시장보고서
상품코드
1859917

세계의 기계식 및 전자식 퓨즈 : 시장 점유율과 순위, 전체 판매 및 수요 예측(2025-2031년)

Mechanical and Electronic Fuzes - Global Market Share and Ranking, Overall Sales and Demand Forecast 2025-2031

발행일: | 리서치사: QYResearch | 페이지 정보: 영문 | 배송안내 : 2-3일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

기계식 및 전자식 퓨즈 시장 규모는 2024년에 10억 100만 달러로 평가되었고, 2025-2031년의 예측 기간 중 CAGR 3.4%로 성장하여 2031년까지 13억 800만 달러에 달할 것으로 예측됩니다.

이 보고서는 기계식 및 전자식 퓨즈의 국경 간 산업 발자국, 자본 배분 패턴, 지역 경제의 상호 의존성, 공급망 재구축, 최근 관세 조정 및 국제적인 전략적 대응 조치에 대한 종합적인 평가를 제공합니다.

기계식 및 전자식 퓨즈은 기계적 에너지와 전기적 에너지의 시너지 효과로 무장하고 작동합니다. 그 핵심 원리는 기계 구조와 전자 부품의 깊은 통합을 통해 안전 제어 및 기폭을 달성하는 데 있습니다. 구조적으로, 전기기계식 퓨즈은 일반적으로 방폭 메커니즘, 방폭 메커니즘, 트리거 메커니즘, 전자 안전 모듈 및 화공품 어셈블리로 구성됩니다. 방폭기구는 로터, 슬라이더 등의 기계부품을 통해 기폭경로를 물리적으로 차단하여 예기치 못한 상황에서 1차 화공장치(기폭관 등)의 오작동을 방지합니다. 트리거 메커니즘은 압전소자, 관성센서 등의 부품을 이용하여 목표물에 대한 충격이나 환경 진동을 감지하여 기계 에너지를 전기신호로 변환합니다. 전자식 안전 모듈은 이 전기 신호를 미리 설정된 로직에 따라 처리하고, 기계식 지연 안전 메커니즘과 연동하여 여러 안전 잠금장치를 해제합니다. 최종적으로 고전압 커패시터가 충격 블레이드 기폭장치를 방전시켜 주탄두 장약을 기폭시킵니다. 이 설계는 기계식 퓨즈의 신뢰성을 유지하면서 전자식 퓨즈의 정밀 제어 기능을 통합하여 "기계-전자" 이중 이중화 안전 시스템을 형성합니다. 2024년 전 세계 전기기계식 퓨즈 판매량은 500만 개에 달할 것으로 예상되며, 평균 판매가격은 개당 약 200달러입니다. 업계의 매출 총이익률은 약 30%입니다.

시장의 주요 시장 성장 촉진요인은 다음과 같습니다.

기술 통합으로 제품 진화 촉진

마이크로 일렉트로닉스와 정밀 가공 공정의 비약적인 발전으로 전기기계식 퓨즈은 기존의 기계식 기폭 방식에서 지능화, 다기능화로 진화하고 있습니다. 전전자식 퓨즈의 부상은 전기기계식 퓨즈에 기술적 압박을 가져왔고, 제조업체는 기계식 안전 메커니즘을 유지하면서 디지털 신호 처리 장치(DSP), 간섭 방지용 RF 프론트 엔드 등의 모듈을 통합하여 복잡한 전자기 환경에 대한 적응성을 높이고 있습니다. 예를 들어, 서포트 벡터 머신 알고리즘을 이용한 주파수 스윕 간섭 방지 기술은 오작동률을 0.8%까지 낮출 수 있어 기존의 임계값 검출 방식을 크게 능가합니다. 또한, 전기기계식 퓨즈은 모듈 설계를 통한 기능 확장을 실현하고 있으며, 궤도 수정을 위한 GPS 측위 모듈, 목표물 인식 능력을 향상시키는 음향-적외선 복합 감지 시스템 통합 등으로 현대전이 요구하는 '방치형' 무기의 요구에 부응하고 있습니다.

