시장보고서
상품코드
1839320

세계의 AI 워크로드 관리 시장 규모, 점유율, 업계 분석 리포트 : 배포별, 기업 규모별, 컴포넌트별, 업계별, 지역별 전망 및 예측(2025-2032년)

Global AI Workload Management Market Size, Share & Industry Analysis Report By Deployment, By Enterprise Size, By Component, By Vertical, By Regional Outlook and Forecast, 2025 - 2032

발행일: | 리서치사: KBV Research | 페이지 정보: 영문 581 Pages | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 AI 워크로드 관리 시장 규모는 예측 기간 중 33.3%의 CAGR로 시장 성장하며, 2032년까지 3,204억 8,000만 달러에 달할 것으로 예상되고 있습니다.

주요 하이라이트:

  • 2024년 세계의 AI 워크로드 관리 시장은 북미 시장이 2024년 35.35%의 매출 점유율을 차지했습니다.
  • 미국 시장은 2032년까지 시장 규모가 794억 달러에 달할 것으로 예상되며, 북미 시장에서의 리더십을 유지할 것으로 예측됩니다.
  • 그 중 클라우드 부문은 2024년 62.54%의 매출 점유율을 차지하며 세계 시장을 독점했습니다.
  • 기업 규모에 있어서는 대기업 부문이 세계 시장을 주도할 것으로 예상되며, 2032년까지 68.28%의 매출 점유율을 차지할 것으로 예측됩니다.
  • 솔루션 시장은 2024년 주요 구성 요소로 부상하여 67.86%의 매출 점유율을 획득하며, 예측 기간 중에도 우위성을 유지할 것으로 예측됩니다.
  • 수직적 IT 및 통신 시장은 2032년 696억 2,000만 달러 규모로 성장할 것으로 예상되며, 예측 기간 중 지배적인 위치를 유지할 것으로 예측됩니다.

AI 워크로드 관리 시장은 효율적인 컴퓨팅 인프라에 대한 수요 증가와 기업의 데이터량 급증으로 인해 빠르게 성장하고 있습니다. 워크로드 관리 분야는 머신러닝과 AI 기술의 등장으로 큰 변화를 겪었습니다. 이러한 발전으로 예측 분석, 실시간 의사결정, 강화학습을 통한 멀티 클라우드, 엣지, 하이브리드 환경 전반의 최적화가 가능해졌습니다. 유럽, 일본, 한국, 미국 등의 조직과 정부는 디지털 전환 전략에 AI 워크로드 관리 도입을 적극 지원하고 있으며, 효율성, 확장성, 컴플라이언스 향상을 위해 AI 워크로드 관리의 역할을 중요하게 여기고 있습니다. 또한 클라우드 서비스 프로바이더도 성장을 지원하고 있으며, 금융, 의료, 제조 등 다양한 산업에서 AI 기반 솔루션 도입이 진행되고 있습니다.

AI 워크로드 관리 시장은 엣지 컴퓨팅과 지속가능성을 중시하는 워크로드 최적화의 발전으로 성장이 예상됩니다. 기업은 지연시간 최소화, 비용 절감, 분산형 인프라, 데이터 주권 컴플라이언스 등의 과제에 대응하기 위해 AI 시스템을 통합하고 워크로드 관리를 진행하고 있습니다. 또한 에너지 효율도 중요시되고 있으며, AI는 전 세계의 지속가능성 목표에 따라 보다 친환경적인 데이터센터를 실현할 수 있습니다. 시장은 인텔, HPE, Dell, IBM 등 대기업이 하드웨어 가속과 지능형 오케스트레이션 소프트웨어를 결합하여 치열한 경쟁을 벌이고 있습니다. 또한 스타트업 기업이나 틈새 시장 기업도 산업 특화형 모델을 제공합니다.

KBV Cardinal matrix-AI 워크로드 관리 시장 경쟁 분석

KBV Cardinal matrix에 나타난 분석에 따르면 Microsoft Corporation, Google LLC, NVIDIA Corporation 및 Amazon Web Services, Inc.가 AI 워크로드 관리 시장의 선두주자입니다. 2025년 8월, 구글 LLC는 IT 기업 NTT 데이터와 제휴하여 기업의 AI 도입과 클라우드 현대화를 가속화했습니다. 산업별 에이전트 AI, Google Distributed Cloud 및 NTT 데이터의 전문성을 활용하여 확장 가능한 AI 솔루션, 클라우드 네이티브 현대화, 안전한 도입, 산업 전반의 혁신 가속화를 통해 기업의 디지털 전환과 AI 기반 운영을 지원합니다. AI를 활용한 운영을 지원합니다. Oracle Corporation, IBM Corporation, Dell Technologies, Inc. 등의 기업은 AI 워크로드 관리 시장의 주요 혁신 기업입니다.

COVID-19의 영향 분석

AI 워크로드 관리 시장은 COVID-19 팬데믹 기간 중 기업이 디지털 전환과 원격 근무 모델을 빠르게 도입하면서 크게 성장했습니다. 온라인 서비스, E-Commerce, 디지털 통신 증가는 컴퓨팅 수요 증가로 이어졌습니다. 이를 통해 리소스 할당 최적화, 실시간 확장성, 클라우드, 엣지, On-Premise 인프라 전반에 걸친 워크로드 오케스트레이션 자동화를 위해 AI를 활용한 솔루션이 필요하다는 것을 알 수 있었습니다. 정부와 기술 리더들은 연구와 디지털 프로젝트에 자금을 투입하여 AI 활용을 가속화했으나, 수작업으로 워크로드를 관리하는 구식 방식은 작동하지 않았습니다. AI 워크로드 관리는 헬스케어, 금융, 물류 등의 분야에 가장 큰 도움이 되었습니다. 예측 분석과 자동화된 의사결정을 통해 전례 없는 문제에 직면했을 때에도 업무를 원활하고 효율적이며 탄력적으로 운영할 수 있도록 했습니다. 이처럼 COVID-19 팬데믹은 시장에 긍정적인 영향을 미쳤습니다.

