![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1797407
¼¼°èÀÇ ¼ö¼Ò °¨Áö ½ÃÀå : ¼¾¼ ±â¼úº°, ½ÇÀå À¯Çüº°, °¨Áö ¹üÀ§º°, ÇÁ·Î¼¼½º ½ºÅ×ÀÌÁöº°, ¿ëµµº°, Áö¿ªº° - ¿¹Ãø(-2030³â)Hydrogen Detection Market by Electrochemical, Metal Oxide Semiconductor (MOS), Catalytic, Thermal Conductivity, Micro-Electromechanical Systems (MEMS), Detection Range (0-1000 ppm, 0-5000 ppm, 0-20,000 ppm, >0-20,000 ppm) - Global Forecast to 2030 |
¼¼°èÀÇ ¼ö¼Ò °¨Áö ½ÃÀå ±Ô¸ð´Â 2025³â 2¾ï 8,000¸¸ ´Þ·¯¿¡¼ 2030³â¿¡´Â 5¾ï ´Þ·¯¿¡ À̸£°í, ¿¹Ãø ±â°£ Áß ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)Àº 11.8%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.
Á¶»ç ¹üÀ§ | |
---|---|
Á¶»ç ´ë»ó ¿¬µµ | 2021-2030³â |
±âÁØ¿¬µµ | 2024³â |
¿¹Ãø ±â°£ | 2025-2030³â |
°ËÅä ´ÜÀ§ | ±Ý¾×(10¾ï ´Þ·¯) |
ºÎ¹®º° | ¼¾¼ ±â¼úº°, ½ÇÀå À¯Çüº°, °¨Áö ¹üÀ§º°, ÇÁ·Î¼¼½º ½ºÅ×ÀÌÁöº°, ¿ëµµº°, Áö¿ªº° |
´ë»ó Áö¿ª | ºÏ¹Ì, À¯·´, ¾Æ½Ã¾ÆÅÂÆò¾ç, ±âŸ Áö¿ª |
¼ö¼Ò °¨Áö ½ÃÀåÀº ¿¬·áÀüÁöÀÇ º¸±Þ, ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼ ¼ö¼Ò »ç¿ë Áõ°¡, Àü ¼¼°èÀûÀ¸·Î °ÈµÈ ¾ÈÀü ¹× º¸°Ç ±ÔÁ¦ ½ÃÇàÀ¸·Î ÀÎÇØ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεé·Î ÀÎÇØ »ê¾÷°è´Â ÀÛ¾÷Àå ¾ÈÀü, ´©Ãâ ¹æÁö, ±ÔÁ¦ Áؼö À¯Áö¸¦ À§ÇØ Ã·´Ü ¼ö¼Ò °¨Áö ½Ã½ºÅÛ¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª »ê¾÷º° ¼ö¼Ò °¨Áö ¼¾¼ °³¹ßÀÇ º¹À⼺À¸·Î ÀÎÇØ ½ÃÀåÀº ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷, ¿¡³ÊÁö, ÈÇÐ µî ´Ù¾çÇÑ ºÐ¾ßÀÇ °íÀ¯ÇÑ ¿ä±¸»çÇ׿¡ ¸Â°Ô ¼Ö·ç¼ÇÀ» Á¶Á¤ÇÏ´Â °ÍÀº °³¹ß ½Ã°£, ºñ¿ë, ±â¼úÀû Àå¾Ö¹°À» Áõ°¡½ÃÄÑ Àüü ½ÃÀå È®´ë¸¦ ´Ù¼Ò ¾ïÁ¦ÇÒ ¼ö ÀÖ½À´Ï´Ù.