군사 현대화가 고급 수요를 주도

세계 군사 경쟁 환경의 변화로 인해 각국은 무기 업그레이드를 가속화하고 있습니다. 고가 탄약(정밀유도미사일, 스텔스 순항미사일 등)은 퓨즈의 신뢰성과 안전성에 대한 엄격한 요구사항이 있습니다. 전기기계식 퓨즈은 이중 안전장치를 갖추고 있어 항공병기 분야에서 대체 불가능한 위치를 차지하고 있습니다. 어뢰-10 미사일을 예로 들면, 그 전기기계식 퓨즈은 기계식 로터로 기폭장치와 장약을 분리하고 전자 안전장치와 결합하여 안전거리를 계산하여 심해에서 안정적인 기폭을 보장합니다. 또한, 대전차 미사일이나 방공 미사일과 같은 무기 시스템에서는 매우 높은 순간 퓨즈 작동 속도가 요구됩니다. 전기기계식 퓨즈에 탑재된 압전 세라믹 소자는 충격 순간에 수천 볼트의 고전압을 발생시킬 수 있어 장갑 관통탄의 작동 시간을 수만분의 1초에서 수만분의 1초로 단축시켜 장갑 관통 효율을 크게 향상시킬 수 있습니다.

양산화를 통해 도입 장벽이 낮아집니다.

완전 전자식 퓨즈은 안전성과 정보처리 능력에서 우위를 점하고 있으나, 높은 연구개발비용과 복잡한 제조 공정으로 인해 중저가 시장에서의 보급을 제한하고 있습니다. 전기기계식 퓨즈은 표준화된 설계와 자동화된 생산라인의 전환을 통해 효과적인 비용관리를 실현하고 있습니다. 예를 들어, 범용 RF 프론트엔드 모듈을 채택하여 여러 변조 모드 간 적응형 전환이 가능하여 하드웨어 개발 비용을 30% 절감할 수 있습니다. 또한, 로터식 방폭기구는 분말야금 기술을 이용하여 양산화하여 기존 기계가공 대비 단가를 45% 절감하였습니다. 민간 폭파 시장은 새로운 성장 기회를 개척하고 있습니다. 인프라 건설 및 광물자원 개발 수요 증가에 따라 민간 폭파 분야에서의 전기기계식 퓨즈의 적용 범위는 계속 확대되고 있습니다. 기계식 및 전자식 이중 안전 설계로 작업 중 오폭을 효과적으로 방지하여 "민간용 폭발물 안전 관리 조례"의 엄격한 안전 요건을 충족합니다. 터널 굴착 및 광산 작업에서는 전기기계식 퓨즈에 지연 기폭 모듈을 통합하여 다단 발파의 정밀 제어를 실현하여 작업 효율과 자원 이용률을 향상시키고 있습니다. 또한, 석유 및 가스 파이프라인 철거 폭파 등 고위험 작업에서는 퓨즈의 전자기 간섭 저항에 대한 특별한 요구가 있습니다. 전기기계식 퓨즈은 차폐 및 필터 회로 등의 간섭 방지 기술을 채택하여 강력한 전자기 환경에서도 확실한 기폭을 보장함으로써 민생 시장의 확대에 기여하고 있습니다.

이 보고서는 세계 기계식 및 전자식 퓨즈 세계 시장에 대해 총 판매량, 매출액, 가격, 주요 기업의 시장 점유율 및 순위에 초점을 맞추어, 지역별, 국가별, 유형별, 용도별 분석을 종합적으로 제시하는 것을 목적으로 합니다.

이 보고서는 2024년을 기준 연도, 2020년에서 2031년까지의 과거 데이터와 예측 데이터를 포함하여 판매량(천 단위)과 매출액(백만 달러)을 기준으로 기계식 및 전자식 퓨즈 시장 규모를 추정 및 예측합니다. 정량적, 정성적 분석을 통해 독자들이 기계식 및 전자식 퓨즈 관련 사업 전략 및 성장 전략 수립, 시장 경쟁 평가, 현재 시장에서의 위치 분석, 정보에 입각한 비즈니스 의사결정을 내릴 수 있도록 도와드립니다.