시장 점유율 분석

전개 전망

배포에 따라 시장은 클라우드와 On-Premise로 구분됩니다. On-Premise 부문은 2024년 시장 매출 점유율의 37%를 차지할 것으로 예측됩니다. AI 워크로드 관리 시장에서 이 부문은 특히 데이터 보안, 컴플라이언스, 지연 시간 요건이 엄격한 조직에서 여전히 중요한 위치를 차지하고 있습니다. 많은 기업이 IT 인프라를 완벽하게 제어하고 기밀 데이터를 안전한 On-Premise 환경에서 유지하기 위해 On-Premise 솔루션을 선호하고 있습니다.

부품 전망

구성 요소에 따라 시장은 솔루션과 서비스로 분류됩니다. 서비스 부문은 2024년 시장 매출 점유율의 32%를 차지했습니다. AI 워크로드 관리 시장의 이 부문은 워크로드 관리 시스템의 도입, 통합 및 지속적인 관리를 통해 조직을 지원하는 데 중요한 역할을 했습니다. 제공되는 서비스에는 컨설팅, 시스템 통합, 구현, 기술 지원, 기업이 AI 워크로드 관리 솔루션을 효과적으로 도입하고 최적화할 수 있도록 설계된 매니지드 서비스 등이 포함됩니다.

지역 전망

지역별로 AI 워크로드 관리 시장은 북미, 유럽, 아시아태평양, LAMEA, 기타 지역으로 분석됩니다. 북미 부문은 2024년 시장에서 35%의 매출 점유율을 기록할 것으로 예측됩니다. AI 워크로드 관리 시장은 북미와 유럽에서 크게 성장하고 있습니다. 이는 잘 구축된 기술 인프라, 정부의 지원 구상, 첨단 클라우드 및 AI의 조기 구축에 기인합니다. 북미에서는 미국을 비롯한 지역 국가들이 AI 기반 IT 현대화에 많은 투자를 하고 있으며, HPE, 인텔, IBM과 같은 주요 기술 프로바이더들이 존재합니다. 또한 Horizon 2020과 같은 구상을 통한 미국 국가 AI R&D 전략과 같은 연방 프로그램은 수요를 촉진하는 엄격한 규제입니다. 또한 유럽에서도 AI 워크로드 관리 시장이 확대되고 있습니다. 이 지역에서는 지속가능하고 에너지 효율적인 워크로드 관리에 중점을 두고 있으며, 이는 성장을 지원하고 있습니다. 또한 EU의 그린컴퓨팅 목표도 확대의 중요한 요인으로 작용하고 있습니다.

아시아태평양 및 LAMEA 지역에서는 AI 워크로드 관리 시장이 크게 성장하고 있습니다. 이러한 확장은 디지털 전환의 급속한 발전과 클라우드 배포 증가에 힘입은 바 큽니다. 아시아태평양에서는 일본, 중국, 인도, 한국 등의 국가에서 스마트 시티 프로젝트, IoT 생태계, 정부 지원 AI 전략의 확대에 힘입어 AI 워크로드 관리에 대한 투자가 증가하고 있습니다. 또한 LAMEA 지역도 AI 워크로드 관리 시장에서 큰 점유율을 차지했습니다.이는 클라우드 보급률 향상, 데이터센터 인프라 확대, 그리고 정부의 디지털화 지원 노력에 따른 것입니다. 또한 비용 최적화, 확장성, 컴플라이언스 솔루션에 대한 수요도 증가하고 있으며, 이는 시장 확대로 이어지고 있습니다.

시장 경쟁과 특성

AI 워크로드 관리 시장은 치열한 경쟁을 벌이고 있으며, 새로운 기술이 속속 등장하고 다양한 제품이 제공되고 있습니다. 주요 업체들은 AI 워크로드의 복잡성을 해결하기 위해 끊임없이 새로운 아이디어를 내놓고 있습니다. 그들은 확장성, 실시간 처리 및 비용 절감에 중점을 두고 있습니다. 전략적 파트너십, 인수, 그리고 새로운 기술의 활용은 모두 시장의 변화에 영향을 미칩니다. 이러한 경쟁 환경은 기업이 성능과 효율성을 지속적으로 향상시키도록 유도하고 있으며, 이는 강력한 AI 워크로드 솔루션을 찾는 기업에게 유리한 상황입니다.

목차

제1장 시장 범위와 조사 방법

  • 시장의 정의
  • 목적
  • 시장 범위
  • 세분화
  • 조사 방법

제2장 시장 개관

  • 주요 하이라이트

제3장 시장 개요

  • 서론
    • 개요
      • 시장 구성과 시나리오
  • 시장에 영향을 미치는 주요 요인
    • 시장 성장 촉진요인
    • 시장 성장 억제요인
    • 시장 기회
    • 시장이 해결해야 할 과제

제4장 시장 동향 - AI 워크로드 관리 시장

제5장 경쟁의 현황 - AI 워크로드 관리 시장

제6장 제품수명주기 - AI 워크로드 관리 시장

제7장 시장 통합 - AI 워크로드 관리 시장

제8장 경쟁 분석 - 세계

  • KBV Cardinal Matrix
  • 최근 업계 전체의 전략적 개발
    • 파트너십, 협업 및 계약
    • 제품 발매와 제품 확대
    • 인수와 합병
  • 시장 점유율 분석 2024
  • 주요 성공 전략
    • 주요 전략
    • 주요 전략적 움직임
  • Porter's Five Forces 분석

제9장 AI 워크로드 관리 시장의 밸류체인 분석

  • 조사와 코어 인풋
  • 하드웨어와 클라우드 인프라
  • AI 프레임워크와 플랫폼
  • 워크로드 오케스트레이션과 관리
  • 배포와 추론 조작
  • 통합, 서비스, 최종사용자 솔루션

제10장 주요 고객 기준 - AI 워크로드 관리 시장

제11장 세계의 AI 워크로드 관리 시장 : 배포별

  • 세계의 클라우드 시장 : 지역별
  • 세계의 온프레미스 시장 : 지역별

제12장 세계의 AI 워크로드 관리 시장 : 기업 규모별

  • 세계의 대기업 시장 : 지역별
  • 세계의 중소기업 시장 : 지역별

제13장 세계의 AI 워크로드 관리 시장 : 컴포넌트별

  • 세계의 솔루션 시장 : 지역별
  • 세계의 서비스 시장 : 지역별

제14장 세계의 AI 워크로드 관리 시장 : 업계별

  • 세계의 IT·통신 시장 : 지역별
  • 세계의 BFSI 시장 : 지역별
  • 세계의 헬스케어 & 생명과학 시장 : 지역별
  • 세계의 소매·E-Commerce 시장 : 지역별
  • 세계의 제조 시장 : 지역별
  • 세계의 정부 및 공공 부문 시장 : 지역별
  • 세계의 기타 수직 시장 : 지역별