0-1000 ppmÀÇ °ËÃâ ¹üÀ§ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È ¼ö¼Ò °ËÃâ ½ÃÀå¿¡¼ µÎ ¹øÂ°·Î ºü¸¥ ¼ºÀå¼¼¸¦ º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¹üÀ§´Â ¿îÀü ¾ÈÀü°ú ±ÔÁ¤ Áؼö¸¦ º¸ÀåÇϱâ À§ÇØ Á¶±â ´©Ãâ °¨Áö°¡ ÇÊ¿äÇÑ ¿ëµµ¿¡ ÇʼöÀûÀÔ´Ï´Ù. Àú³óµµ ¼ö¼Ò ¸ð´ÏÅ͸µÀº ¹èÅ͸® ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(BESS), ¿¬±¸¼Ò, ¹ÝµµÃ¼ °øÀå, ¿¬·áÀüÁö Àü±âÀÚµ¿Â÷(FCEV) ¼ºñ½º ±¸¿ª µî Á¦ÇÑµÈ ¹Î°¨ÇÑ È¯°æ¿¡¼ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ È¯°æ¿¡¼´Â ÀÛÀº ¼ö¼Ò ´©Ãâµµ °¨ÁöÇÏÁö ¸øÇϸé À§ÇèÇÑ »óȲÀ¸·Î À̾îÁú ¼ö Àֱ⠶§¹®¿¡ ÀÌ ¹üÀ§ÀÇ ¼¾¼´Â ¿¹¹æÀû À¯Áö º¸¼ö ¹× À§Çè °¨¼Ò¿¡ ÇʼöÀûÀÔ´Ï´Ù.
¹ÐÆóµÈ »ê¾÷ ¹× »ó¾÷ ȯ°æ¿¡¼ ¼ö¼ÒÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó, Æø¹ß¼º ³óµµ¸¦ ÇÇÇϱâ À§ÇØ Á¶±â¿¡ °¨ÁöÇØ¾ß ÇÏ´Â ¼¼°è ¾ÈÀü ±ÔÁ¤ Áؼö°¡ Á¡Á¡ ´õ ¾ö°ÝÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ ¶§¹®¿¡ 0-1000ppm ¹üÀ§ÀÇ ³ôÀº °¨µµ¿Í ½Å·Ú¼ºÀ» °¡Áø ¼¾¼¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. Nissha FIS ¹× Drager¿Í °°Àº ÁÖ¿ä ±â¾÷µéÀº ÀÌ·¯ÇÑ ¸ñÀûÀ¸·Î ¼³°èµÈ Àü±âÈÇÐ, ¿Àüµµ, ±Ý¼Ó »êȹ° ±â¹Ý ¼¾¼¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ ¼Ö·ç¼ÇÀº °íÁ¤½Ä ¼³ºñ ¹× ÈÞ´ë¿ë °¨Áö±â¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, ´Ù¾çÇÑ ¼ö¼Ò ÀÌ¿ë »ç·Ê¿¡¼ ÀÌ Á¦Ç°±º ½ÃÀå ÀÔÁö¸¦ ´õ¿í °ÈÇϰí ÀÖ½À´Ï´Ù.