시장 세분화

기업별

  • L3 Technologies
  • Orbital ATK
  • Kaman
  • Expal(Maxam Group)
  • JUNGHANS Microtec GmbH
  • Reutech Fuchs Electronics
  • DIXI Microtechniques
  • Anhui Great Wall Military Industry
  • Sandeep Metalcraft
  • Reshef Technologies

유형별 부문

  • 박격포 퓨즈
  • 포탄용 퓨즈
  • 로켓 및 미사일용 퓨즈
  • 기타

용도별 부문

  • 민간
  • 군사
  • 기타

지역별

  • 북미
    • 미국
    • 캐나다
  • 아시아태평양
    • 중국
    • 일본
    • 한국
    • 동남아시아
    • 인도
    • 호주
    • 기타 아시아태평양
  • 유럽
    • 독일
    • 프랑스
    • 영국
    • 이탈리아
    • 네덜란드
    • 북유럽 국가
    • 기타 유럽
  • 라틴아메리카
    • 멕시코
    • 브라질
    • 기타 라틴아메리카
  • 중동 및 아프리카
    • 튀르키예
    • 사우디아라비아
    • 아랍에미리트(UAE)
    • 기타 중동 및 아프리카
LSH 25.11.25

자주 묻는 질문

  • 기계식 및 전자식 퓨즈 시장 규모는 어떻게 되며, 향후 성장률은 어떻게 예측되나요?
  • 기계식 및 전자식 퓨즈의 주요 기술 통합 요소는 무엇인가요?
  • 군사 현대화가 기계식 및 전자식 퓨즈 시장에 미치는 영향은 무엇인가요?
  • 전기기계식 퓨즈의 양산화가 시장에 미치는 영향은 무엇인가요?
  • 민간 폭파 시장에서 전기기계식 퓨즈의 적용은 어떻게 이루어지고 있나요?
  • 기계식 및 전자식 퓨즈 시장의 주요 기업은 어디인가요?

The global market for Mechanical and Electronic Fuzes was estimated to be worth US$ 1001 million in 2024 and is forecast to a readjusted size of US$ 1308 million by 2031 with a CAGR of 3.4% during the forecast period 2025-2031.

This report provides a comprehensive assessment of recent tariff adjustments and international strategic countermeasures on Mechanical and Electronic Fuzes cross-border industrial footprints, capital allocation patterns, regional economic interdependencies, and supply chain reconfigurations.

Mechanical and Electronic fuzes rely on the synergy of mechanical and electrical energy to arm and activate. Their core principle lies in achieving safety control and initiation through the deep integration of mechanical structure and electronic components. Structurally, electromechanical fuzes typically consist of a flameproof mechanism, a trigger mechanism, an electronic safety module, and a pyrotechnic assembly. The flameproof mechanism physically isolates the detonation path through mechanical components such as a rotor and a slider, preventing the first pyrotechnic device (such as a detonator) from detonating under unexpected conditions. The trigger mechanism uses components such as piezoelectric crystals and inertial sensors to sense target impact or environmental vibration, converting mechanical energy into an electrical signal. The electronic safety module processes this electrical signal based on preset logic and, in conjunction with a mechanical delay safety mechanism, releases multiple safety locks. Finally, a high-voltage capacitor discharges the impact blade detonator, detonating the main warhead charge. This design retains the reliability of a mechanical fuze while incorporating the precise control capabilities of an electronic fuze, forming a "mechanical-electronic" dual-redundant safety system. Global sales of electromechanical fuzes are projected to reach 5 million units in 2024, with an average selling price of approximately US$200 per unit. The industry's gross profit margin is approximately 30%.

Market drivers primarily include the following:

Technological integration drives product iteration

With breakthroughs in microelectronics and precision machining processes, electromechanical fuzes are evolving from traditional mechanical triggering to intelligent and multifunctional ones. The rise of fully electronic fuzes is driving technological pressure on electromechanical fuzes, prompting manufacturers to integrate modules such as digital signal processors (DSPs) and anti-interference RF front-ends, while retaining mechanical safety mechanisms, to enhance their adaptability to complex electromagnetic environments. For example, anti-sweep frequency jamming technology using a support vector machine algorithm can reduce the false alarm rate to 0.8%, significantly outperforming traditional threshold detection methods. Furthermore, electromechanical fuzes achieve functional expansion through modular design, such as integrating GPS positioning modules for trajectory correction and acoustic-infrared composite detection to enhance target recognition capabilities, meeting the demands of modern warfare for "fire-and-forget" weapons.