제15장 세계의 AI 워크로드 관리 시장 : 지역별

  • 북미
      • 시장 성장 촉진요인
      • 시장 성장 억제요인
      • 시장 기회
      • 시장이 해결해야 할 과제
    • 북미의 AI 워크로드 관리 시장 : 국가별
      • 미국
      • 캐나다
      • 멕시코
      • 기타 북미 지역
  • 유럽
      • 시장 성장 촉진요인
      • 시장 성장 억제요인
      • 시장 기회
      • 시장이 해결해야 할 과제
    • 유럽의 AI 워크로드 관리 시장 : 국가별
      • 독일
      • 영국
      • 프랑스
      • 러시아
      • 스페인
      • 이탈리아
      • 기타 유럽 지역
  • 아시아태평양
      • 시장 성장 촉진요인
      • 시장 성장 억제요인
      • 시장 기회
      • 시장이 해결해야 할 과제
    • 아시아태평양의 AI 워크로드 관리 시장 : 국가별
      • 중국
      • 일본
      • 인도
      • 한국
      • 싱가포르
      • 말레이시아
      • 기타 아시아태평양
  • 라틴아메리카·중동 및 아프리카
      • 시장 성장 촉진요인
      • 시장 성장 억제요인
      • 시장 기회
      • 시장이 해결해야 할 과제
    • 라틴아메리카·중동 및 아프리카의 AI 워크로드 관리 시장 : 국가별
      • 브라질
      • 아르헨티나
      • 아랍에미리트
      • 사우디아라비아
      • 남아프리카공화국
      • 나이지리아
      • 기타 라틴아메리카·중동 및 아프리카 지역

제16장 기업 개요

  • Amazon Web Services, Inc(Amazon.com, Inc.)
  • Google LLC
  • Microsoft Corporation
  • IBM Corporation
  • NVIDIA Corporation
  • Snowflake, Inc
  • Hewlett Packard Enterprise Company
  • Dell Technologies, Inc
  • Intel Corporation
  • Oracle Corporation

제17장 AI 워크로드 관리 시장의 성공 필수 조건

KSA 25.10.24

The Global AI Workload Management Market size is expected to reach $320.48 billion by 2032, rising at a market growth of 33.3% CAGR during the forecast period.

Key Highlights:

  • The North America market dominated Global AI Workload Management Market in 2024, accounting for a 35.35% revenue share in 2024.
  • The U.S. market is projected to maintain its leadership in North America, reaching a market size of USD 79.40 billion by 2032.
  • Among the Deployment, the Cloud segment dominated the global market, contributing a revenue share of 62.54% in 2024.
  • In terms of Enterprise Size, Large Enterprise segment are expected to lead the global market, with a projected revenue share of 68.28% by 2032.
  • The Solution market emerged as the leading Component in 2024, capturing a 67.86% revenue share, and is projected to retain its dominance during the forecast period.
  • The IT & Telecommunication Market in Vertical is poised to grow at the market in 2032 with a market size of USD 69.62 billion and is projected to maintain its dominant position throughout the forecast period.

The AI workload management market has rapidly grown because of the increasing demand for efficient computing infrastructure and exponential data growth among enterprises. The field of workload management has witnessed significant transformation with the advent of machine learning, and AI technologies. These advancements allow predictive analytics, real-time decision making, and reinforcement learning for optimization across multi-cloud, edge, and hybrid environment. Organizations and governments in Europe, Japan, South Korea, and the US are largely supporting the deployment of AI workload management into digital transformation strategies, focusing its role in enhancing efficiency, scalability, and compliance. Further, cloud service providers have also supported growth, while industries like finance, healthcare, and manufacturing are adopting AI-based solutions.

The AI workflow management market is estimated to grow due to edge computing, sustainability-driven workload optimization. Companies are integrating AI systems to manage workloads across minimize latency, reduce costs, distributed infrastructure, and compliance with data sovereignty needs. Also, energy efficiency has become crucial, with artificial intelligence allowing greener data centres aligned with sustainability goals worldwide. The market witnesses intense competition with major players such as Intel, HPE, Dell and IBM combining hardware acceleration with intelligent orchestration software. Moreover, startups and niche players are offering industry-specific models.

The major strategies followed by the market participants are Partnerships as the key developmental strategy to keep pace with the changing demands of end users. For instance, In March, 2025, Oracle Corporation teamed up with NVIDIA to accelerate enterprise agentic AI deployment, integrating NVIDIA AI Enterprise with Oracle Cloud Infrastructure. The collaboration enables no-code AI deployment, AI vector search, and real-time inference, providing scalable, secure, and optimized solutions for enterprises, supporting AI applications from edge to cloud, enhancing performance and reducing operational complexity. Moreover, In February, 2025, Dell Technologies, Inc. announced the partnership with NVIDIA to simplify large-scale AI deployment. Integrating Dell AI Factory infrastructure with NVIDIA Run:ai orchestration optimizes GPU use, streamlines resource management, and supports the entire AI lifecycle. This unified solution enables scalable, efficient AI development and deployment across on-premises, cloud, and hybrid environments.

KBV Cardinal Matrix - AI Workload Management Market Competition Analysis

Based on the Analysis presented in the KBV Cardinal matrix; Microsoft Corporation, Google LLC, NVIDIA Corporation, and Amazon Web Services, Inc. are the forerunners in the AI Workload Management Market. In August, 2025, Google LLC teamed up with NTT DATA, an IT company to accelerate enterprise AI adoption and cloud modernization. Leveraging industry-specific agentic AI, Google Distributed Cloud, and NTT DATA's expertise, the collaboration enables scalable AI solutions, cloud-native modernization, secure deployments, and faster innovation across industries, supporting enterprises in digital transformation and AI-powered operations. Companies such as Oracle Corporation, IBM Corporation, Dell Technologies, Inc. are some of the key innovators in AI Workload Management Market.