¼®À¯ ¹× °¡½º »ê¾÷Àº ¿¹Ãø ±â°£ µ¿¾È ¼ö¼Ò °¨Áö ½ÃÀå ºÎ¹®À» Áö¹èÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¼ö¼Ò´Â ÀϹÝÀûÀ¸·Î ¼ö¼ÒÈ ºÐÇØ, ŻȲ µî ¼®À¯ Á¤Á¦ ¹× ¼®À¯ÈÇÐ °øÁ¤¿¡¼ ºÎ»ê¹°·Î ¹ß»ý, »ç¿ë, »ý¼ºµË´Ï´Ù. ÀÌ·¯ÇÑ ÀÛ¾÷¿¡¼ ¼ö¼Ò´Â ÀÎȼºÀÌ ³ô°í °ø±â ÁßÀ¸·Î ºü¸£°Ô È®»êµÇ±â ¶§¹®¿¡ ¼ö¼Ò ´©ÃâÀ» ¹ß°ßÇÏÁö ¸øÇϸé Å« Àç¾ÓÀ¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, ¼ö¼Ò °¨Áö ½Ã½ºÅÛÀº Á¤À¯¼ÒÀÇ ¾ÈÀü ÇÁ·ÎÅäÄݰú À§Çè °¨¼Ò Àü·«¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°Ô µÇ¾ú½À´Ï´Ù. ¶ÇÇÑ, OSHA¿Í °°Àº ±ÔÁ¦ °¨µ¶ ±â°ü°ú ATEX ¹× IECEx¿Í °°Àº ±¹Á¦ ¾ÈÀü Ç¥ÁØÀÇ Áؼö¿¡ µû¶ó ¾ö°ÝÇÑ ±ÔÁ¤ Áؼö ¿ä±¸ »çÇ×ÀÌ ºÎ°úµÇ±â ¶§¹®¿¡ ¿î¿µÀÚ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ½Ç½Ã°£ °¡½º ¸ð´ÏÅ͸µ ÀåÄ¡¸¦ µµÀÔÇØ¾ß ÇÕ´Ï´Ù. ÆÄÀÌÇÁ¶óÀÎ, ÀúÀå ½Ã¼³, ÇØ¾ç Ç÷§Æû, ¼ö¼Ò ±â¹Ý ¹ßÀü ÀåÄ¡¿¡¼ ¼ö¼Ò °¨Áö ÅëÇÕÀº ƯÈ÷ ¼®À¯ ¸ÞÀÌÀúµéÀÌ Ã»»ö ¼ö¼Ò ¹× ź¼Ò Æ÷Áý ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®¸é¼ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀüÅëÀû »êÀ¯Áö¿ªÀÇ ÀÎÇÁ¶ó ³ëÈÄÈ·Î ÀÎÇØ ´©Ãâ °¨Áö ½Ã½ºÅÛ °³º¸¼öÀÇ Çʿ伺ÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. Żź¼Òȸ¦ ÇâÇÑ ¼¼°è ÃßÁø·ÂÀÌ ¿¡³ÊÁö ȯ°æÀ» ÀçÆíÇÏ´Â °¡¿îµ¥, ¼®À¯ ¹× °¡½º »ê¾÷Àº ÀüÅëÀûÀÎ ¼ö¼Ò °øÁ¤°ú ûÁ¤ ¼ö¼Ò ÀÌ´Ï¼ÅÆ¼ºê ¸ðµÎ¿¡¼ Àü·«Àû ¿ªÇÒÀ» ´ã´çÇϰí ÀÖÀ¸¸ç, ¼ö¼Ò °¨Áö ½ÃÀå¿¡¼ÀÇ ¼±µµÀû ÁöÀ§¸¦ °è¼Ó À¯ÁöÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.