Military modernization is driving high-end demand

Changes in the global military competition landscape are driving countries to accelerate weapon upgrades. High-value ammunition (such as precision-guided missiles and stealth cruise missiles) places stringent demands on fuze reliability and safety. Electromechanical fuzes, with their dual safety mechanisms, hold an irreplaceable position in the airborne munitions sector. Taking the Torpedo-10 missile as an example, its electromechanical fuze uses a mechanical rotor to isolate the detonator and explosive charge, combined with an electronic safety to calculate the safe distance, ensuring stable detonation in deep water. Furthermore, weapon systems such as anti-tank missiles and air defense missiles require extremely high instantaneous fuze firing speeds. The piezoelectric ceramic elements in the electromechanical fuze can generate thousands of volts of high voltage at the moment of impact, reducing the armor-piercing shell's action time from a few ten-thousandths of a second to a few hundred-thousandths of a second, significantly improving armor-piercing efficiency.

Scaled production lowers the barrier to application.

Although fully electronic fuzes offer advantages in safety and intelligence, their high R&D costs and complex production processes have limited their widespread adoption in the mid- and low-end markets. Electromechanical fuzes achieve effective cost control through standardized design and automated production line transformation. For example, the use of a universal RF front-end module supports adaptive switching between multiple modulation modes, reducing hardware development costs by 30%. The rotor-type explosion-proof mechanism is mass-produced using powder metallurgy, reducing unit costs by 45% compared to traditional machining. The civil blasting market is opening up new growth opportunities. With growing demand for infrastructure construction and mineral resource development, the application of electromechanical fuses in the civil blasting sector continues to expand. Their dual mechanical and electronic safety design effectively prevents accidental detonation during operations, meeting the stringent safety requirements of the "Regulations on the Safety Management of Civilian Explosives." In tunneling and mining applications, electromechanical fuses integrate delayed detonation modules to achieve precise control of multi-stage blasting, improving operational efficiency and resource utilization. Furthermore, high-risk operations such as oil and gas pipeline demolition blasting place special demands on the fuse's resistance to electromagnetic interference. Electromechanical fuses utilize anti-interference technologies such as shielding and filtering circuits to ensure reliable detonation in strong electromagnetic environments, further expanding the civilian market.

This report aims to provide a comprehensive presentation of the global market for Mechanical and Electronic Fuzes, focusing on the total sales volume, sales revenue, price, key companies market share and ranking, together with an analysis of Mechanical and Electronic Fuzes by region & country, by Type, and by Application.

The Mechanical and Electronic Fuzes market size, estimations, and forecasts are provided in terms of sales volume (K Units) and sales revenue ($ millions), considering 2024 as the base year, with history and forecast data for the period from 2020 to 2031. With both quantitative and qualitative analysis, to help readers develop business/growth strategies, assess the market competitive situation, analyze their position in the current marketplace, and make informed business decisions regarding Mechanical and Electronic Fuzes.

Market Segmentation

By Company

  • L3 Technologies
  • Orbital ATK
  • Kaman
  • Expal (Maxam Group)
  • JUNGHANS Microtec GmbH
  • Reutech Fuchs Electronics
  • DIXI Microtechniques
  • Anhui Great Wall Military Industry
  • Sandeep Metalcraft
  • Reshef Technologies

Segment by Type

  • Mortar Fuzes
  • Artillery Fuzes
  • Rocket and Missile Fuzes
  • Others

Segment by Application

  • Civil Applications
  • Military Applications
  • Others

By Region

  • North America
    • United States
    • Canada
  • Asia-Pacific
    • China
    • Japan
    • South Korea
    • Southeast Asia
    • India
    • Australia
    • Rest of Asia-Pacific
  • Europe
    • Germany
    • France
    • U.K.
    • Italy
    • Netherlands
    • Nordic Countries
    • Rest of Europe
  • Latin America
    • Mexico
    • Brazil
    • Rest of Latin America
  • Middle East & Africa
    • Turkey
    • Saudi Arabia
    • UAE
    • Rest of MEA

Chapter Outline

Chapter 1: Introduces the report scope of the report, global total market size (value, volume and price). This chapter also provides the market dynamics, latest developments of the market, the driving factors and restrictive factors of the market, the challenges and risks faced by manufacturers in the industry, and the analysis of relevant policies in the industry.