COVID 19 Impact Analysis

The AI Workload Management Market grew a lot during the COVID-19 pandemic because businesses quickly adopted digital transformation and remote work models. The rise in online services, e-commerce, and digital communications led to a rise in computing needs. This made it clear that AI-powered solutions are needed to optimize resource allocation, allow for real-time scalability, and automate workload orchestration across cloud, edge, and on-premises infrastructures. Governments and tech leaders sped up the use of AI by putting money into research and digital projects, while old-fashioned ways of managing workloads by hand didn't work. AI workload management helped sectors like healthcare, finance, and logistics the most. It used predictive analytics and automated decision-making to keep operations running smoothly, efficiently, and resiliently in the face of unprecedented challenges. Thus, the COVID -19 pandemic had a Positive impact on the market.

Market Share Analysis

Deployment Outlook

Based on Deployment, the market is segmented into Cloud, and On-Premise. The On-Premise segment witnessed 37% revenue share in the market in 2024. This segment of the AI Workload Management Market remained significant, particularly among organizations with stringent data security, compliance, and latency requirements. Many enterprises preferred on-premise solutions to maintain full control over their IT infrastructure, ensuring that sensitive data remained within their secure premises.

Component Outlook

Based on Component, the market is segmented into Solution, and Services. The Services segment witnessed 32% revenue share in the market in 2024. This segment of the AI Workload Management Market also played an important role in supporting organizations throughout the deployment, integration, and ongoing management of workload management systems. Service offerings typically included consulting, system integration, implementation, technical support, and managed services designed to help businesses effectively deploy and optimize their AI workload management solutions.

Regional Outlook

Region-wise, the AI Workload Management Market is analyzed across North America, Europe, Asia Pacific, and LAMEA. The North America segment recorded 35% revenue share in the market in 2024. The AI workload management market is witnessing significant growth in North America and Europe. This is because of well-established technological infrastructure, supportive initiatives by government, and early adoption of advanced cloud and AI. In North America, regional nations such as the US witness significant investments in AI=based IT modernization and the presence of major technology providers like HPE, Intel and IBM. Furthermore, federal programs such as the US National AI R&D Strategic by initiatives like Horizon 2020 are stringent regulations that also drive the demand. In addition, the AI workload management market is also expanding in Europe region. The region's focus on sustainable and energy-efficient workload management is supporting growth. Also, the EU's green computing goals are a key factor leading to expansion.

In Asia Pacific and LAMEA region, the AI workload management market is witnessing substantial expansion. This expansion is backed by surged digital transformation and rising cloud adoption. In the Asia Pacific, nations such as Japan, China, India, and South Korea are witnessing rising investment in AI workload management, supported by expanding smart city projects, IoT ecosystems, and government supported AI strategies. Moreover, LAMEA region is also expected to have noticeable share in AI workload management market. This is due to increasing cloud penetration, growing data centre infrastructure, and government initiatives supporting digitalization. The region is also witnessing increasing demand for cost optimization, scalability, and compliance solutions, thereby leading to market expansion.

Market Competition and Attributes

There is a lot of competition in the AI workload management market, with new technologies coming out quickly and a wide range of products available. Key players are always coming up with new ideas to deal with the growing complexity of AI workloads. They focus on scalability, real-time processing, and lowering costs. Strategic partnerships, acquisitions, and the use of new technologies all have an effect on how the market changes. This competitive environment pushes companies to constantly improve their performance and efficiency, which is good for businesses looking for strong AI workload solutions.

Recent Strategies Deployed in the Market

  • Sep-2025: Snowflake Inc. teamed up with Siemens, an automation company to integrate shop floor OT data with IT systems via Snowflake's AI Data Cloud. This collaboration enables manufacturers to leverage AI and generative AI for improved operational efficiency, predictive maintenance, and production optimization, bridging the IT/OT divide and driving scalable, data-driven insights across factories.
  • Jul-2025: Amazon Web Services, Inc. unveiled its most powerful EC2 instances, P6-B200 and P6e-GB200, featuring Nvidia Blackwell GPUs and high-bandwidth networking for trillion-parameter AI training and inference. Enhancements to SageMaker include HyperPod observability dashboards, simplified deployment workflows, and new CLI/SDK tools, enabling faster troubleshooting, streamlined model development, and efficient large-scale AI workload management across compute-intensive environments.
  • Jul-2025: Hewlett Packard Enterprise Company acquired Juniper Networks, creating a cloud-native, AI-driven IT portfolio with a full networking stack. This expansion doubles HPE's networking business, enhances hybrid cloud and AI offerings, and provides customers with secure, AI-native networking solutions. The integration accelerates innovation, operational efficiency, and market growth opportunities.
  • Jun-2025: NVIDIA Corporation announced the partnership with Siemens, an automation company to accelerate industrial AI and digitalization, creating AI-powered factories of the future. By integrating NVIDIA's accelerated computing with Siemens Xcelerator platforms, they enhance factory automation, real-time insights, generative AI, robotics, and cybersecurity, enabling faster, more efficient, and data-driven industrial operations worldwide.
  • Jun-2025: Snowflake Inc. unveiled Cortex AISQL and SnowConvert AI, enhancing AI-powered analytics and data migrations. Cortex AISQL integrates generative AI into SQL queries for multi-modal insights, while SnowConvert AI automates legacy system migrations. Together, they streamline analytics, reduce costs, and accelerate enterprise data modernization, enabling faster, smarter, and scalable AI-driven decision-making.
  • Jun-2025: Snowflake Inc. unveiled Gen2 Standard Warehouses for faster analytics, Adaptive Warehouses for automated scaling, and AI-driven governance via Horizon Catalog. Updates include immutable backups, enhanced observability, and Copilot AI for compliance, simplifying multi-cloud operations, improving performance, and embedding AI into data management and governance workflows.

