaturized hyperspectral sensor packages are now being deployed on small satellites for global surveillance.
For instance:
Pixxel, an Indian space-tech firm, secured a NASA contract in September 2024 to launch an earth-observing hyperspectral CubeSat-illustrating government and private sector investment .
End-Use Outlook
Based on End-Use, the market is segmented into Commercial, Industrial, Government, and Other End-Use.
Government
Governmental end-use of VaaS encompasses public safety, law enforcement, border control, and infrastructure monitoring. Government agencies worldwide are deploying intelligent video systems powered by edge-AI to automate threat detection, enhance situational awareness, and improve emergency response. These solutions are being integrated into surveillance networks, transportation hubs, and critical public assets to address rising security challenges and public safety mandates.
Key Trends and Developments:
For instance: In March 2025, London invested £30.4 million to upgrade its CCTV network with AI-equipped cameras across boroughs-aimed at identifying antisocial behavior, weapons, and crowd anomalies. The system, including Hammersmith & Fulham's 2,500-camera installation, is designed to support proactive policing.
Commercial
Commercial end-use spans office buildings, campuses, malls, hotels, and transportation hubs. VaaS in commercial settings is utilized for security, facility management, occupancy tracking, and operational efficiency-becoming a critical enabler for smart building and ESG (environmental, social, governance) initiatives with real-time visual intelligence.
For instance: A 2023 CBRE report found average office occupancy dropped to 35%, prompting commercial real estate to adopt VaaS systems. Smart building analytics platforms now link occupancy with HVAC and lighting for ESG goals.
Application Outlook
Based on Application, the market is segmented into Security & Surveillance, Traffic Management, Retail Analytics, Healthcare, Manufacturing, Mapping, and Other Application.
Security & Surveillance
Security and surveillance applications remain the primary use case driving adoption of Video as a Sensor (VaaS) technologies across the globe. With growing urbanization, geopolitical tensions, and crime rates in various regions, there's a heightened demand for smart surveillance solutions integrated with edge analytics and real-time alert systems. The shift from traditional CCTV setups to AI-enabled, sensor-driven video networks is transforming both public and private sector security infrastructure.
For instance, In March 2025, Singapore's Changi Airport deployed a next-gen AI-based video monitoring system capable of recognizing erratic passenger movements and alerting authorities instantly, enhancing aviation safety without compromising throughput.
Traffic Management
Video as a Sensor (VaaS) technology is revolutionizing traffic management by enabling real-time monitoring, predictive analysis, and autonomous control of traffic systems. With global urbanization and vehicle density on the rise, traditional traffic management solutions are no longer adequate. Smart cities are now integrating video-based sensors and AI-driven platforms to manage congestion, enhance road safety, and optimize public transportation networks. These systems allow authorities to detect incidents, monitor vehicle flow, enforce traffic rules, and deliver dynamic route guidance.
Key Trends and Developments:
For instance: In February 2025, Madrid deployed an advanced AI traffic surveillance system that flags violations automatically and transmits footage to city authorities, reducing processing time by 70%.
Regional Outlook
Region-wise, the market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The North America segment recorded the 34.2% revenue share in the Video as a Sensor market in 2024. The widespread adoption of advanced surveillance technologies and increasing investment in security infrastructure have fueled the growth of this market across the region. Several industries, including defense, transportation, and critical infrastructure, have integrated video-based sensor technologies to enhance monitoring and situational awareness.
Market Competition and Attributes
The Video as a Sensor Market sees healthy competition driven by innovative startups and regional companies. These players focus on specialized applications like traffic monitoring, smart cities, and industrial surveillance. The market encourages technological advancements in AI-powered video analytics, edge computing, and real-time data processing, creating growth opportunities for agile, niche-focused companies to establish their presence.
Recent Strategies Deployed in the Market
List of Key Companies Profiled
Global Video as a Sensor Market Report Segmentation
By Offering
By Product
By End-Use
By Application
By Geography