Chapter 2: Detailed analysis of Mechanical and Electronic Fuzes manufacturers competitive landscape, price, sales and revenue market share, latest development plan, merger, and acquisition information, etc.

Chapter 3: Provides the analysis of various market segments by Type, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different market segments.

Chapter 4: Provides the analysis of various market segments by Application, covering the market size and development potential of each market segment, to help readers find the blue ocean market in different downstream markets.

Chapter 5: Sales, revenue of Mechanical and Electronic Fuzes in regional level. It provides a quantitative analysis of the market size and development potential of each region and introduces the market development, future development prospects, market space, and market size of each country in the world.

Chapter 6: Sales, revenue of Mechanical and Electronic Fuzes in country level. It provides sigmate data by Type, and by Application for each country/region.

Chapter 7: Provides profiles of key players, introducing the basic situation of the main companies in the market in detail, including product sales, revenue, price, gross margin, product introduction, recent development, etc.

Chapter 8: Analysis of industrial chain, including the upstream and downstream of the industry.

Chapter 9: Conclusion.

Table of Contents

1 Market Overview

  • 1.1 Mechanical and Electronic Fuzes Product Introduction
  • 1.2 Global Mechanical and Electronic Fuzes Market Size Forecast
    • 1.2.1 Global Mechanical and Electronic Fuzes Sales Value (2020-2031)
    • 1.2.2 Global Mechanical and Electronic Fuzes Sales Volume (2020-2031)
    • 1.2.3 Global Mechanical and Electronic Fuzes Sales Price (2020-2031)
  • 1.3 Mechanical and Electronic Fuzes Market Trends & Drivers
    • 1.3.1 Mechanical and Electronic Fuzes Industry Trends
    • 1.3.2 Mechanical and Electronic Fuzes Market Drivers & Opportunity
    • 1.3.3 Mechanical and Electronic Fuzes Market Challenges
    • 1.3.4 Mechanical and Electronic Fuzes Market Restraints
  • 1.4 Assumptions and Limitations
  • 1.5 Study Objectives
  • 1.6 Years Considered

2 Competitive Analysis by Company

  • 2.1 Global Mechanical and Electronic Fuzes Players Revenue Ranking (2024)
  • 2.2 Global Mechanical and Electronic Fuzes Revenue by Company (2020-2025)
  • 2.3 Global Mechanical and Electronic Fuzes Players Sales Volume Ranking (2024)
  • 2.4 Global Mechanical and Electronic Fuzes Sales Volume by Company Players (2020-2025)
  • 2.5 Global Mechanical and Electronic Fuzes Average Price by Company (2020-2025)
  • 2.6 Key Manufacturers Mechanical and Electronic Fuzes Manufacturing Base and Headquarters
  • 2.7 Key Manufacturers Mechanical and Electronic Fuzes Product Offered
  • 2.8 Key Manufacturers Time to Begin Mass Production of Mechanical and Electronic Fuzes
  • 2.9 Mechanical and Electronic Fuzes Market Competitive Analysis
    • 2.9.1 Mechanical and Electronic Fuzes Market Concentration Rate (2020-2025)
    • 2.9.2 Global 5 and 10 Largest Manufacturers by Mechanical and Electronic Fuzes Revenue in 2024
    • 2.9.3 Global Top Manufacturers by Company Type (Tier 1, Tier 2, and Tier 3) & (based on the Revenue in Mechanical and Electronic Fuzes as of 2024)
  • 2.10 Mergers & Acquisitions, Expansion

3 Segmentation by Type

  • 3.1 Introduction by Type
    • 3.1.1 Mortar Fuzes
    • 3.1.2 Artillery Fuzes
    • 3.1.3 Rocket and Missile Fuzes
    • 3.1.4 Others
  • 3.2 Global Mechanical and Electronic Fuzes Sales Value by Type
    • 3.2.1 Global Mechanical and Electronic Fuzes Sales Value by Type (2020 VS 2024 VS 2031)
    • 3.2.2 Global Mechanical and Electronic Fuzes Sales Value, by Type (2020-2031)
    • 3.2.3 Global Mechanical and Electronic Fuzes Sales Value, by Type (%) (2020-2031)
  • 3.3 Global Mechanical and Electronic Fuzes Sales Volume by Type
    • 3.3.1 Global Mechanical and Electronic Fuzes Sales Volume by Type (2020 VS 2024 VS 2031)
    • 3.3.2 Global Mechanical and Electronic Fuzes Sales Volume, by Type (2020-2031)
    • 3.3.3 Global Mechanical and Electronic Fuzes Sales Volume, by Type (%) (2020-2031)
  • 3.4 Global Mechanical and Electronic Fuzes Average Price by Type (2020-2031)