List of Key Companies Profiled

  • Amazon Web Services, Inc. (Amazon.com, Inc.)
  • Google LLC
  • Microsoft Corporation
  • IBM Corporation
  • NVIDIA Corporation
  • Snowflake Inc.
  • Hewlett Packard Enterprise Company
  • Dell Technologies, Inc.
  • Intel Corporation
  • Oracle Corporation

Global AI Workload Management Market Report Segmentation

By Deployment

  • Cloud
  • On-Premise

By Enterprise Size

  • Large Enterprise
  • Small & Medium Enterprises (SMEs)

By Component

  • Solution
  • Services

By Vertical

  • IT & Telecommunication
  • BFSI
  • Healthcare & Life Sciences
  • Retail & E-commerce
  • Manufacturing
  • Government & Public Sector
  • Other Vertical

By Geography

  • North America
    • US
    • Canada
    • Mexico
    • Rest of North America
  • Europe
    • Germany
    • UK
    • France
    • Russia
    • Spain
    • Italy
    • Rest of Europe
  • Asia Pacific
    • China
    • Japan
    • India
    • South Korea
    • Singapore
    • Malaysia
    • Rest of Asia Pacific
  • LAMEA
    • Brazil
    • Argentina
    • UAE
    • Saudi Arabia
    • South Africa
    • Nigeria
    • Rest of LAMEA

Table of Contents

Chapter 1. Market Scope & Methodology

  • 1.1 Market Definition
  • 1.2 Objectives
  • 1.3 Market Scope
  • 1.4 Segmentation
    • 1.4.1 Global AI Workload Management Market, by Deployment
    • 1.4.2 Global AI Workload Management Market, by Enterprise Size
    • 1.4.3 Global AI Workload Management Market, by Component
    • 1.4.4 Global AI Workload Management Market, by Vertical
    • 1.4.5 Global AI Workload Management Market, by Geography
  • 1.5 Methodology for the research

Chapter 2. Market at a Glance

  • 2.1 Key Highlights

Chapter 3. Market Overview

  • 3.1 Introduction
    • 3.1.1 Overview
      • 3.1.1.1 Market Composition and Scenario
  • 3.2 Key Factors Impacting the Market
    • 3.2.1 Market Drivers
    • 3.2.2 Market Restraints
    • 3.2.3 Market Opportunities
    • 3.2.4 Market Challenges

Chapter 4. Market Trends - AI Workload Management Market

Chapter 5. State of Competition - AI Workload Management Market

Chapter 6. Product Life Cycle - AI Workload Management Market

Chapter 7. Market Consolidation - AI Workload Management Market

Chapter 8. Competition Analysis - Global

  • 8.1 KBV Cardinal Matrix
  • 8.2 Recent Industry Wide Strategic Developments
    • 8.2.1 Partnerships, Collaborations and Agreements
    • 8.2.2 Product Launches and Product Expansions
    • 8.2.3 Acquisition and Mergers
  • 8.3 Market Share Analysis, 2024
  • 8.4 Top Winning Strategies
    • 8.4.1 Key Leading Strategies: Percentage Distribution (2021-2025)
    • 8.4.2 Key Strategic Move: (Partnerships, Collaborations & Agreements: 2024, Feb - 2025, Sep) Leading Players
  • 8.5 Porter Five Forces Analysis

Chapter 9. Value Chain Analysis of AI Workload Management Market

  • 9.1 Research & Core Inputs
  • 9.2 Hardware & Cloud Infrastructure
  • 9.3 AI Frameworks & Platforms
  • 9.4 Workload Orchestration & Management
  • 9.5 Deployment & Inference Operations
  • 9.6 Integration, Services & End-User Solutions

Chapter 10. Key Customer Criteria - AI Workload Management Market

Chapter 11. Global AI Workload Management Market by Deployment

  • 11.1 Global Cloud Market by Region
  • 11.2 Global On-Premise Market by Region

Chapter 12. Global AI Workload Management Market by Enterprise Size

  • 12.1 Global Large Enterprise Market by Region
  • 12.2 Global Small & Medium Enterprises (SMEs) Market by Region

Chapter 13. Global AI Workload Management Market by Component

  • 13.1 Global Solution Market by Region
  • 13.2 Global Services Market by Region

Chapter 14. Global AI Workload Management Market by Vertical

  • 14.1 Global IT & Telecommunication Market by Region
  • 14.2 Global BFSI Market by Region
  • 14.3 Global Healthcare & Life Sciences Market by Region
  • 14.4 Global Retail & E-commerce Market by Region
  • 14.5 Global Manufacturing Market by Region
  • 14.6 Global Government & Public Sector Market by Region
  • 14.7 Global Other Vertical Market by Region