À¯·´Àº ûÁ¤ ¿¡³ÊÁö Àüȯ¿¡ ´ëÇÑ °ÇÑ ÀÇÁö, ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦, Á¤ºÎ Áö¿ø ÀÌ´Ï¼ÅÆ¼ºê¿¡ ÈûÀÔ¾î ¿¹Ãø ±â°£ µ¿¾È ¼ö¼Ò °¨Áö ºÐ¾ß¿¡¼ µÎ ¹øÂ°·Î ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ª ½ÃÀåÀ¸·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. µ¶ÀÏ, ÇÁ¶û½º, ¿µ±¹, ³×´ú¶õµå µî °³¹ßµµ»ó±¹µéÀº ±¹°¡ Àü·« ¹× ¼ö¼Ò ÀÎÇÁ¶ó °³¹ß ÀÚ±Ý Áö¿øÀ» ÅëÇØ ¼ö¼Ò µµÀÔÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, À¯·´ Á¤ºÎ´Â ¼ö¼Ò ÃæÀü¼Ò ¹× »ý»ê ±âÁö ±¸ÃàÀ» Áö¿øÇϰí ÀÖÀ¸¸ç, ÀÌ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼ö¼Ò ´©Ãâ °¨Áö ½Ã½ºÅÛ¿¡ ´ëÇÑ Å« ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ Áö¿ªÀÇ ÀÚµ¿Â÷, ¿¡³ÊÁö, ÈÇÐ »ê¾÷Àº Żź¼ÒÈ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ ¼ö¼Ò ¼Ö·ç¼ÇÀ» ÅëÇÕÇϰí ÀÖÀ¸¸ç, ÀÌ´Â Á¤È®Çϰí È¿À²ÀûÀÎ ¼ö¼Ò °¨Áö ±â¼úÀÇ Çʿ伺À» ´õ¿í ³ôÀ̰í ÀÖ½À´Ï´Ù. ÇöÁö ±â¾÷µéµµ ÷´Ü ¼¾¼ ±â¼ú¿¡ Àû±ØÀûÀ¸·Î ÅõÀÚÇϰí ÀÖÀ¸¸ç, ¾ÈÀü ¹× ¿î¿µ ¿ä±¸»çÇ׿¡ ´ëÇÑ Áö¿ª ³» ¿ª·®À» °ÈÇϰí ÀÖ½À´Ï´Ù. À¯·´Àº Çù·ÂÀûÀÎ Á¤Ã¥ ÇÁ·¹ÀÓ¿öÅ©¿Í »ê¾÷ Çõ½ÅÀÇ ¸®´õ½ÊÀ» ¹ÙÅÁÀ¸·Î ¼¼°è ¼ö¼Ò °¨Áö ½ÃÀå¿¡¼ °·ÂÇÑ °æÀïÀÚ·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.
¼¼°èÀÇ ¼ö¼Ò °¨Áö ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, ¼¾¼ ±â¼úº°, ±¸Çö À¯Çüº°, °¨Áö ¹üÀ§º°, °øÁ¤ ´Ü°èº°, ¿ëµµº°, Áö¿ªº° µ¿Çâ, ½ÃÀå ÁøÃâ±â¾÷ ÇÁ·ÎÆÄÀÏ µîÀÇ Á¤º¸¸¦ Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.
The global hydrogen detection market is estimated to be valued at USD 0.50 billion by 2030, up from USD 0.28 billion in 2025, at a CAGR of 11.8% during the forecast period.
Scope of the Report | |
---|---|
Years Considered for the Study | 2021-2030 |
Base Year | 2024 |
Forecast Period | 2025-2030 |
Units Considered | Value (USD Billion) |
Segments | By Sensor Technology, Implementation Type, Detection Range, Process Stage, Application, and Region |
Regions covered | North America, Europe, APAC, RoW |
The hydrogen detection market is experiencing significant growth driven by the widespread adoption of fuel cells, the increasing use of hydrogen across various industrial applications, and the enforcement of stringent health and safety regulations worldwide. These factors encourage industries to invest in advanced hydrogen detection systems to ensure workplace safety, prevent leaks, and maintain regulatory compliance. However, the market faces challenges due to the complexities involved in developing industry-specific hydrogen detection sensors. Tailoring solutions to meet the unique requirements of different sectors, such as automotive, energy, or chemicals, can increase development time, costs, and technical hurdles, slightly restraining overall market expansion.
"By detection range, 0-1000 ppm is expected to register the second-fastest growth during the forecast period."
The 0-1000 ppm detection range segment is expected to witness the second-fastest growth in the hydrogen detection market during the forecast period. This range is essential for applications that require early leak detection to ensure operational safety and regulatory compliance. Low-level hydrogen monitoring is particularly important in confined and sensitive environments such as battery energy storage systems (BESS), laboratories, semiconductor fabs, and fuel cell electric vehicle (FCEV) service areas. In such setups, even minor hydrogen leaks can lead to hazardous conditions if undetected, making sensors within this range crucial for preventive maintenance and risk mitigation.