4 Segmentation by Application

  • 4.1 Introduction by Application
    • 4.1.1 Civil Applications
    • 4.1.2 Military Applications
    • 4.1.3 Others
  • 4.2 Global Mechanical and Electronic Fuzes Sales Value by Application
    • 4.2.1 Global Mechanical and Electronic Fuzes Sales Value by Application (2020 VS 2024 VS 2031)
    • 4.2.2 Global Mechanical and Electronic Fuzes Sales Value, by Application (2020-2031)
    • 4.2.3 Global Mechanical and Electronic Fuzes Sales Value, by Application (%) (2020-2031)
  • 4.3 Global Mechanical and Electronic Fuzes Sales Volume by Application
    • 4.3.1 Global Mechanical and Electronic Fuzes Sales Volume by Application (2020 VS 2024 VS 2031)
    • 4.3.2 Global Mechanical and Electronic Fuzes Sales Volume, by Application (2020-2031)
    • 4.3.3 Global Mechanical and Electronic Fuzes Sales Volume, by Application (%) (2020-2031)
  • 4.4 Global Mechanical and Electronic Fuzes Average Price by Application (2020-2031)

5 Segmentation by Region

  • 5.1 Global Mechanical and Electronic Fuzes Sales Value by Region
    • 5.1.1 Global Mechanical and Electronic Fuzes Sales Value by Region: 2020 VS 2024 VS 2031
    • 5.1.2 Global Mechanical and Electronic Fuzes Sales Value by Region (2020-2025)
    • 5.1.3 Global Mechanical and Electronic Fuzes Sales Value by Region (2026-2031)
    • 5.1.4 Global Mechanical and Electronic Fuzes Sales Value by Region (%), (2020-2031)
  • 5.2 Global Mechanical and Electronic Fuzes Sales Volume by Region
    • 5.2.1 Global Mechanical and Electronic Fuzes Sales Volume by Region: 2020 VS 2024 VS 2031
    • 5.2.2 Global Mechanical and Electronic Fuzes Sales Volume by Region (2020-2025)
    • 5.2.3 Global Mechanical and Electronic Fuzes Sales Volume by Region (2026-2031)
    • 5.2.4 Global Mechanical and Electronic Fuzes Sales Volume by Region (%), (2020-2031)
  • 5.3 Global Mechanical and Electronic Fuzes Average Price by Region (2020-2031)
  • 5.4 North America
    • 5.4.1 North America Mechanical and Electronic Fuzes Sales Value, 2020-2031
    • 5.4.2 North America Mechanical and Electronic Fuzes Sales Value by Country (%), 2024 VS 2031
  • 5.5 Europe
    • 5.5.1 Europe Mechanical and Electronic Fuzes Sales Value, 2020-2031
    • 5.5.2 Europe Mechanical and Electronic Fuzes Sales Value by Country (%), 2024 VS 2031
  • 5.6 Asia Pacific
    • 5.6.1 Asia Pacific Mechanical and Electronic Fuzes Sales Value, 2020-2031
    • 5.6.2 Asia Pacific Mechanical and Electronic Fuzes Sales Value by Region (%), 2024 VS 2031
  • 5.7 South America
    • 5.7.1 South America Mechanical and Electronic Fuzes Sales Value, 2020-2031
    • 5.7.2 South America Mechanical and Electronic Fuzes Sales Value by Country (%), 2024 VS 2031
  • 5.8 Middle East & Africa
    • 5.8.1 Middle East & Africa Mechanical and Electronic Fuzes Sales Value, 2020-2031
    • 5.8.2 Middle East & Africa Mechanical and Electronic Fuzes Sales Value by Country (%), 2024 VS 2031