Chapter 15. Global AI Workload Management Market by Region

  • 15.1 North America AI Workload Management Market
    • 15.1.1 Key Factors Impacting the Market
      • 15.1.1.1 Market Drivers
      • 15.1.1.2 Market Restraints
      • 15.1.1.3 Market Opportunities
      • 15.1.1.4 Market Challenges
    • 15.1.2 Market Trends - North America AI Workload Management Market
    • 15.1.3 State of Competition - North America AI Workload Management Market
    • 15.1.4 North America AI Workload Management Market by Deployment
      • 15.1.4.1 North America Cloud Market by Country
      • 15.1.4.2 North America On-Premise Market by Country
    • 15.1.5 North America AI Workload Management Market by Enterprise Size
      • 15.1.5.1 North America Large Enterprise Market by Country
      • 15.1.5.2 North America Small & Medium Enterprises (SMEs) Market by Country
    • 15.1.6 North America AI Workload Management Market by Component
      • 15.1.6.1 North America Solution Market by Country
      • 15.1.6.2 North America Services Market by Country
    • 15.1.7 North America AI Workload Management Market by Vertical
      • 15.1.7.1 North America IT & Telecommunication Market by Country
      • 15.1.7.2 North America BFSI Market by Country
      • 15.1.7.3 North America Healthcare & Life Sciences Market by Country
      • 15.1.7.4 North America Retail & E-commerce Market by Country
      • 15.1.7.5 North America Manufacturing Market by Country
      • 15.1.7.6 North America Government & Public Sector Market by Country
      • 15.1.7.7 North America Other Vertical Market by Country
    • 15.1.8 North America AI Workload Management Market by Country
      • 15.1.8.1 US AI Workload Management Market
        • 15.1.8.1.1 US AI Workload Management Market by Deployment
        • 15.1.8.1.2 US AI Workload Management Market by Enterprise Size
        • 15.1.8.1.3 US AI Workload Management Market by Component
        • 15.1.8.1.4 US AI Workload Management Market by Vertical
      • 15.1.8.2 Canada AI Workload Management Market
        • 15.1.8.2.1 Canada AI Workload Management Market by Deployment
        • 15.1.8.2.2 Canada AI Workload Management Market by Enterprise Size
        • 15.1.8.2.3 Canada AI Workload Management Market by Component
        • 15.1.8.2.4 Canada AI Workload Management Market by Vertical
      • 15.1.8.3 Mexico AI Workload Management Market
        • 15.1.8.3.1 Mexico AI Workload Management Market by Deployment
        • 15.1.8.3.2 Mexico AI Workload Management Market by Enterprise Size
        • 15.1.8.3.3 Mexico AI Workload Management Market by Component
        • 15.1.8.3.4 Mexico AI Workload Management Market by Vertical
      • 15.1.8.4 Rest of North America AI Workload Management Market
        • 15.1.8.4.1 Rest of North America AI Workload Management Market by Deployment
        • 15.1.8.4.2 Rest of North America AI Workload Management Market by Enterprise Size
        • 15.1.8.4.3 Rest of North America AI Workload Management Market by Component
        • 15.1.8.4.4 Rest of North America AI Workload Management Market by Vertical
  • 15.2 Europe AI Workload Management Market
    • 15.2.1 Key Factors Impacting the Market
      • 15.2.1.1 Market Drivers
      • 15.2.1.2 Market Restraints
      • 15.2.1.3 Market Opportunities
      • 15.2.1.4 Market Challenges
    • 15.2.2 Market Trends - Europe AI Workload Management Market
    • 15.2.3 State of Competition - Europe AI Workload Management Market
    • 15.2.4 Europe AI Workload Management Market by Deployment
      • 15.2.4.1 Europe Cloud Market by Country
      • 15.2.4.2 Europe On-Premise Market by Country
    • 15.2.5 Europe AI Workload Management Market by Enterprise Size
      • 15.2.5.1 Europe Large Enterprise Market by Country
      • 15.2.5.2 Europe Small & Medium Enterprises (SMEs) Market by Country
    • 15.2.6 Europe AI Workload Management Market by Component
      • 15.2.6.1 Europe Solution Market by Country
      • 15.2.6.2 Europe Services Market by Country
    • 15.2.7 Europe AI Workload Management Market by Vertical
      • 15.2.7.1 Europe IT & Telecommunication Market by Country
      • 15.2.7.2 Europe BFSI Market by Country
      • 15.2.7.3 Europe Healthcare & Life Sciences Market by Country
      • 15.2.7.4 Europe Retail & E-commerce Market by Country
      • 15.2.7.5 Europe Manufacturing Market by Country
      • 15.2.7.6 Europe Government & Public Sector Market by Country
      • 15.2.7.7 Europe Other Vertical Market by Country
    • 15.2.8 Europe AI Workload Management Market by Country
      • 15.2.8.1 Germany AI Workload Management Market
        • 15.2.8.1.1 Germany AI Workload Management Market by Deployment
        • 15.2.8.1.2 Germany AI Workload Management Market by Enterprise Size
        • 15.2.8.1.3 Germany AI Workload Management Market by Component
        • 15.2.8.1.4 Germany AI Workload Management Market by Vertical
      • 15.2.8.2 UK AI Workload Management Market
        • 15.2.8.2.1 UK AI Workload Management Market by Deployment
        • 15.2.8.2.2 UK AI Workload Management Market by Enterprise Size
        • 15.2.8.2.3 UK AI Workload Management Market by Component
        • 15.2.8.2.4 UK AI Workload Management Market by Vertical
      • 15.2.8.3 France AI Workload Management Market
        • 15.2.8.3.1 France AI Workload Management Market by Deployment
        • 15.2.8.3.2 France AI Workload Management Market by Enterprise Size
        • 15.2.8.3.3 France AI Workload Management Market by Component
        • 15.2.8.3.4 France AI Workload Management Market by Vertical
      • 15.2.8.4 Russia AI Workload Management Market
        • 15.2.8.4.1 Russia AI Workload Management Market by Deployment
        • 15.2.8.4.2 Russia AI Workload Management Market by Enterprise Size
        • 15.2.8.4.3 Russia AI Workload Management Market by Component
        • 15.2.8.4.4 Russia AI Workload Management Market by Vertical
      • 15.2.8.5 Spain AI Workload Management Market
        • 15.2.8.5.1 Spain AI Workload Management Market by Deployment
        • 15.2.8.5.2 Spain AI Workload Management Market by Enterprise Size
        • 15.2.8.5.3 Spain AI Workload Management Market by Component
        • 15.2.8.5.4 Spain AI Workload Management Market by Vertical
      • 15.2.8.6 Italy AI Workload Management Market
        • 15.2.8.6.1 Italy AI Workload Management Market by Deployment
        • 15.2.8.6.2 Italy AI Workload Management Market by Enterprise Size
        • 15.2.8.6.3 Italy AI Workload Management Market by Component
        • 15.2.8.6.4 Italy AI Workload Management Market by Vertical
      • 15.2.8.7 Rest of Europe AI Workload Management Market
        • 15.2.8.7.1 Rest of Europe AI Workload Management Market by Deployment
        • 15.2.8.7.2 Rest of Europe AI Workload Management Market by Enterprise Size
        • 15.2.8.7.3 Rest of Europe AI Workload Management Market by Component
        • 15.2.8.7.4 Rest of Europe AI Workload Management Market by Vertical
  • 15.3 Asia Pacific AI Workload Management Market
    • 15.3.1 Key Factors Impacting the Market
      • 15.3.1.1 Market Drivers
      • 15.3.1.2 Market Restraints
      • 15.3.1.3 Market Opportunities
      • 15.3.1.4 Market Challenges
    • 15.3.2 Market Trends - Asia Pacific AI Workload Management Market
    • 15.3.3 State of Competition - Asia Pacific AI Workload Management Market
    • 15.3.4 Asia Pacific AI Workload Management Market by Deployment
      • 15.3.4.1 Asia Pacific Cloud Market by Country