The increasing deployment of hydrogen in enclosed industrial and commercial environments has prompted stricter adherence to global safety regulations, which require early-stage detection to avoid explosive concentrations. This has driven demand for sensors with high sensitivity and reliability in the 0-1000 ppm range. Leading players such as Nissha FIS and Drager offer electrochemical, thermal conductivity, and metal oxide-based sensors designed for this purpose. These solutions are being widely adopted across fixed installations and portable detectors, further strengthening the market position of this range across diverse hydrogen use cases.
By application, the oil & gas segment is projected to account for the largest market share during the forecast period."
The oil & gas industry is expected to dominate the hydrogen detection market's application segment throughout the forecast period. Hydrogen is commonly generated, used, or produced as a byproduct in several oil refining and petrochemical processes, such as hydrocracking and desulfurization. In such operations, undetected hydrogen leaks can lead to catastrophic incidents due to its high flammability and rapid dispersion in air. As a result, hydrogen detection systems are integral to refinery safety protocols and risk mitigation strategies. Additionally, regulatory oversight from bodies such as OSHA and adherence to international safety standards like ATEX and IECEx enforce strict compliance requirements, prompting operators to deploy highly reliable, real-time gas monitoring equipment. The integration of hydrogen detection in pipelines, storage facilities, offshore platforms, and hydrogen-based power generation units is expanding, especially as oil majors increase investment in blue hydrogen and carbon capture technologies. Moreover, aging infrastructure in traditional oil-producing regions is driving the need for retrofitted leak detection systems. As the global push toward decarbonization reshapes the energy landscape, the oil & gas industry's strategic role in both conventional hydrogen processes and clean hydrogen initiatives will continue to support its leading position in the hydrogen detection market.
By region, Europe is expected to register the second-fastest growth during the forecast period.
Europe is projected to emerge as the second-fastest-growing regional market for hydrogen detection during the forecast period, driven by the region's strong commitment to clean energy transition, stringent environmental regulations, and supportive government initiatives. Countries such as Germany, France, the UK, and the Netherlands are advancing hydrogen adoption through national strategies and funding for hydrogen infrastructure development. For example, European governments are supporting the rollout of hydrogen refueling stations and production hubs, creating significant demand for reliable hydrogen leak detection systems. Additionally, the region's well-established automotive, energy, and chemical industries are integrating hydrogen solutions to achieve decarbonization goals, further contributing to the need for accurate and efficient hydrogen detection technologies. Local companies are also actively investing in advanced sensor technologies, enhancing the region's capability to meet rising safety and operational requirements. Europe's coordinated policy frameworks and its leadership in industrial innovation position it as a strong contender in the global hydrogen detection market.
The break-up of the profile of primary participants in the hydrogen detection market-
Note: Other designations include sales, marketing, and product managers.
The three tiers of the companies are based on their total revenues as of 2024: Tier 1: >USD 1 billion, Tier 2: USD 500 million-1 billion, and Tier 3: USD 500 million.
The major players in the hydrogen detection market with a significant global presence include Teledyne Technologies Incorporated (US), Honeywell International (US), H2San (US), Figaro Engineering (Japan), Nissha FIS (Japan), and others.
Study Coverage
The report segments the hydrogen detection market and forecasts its size by sensor technology, implementation type, detection range, process stage, application, and region. It also provides a comprehensive review of drivers, restraints, opportunities, and challenges influencing market growth. The report covers qualitative aspects in addition to quantitative aspects of the market.
The report will help the market leaders/new entrants in this market with information on the closest approximate revenues for the overall hydrogen detection market and related segments. This report will help stakeholders understand the competitive landscape and gain more insights to strengthen their position in the market and plan suitable go-to-market strategies. The report also helps stakeholders understand the pulse of the market and provides them with information on key market drivers, restraints, opportunities, and challenges.