      • 15.3.4.2 Asia Pacific On-Premise Market by Country
    • 15.3.5 Asia Pacific AI Workload Management Market by Enterprise Size
      • 15.3.5.1 Asia Pacific Large Enterprise Market by Country
      • 15.3.5.2 Asia Pacific Small & Medium Enterprises (SMEs) Market by Country
    • 15.3.6 Asia Pacific AI Workload Management Market by Component
      • 15.3.6.1 Asia Pacific Solution Market by Country
      • 15.3.6.2 Asia Pacific Services Market by Country
    • 15.3.7 Asia Pacific AI Workload Management Market by Vertical
      • 15.3.7.1 Asia Pacific IT & Telecommunication Market by Country
      • 15.3.7.2 Asia Pacific BFSI Market by Country
      • 15.3.7.3 Asia Pacific Healthcare & Life Sciences Market by Country
      • 15.3.7.4 Asia Pacific Retail & E-commerce Market by Country
      • 15.3.7.5 Asia Pacific Manufacturing Market by Country
      • 15.3.7.6 Asia Pacific Government & Public Sector Market by Country
      • 15.3.7.7 Asia Pacific Other Vertical Market by Country
    • 15.3.8 Asia Pacific AI Workload Management Market by Country
      • 15.3.8.1 China AI Workload Management Market
        • 15.3.8.1.1 China AI Workload Management Market by Deployment
        • 15.3.8.1.2 China AI Workload Management Market by Enterprise Size
        • 15.3.8.1.3 China AI Workload Management Market by Component
        • 15.3.8.1.4 China AI Workload Management Market by Vertical
      • 15.3.8.2 Japan AI Workload Management Market
        • 15.3.8.2.1 Japan AI Workload Management Market by Deployment
        • 15.3.8.2.2 Japan AI Workload Management Market by Enterprise Size
        • 15.3.8.2.3 Japan AI Workload Management Market by Component
        • 15.3.8.2.4 Japan AI Workload Management Market by Vertical
      • 15.3.8.3 India AI Workload Management Market
        • 15.3.8.3.1 India AI Workload Management Market by Deployment
        • 15.3.8.3.2 India AI Workload Management Market by Enterprise Size
        • 15.3.8.3.3 India AI Workload Management Market by Component
        • 15.3.8.3.4 India AI Workload Management Market by Vertical
      • 15.3.8.4 South Korea AI Workload Management Market
        • 15.3.8.4.1 South Korea AI Workload Management Market by Deployment
        • 15.3.8.4.2 South Korea AI Workload Management Market by Enterprise Size
        • 15.3.8.4.3 South Korea AI Workload Management Market by Component
        • 15.3.8.4.4 South Korea AI Workload Management Market by Vertical
      • 15.3.8.5 Singapore AI Workload Management Market
        • 15.3.8.5.1 Singapore AI Workload Management Market by Deployment
        • 15.3.8.5.2 Singapore AI Workload Management Market by Enterprise Size
        • 15.3.8.5.3 Singapore AI Workload Management Market by Component
        • 15.3.8.5.4 Singapore AI Workload Management Market by Vertical
      • 15.3.8.6 Malaysia AI Workload Management Market
        • 15.3.8.6.1 Malaysia AI Workload Management Market by Deployment
        • 15.3.8.6.2 Malaysia AI Workload Management Market by Enterprise Size
        • 15.3.8.6.3 Malaysia AI Workload Management Market by Component
        • 15.3.8.6.4 Malaysia AI Workload Management Market by Vertical
      • 15.3.8.7 Rest of Asia Pacific AI Workload Management Market
        • 15.3.8.7.1 Rest of Asia Pacific AI Workload Management Market by Deployment
        • 15.3.8.7.2 Rest of Asia Pacific AI Workload Management Market by Enterprise Size
        • 15.3.8.7.3 Rest of Asia Pacific AI Workload Management Market by Component
        • 15.3.8.7.4 Rest of Asia Pacific AI Workload Management Market by Vertical
  • 15.4 LAMEA AI Workload Management Market
    • 15.4.1 Key Factors Impacting the Market
      • 15.4.1.1 Market Drivers
      • 15.4.1.2 Market Restraints
      • 15.4.1.3 Market Opportunities
      • 15.4.1.4 Market Challenges
    • 15.4.2 Market Trends - LAMEA AI Workload Management Market
    • 15.4.3 State of Competition - LAMEA AI Workload Management Market
    • 15.4.4 LAMEA AI Workload Management Market by Deployment
      • 15.4.4.1 LAMEA Cloud Market by Country
      • 15.4.4.2 LAMEA On-Premise Market by Country
    • 15.4.5 LAMEA AI Workload Management Market by Enterprise Size
      • 15.4.5.1 LAMEA Large Enterprise Market by Country
      • 15.4.5.2 LAMEA Small & Medium Enterprises (SMEs) Market by Country
    • 15.4.6 LAMEA AI Workload Management Market by Component
      • 15.4.6.1 LAMEA Solution Market by Country
      • 15.4.6.2 LAMEA Services Market by Country
    • 15.4.7 LAMEA AI Workload Management Market by Vertical
      • 15.4.7.1 LAMEA IT & Telecommunication Market by Country
      • 15.4.7.2 LAMEA BFSI Market by Country
      • 15.4.7.3 LAMEA Healthcare & Life Sciences Market by Country
      • 15.4.7.4 LAMEA Retail & E-commerce Market by Country
      • 15.4.7.5 LAMEA Manufacturing Market by Country
      • 15.4.7.6 LAMEA Government & Public Sector Market by Country
      • 15.4.7.7 LAMEA Other Vertical Market by Country
    • 15.4.8 LAMEA AI Workload Management Market by Country
      • 15.4.8.1 Brazil AI Workload Management Market
        • 15.4.8.1.1 Brazil AI Workload Management Market by Deployment
        • 15.4.8.1.2 Brazil AI Workload Management Market by Enterprise Size
        • 15.4.8.1.3 Brazil AI Workload Management Market by Component
        • 15.4.8.1.4 Brazil AI Workload Management Market by Vertical
      • 15.4.8.2 Argentina AI Workload Management Market
        • 15.4.8.2.1 Argentina AI Workload Management Market by Deployment
        • 15.4.8.2.2 Argentina AI Workload Management Market by Enterprise Size
        • 15.4.8.2.3 Argentina AI Workload Management Market by Component
        • 15.4.8.2.4 Argentina AI Workload Management Market by Vertical
      • 15.4.8.3 UAE AI Workload Management Market
        • 15.4.8.3.1 UAE AI Workload Management Market by Deployment
        • 15.4.8.3.2 UAE AI Workload Management Market by Enterprise Size
        • 15.4.8.3.3 UAE AI Workload Management Market by Component
        • 15.4.8.3.4 UAE AI Workload Management Market by Vertical
      • 15.4.8.4 Saudi Arabia AI Workload Management Market
        • 15.4.8.4.1 Saudi Arabia AI Workload Management Market by Deployment
        • 15.4.8.4.2 Saudi Arabia AI Workload Management Market by Enterprise Size
        • 15.4.8.4.3 Saudi Arabia AI Workload Management Market by Component
        • 15.4.8.4.4 Saudi Arabia AI Workload Management Market by Vertical
      • 15.4.8.5 South Africa AI Workload Management Market
        • 15.4.8.5.1 South Africa AI Workload Management Market by Deployment
        • 15.4.8.5.2 South Africa AI Workload Management Market by Enterprise Size
        • 15.4.8.5.3 South Africa AI Workload Management Market by Component
        • 15.4.8.5.4 South Africa AI Workload Management Market by Vertical
      • 15.4.8.6 Nigeria AI Workload Management Market
        • 15.4.8.6.1 Nigeria AI Workload Management Market by Deployment
        • 15.4.8.6.2 Nigeria AI Workload Management Market by Enterprise Size
        • 15.4.8.6.3 Nigeria AI Workload Management Market by Component
        • 15.4.8.6.4 Nigeria AI Workload Management Market by Vertical
      • 15.4.8.7 Rest of LAMEA AI Workload Management Market
        • 15.4.8.7.1 Rest of LAMEA AI Workload Management Market by Deployment
        • 15.4.8.7.2 Rest of LAMEA AI Workload Management Market by Enterprise Size
        • 15.4.8.7.3 Rest of LAMEA AI Workload Management Market by Component
        • 15.4.8.7.4 Rest of LAMEA AI Workload Management Market by Vertical

Chapter 16. Company Profiles

  • 16.1 Amazon Web Services, Inc. (Amazon.com, Inc.)
    • 16.1.1 Company Overview
    • 16.1.2 Financial Analysis
    • 16.1.3 Segmental and Regional Analysis
    • 16.1.4 Recent strategies and developments:
      • 16.1.4.1 Partnerships, Collaborations, and Agreements:
      • 16.1.4.2 Product Launches and Product Expansions:
    • 16.1.5 SWOT Analysis
  • 16.2 Google LLC
    • 16.2.1 Company Overview
    • 16.2.2 Financial Analysis
    • 16.2.3 Segmental and Regional Analysis
    • 16.2.4 Research & Development Expenses
    • 16.2.5 Recent strategies and developments:
      • 16.2.5.1 Partnerships, Collaborations, and Agreements:
    • 16.2.6 SWOT Analysis
  • 16.3 Microsoft Corporation
    • 16.3.1 Company Overview
    • 16.3.2 Financial Analysis
    • 16.3.3 Segmental and Regional Analysis
    • 16.3.4 Research & Development Expenses
    • 16.3.5 Recent strategies and developments:
      • 16.3.5.1 Partnerships, Collaborations, and Agreements:
    • 16.3.6 SWOT Analysis
  • 16.4 IBM Corporation
    • 16.4.1 Company Overview
    • 16.4.2 Financial Analysis
    • 16.4.3 Regional & Segmental Analysis
    • 16.4.4 Research & Development Expenses
    • 16.4.5 Recent strategies and developments:
      • 16.4.5.1 Partnerships, Collaborations, and Agreements:
      • 16.4.5.2 Product Launches and Product Expansions:
      • 16.4.5.3 Acquisition and Mergers:
    • 16.4.6 SWOT Analysis
  • 16.5 NVIDIA Corporation
    • 16.5.1 Company Overview
    • 16.5.2 Financial Analysis
    • 16.5.3 Segmental and Regional Analysis
    • 16.5.4 Research & Development Expenses
    • 16.5.5 Recent strategies and developments:
      • 16.5.5.1 Partnerships, Collaborations, and Agreements:
      • 16.5.5.2 Acquisition and Mergers:
    • 16.5.6 SWOT Analysis
  • 16.6 Snowflake, Inc.
    • 16.6.1 Company Overview
    • 16.6.2 Financial Analysis
    • 16.6.3 Regional Analysis
    • 16.6.4 Research & Development Expenses
    • 16.6.5 Recent strategies and developments:
      • 16.6.5.1 Partnerships, Collaborations, and Agreements:
      • 16.6.5.2 Product Launches and Product Expansions:
    • 16.6.6 SWOT Analysis
  • 16.7 Hewlett Packard Enterprise Company
    • 16.7.1 Company Overview
    • 16.7.2 Financial Analysis
    • 16.7.3 Segmental and Regional Analysis
    • 16.7.4 Research & Development Expense
    • 16.7.5 Recent strategies and developments:
      • 16.7.5.1 Acquisition and Mergers:
    • 16.7.6 SWOT Analysis
  • 16.8 Dell Technologies, Inc.
    • 16.8.1 Company Overview
    • 16.8.2 Financial Analysis
    • 16.8.3 Segmental and Regional Analysis
    • 16.8.4 Research & Development Expense
    • 16.8.5 Recent strategies and developments:
      • 16.8.5.1 Partnerships, Collaborations, and Agreements:
      • 16.8.5.2 Product Launches and Product Expansions:
    • 16.8.6 SWOT Analysis
  • 16.9 Intel Corporation
    • 16.9.1 Company Overview
    • 16.9.2 Financial Analysis
    • 16.9.3 Segmental and Regional Analysis
    • 16.9.4 Research & Development Expenses
    • 16.9.5 Recent strategies and developments:
      • 16.9.5.1 Product Launches and Product Expansions:
      • 16.9.5.2 Acquisition and Mergers:
    • 16.9.6 SWOT Analysis
  • 16.10. Oracle Corporation
    • 16.10.1 Company Overview
    • 16.10.2 Financial Analysis
    • 16.10.3 Segmental and Regional Analysis
    • 16.10.4 Research & Development Expense
    • 16.10.5 Recent strategies and developments:
      • 16.10.5.1 Partnerships, Collaborations, and Agreements:
    • 16.10.6 SWOT Analysis

Chapter 17. Winning Imperatives of AI Workload Management Market

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제