6 Segmentation by Key Countries/Regions

  • 6.1 Key Countries/Regions Mechanical and Electronic Fuzes Sales Value Growth Trends, 2020 VS 2024 VS 2031
  • 6.2 Key Countries/Regions Mechanical and Electronic Fuzes Sales Value and Sales Volume
    • 6.2.1 Key Countries/Regions Mechanical and Electronic Fuzes Sales Value, 2020-2031
    • 6.2.2 Key Countries/Regions Mechanical and Electronic Fuzes Sales Volume, 2020-2031
  • 6.3 United States
    • 6.3.1 United States Mechanical and Electronic Fuzes Sales Value, 2020-2031
    • 6.3.2 United States Mechanical and Electronic Fuzes Sales Value by Type (%), 2024 VS 2031
    • 6.3.3 United States Mechanical and Electronic Fuzes Sales Value by Application, 2024 VS 2031
  • 6.4 Europe
    • 6.4.1 Europe Mechanical and Electronic Fuzes Sales Value, 2020-2031
    • 6.4.2 Europe Mechanical and Electronic Fuzes Sales Value by Type (%), 2024 VS 2031
    • 6.4.3 Europe Mechanical and Electronic Fuzes Sales Value by Application, 2024 VS 2031
  • 6.5 China
    • 6.5.1 China Mechanical and Electronic Fuzes Sales Value, 2020-2031
    • 6.5.2 China Mechanical and Electronic Fuzes Sales Value by Type (%), 2024 VS 2031
    • 6.5.3 China Mechanical and Electronic Fuzes Sales Value by Application, 2024 VS 2031
  • 6.6 Japan
    • 6.6.1 Japan Mechanical and Electronic Fuzes Sales Value, 2020-2031
    • 6.6.2 Japan Mechanical and Electronic Fuzes Sales Value by Type (%), 2024 VS 2031
    • 6.6.3 Japan Mechanical and Electronic Fuzes Sales Value by Application, 2024 VS 2031
  • 6.7 South Korea
    • 6.7.1 South Korea Mechanical and Electronic Fuzes Sales Value, 2020-2031
    • 6.7.2 South Korea Mechanical and Electronic Fuzes Sales Value by Type (%), 2024 VS 2031
    • 6.7.3 South Korea Mechanical and Electronic Fuzes Sales Value by Application, 2024 VS 2031
  • 6.8 Southeast Asia
    • 6.8.1 Southeast Asia Mechanical and Electronic Fuzes Sales Value, 2020-2031
    • 6.8.2 Southeast Asia Mechanical and Electronic Fuzes Sales Value by Type (%), 2024 VS 2031
    • 6.8.3 Southeast Asia Mechanical and Electronic Fuzes Sales Value by Application, 2024 VS 2031
  • 6.9 India
    • 6.9.1 India Mechanical and Electronic Fuzes Sales Value, 2020-2031
    • 6.9.2 India Mechanical and Electronic Fuzes Sales Value by Type (%), 2024 VS 2031
    • 6.9.3 India Mechanical and Electronic Fuzes Sales Value by Application, 2024 VS 2031

7 Company Profiles

  • 7.1 L3 Technologies
    • 7.1.1 L3 Technologies Company Information
    • 7.1.2 L3 Technologies Introduction and Business Overview
    • 7.1.3 L3 Technologies Mechanical and Electronic Fuzes Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.1.4 L3 Technologies Mechanical and Electronic Fuzes Product Offerings
    • 7.1.5 L3 Technologies Recent Development
  • 7.2 Orbital ATK
    • 7.2.1 Orbital ATK Company Information
    • 7.2.2 Orbital ATK Introduction and Business Overview
    • 7.2.3 Orbital ATK Mechanical and Electronic Fuzes Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.2.4 Orbital ATK Mechanical and Electronic Fuzes Product Offerings
    • 7.2.5 Orbital ATK Recent Development
  • 7.3 Kaman
    • 7.3.1 Kaman Company Information
    • 7.3.2 Kaman Introduction and Business Overview
    • 7.3.3 Kaman Mechanical and Electronic Fuzes Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.3.4 Kaman Mechanical and Electronic Fuzes Product Offerings
    • 7.3.5 Kaman Recent Development
  • 7.4 Expal (Maxam Group)
    • 7.4.1 Expal (Maxam Group) Company Information
    • 7.4.2 Expal (Maxam Group) Introduction and Business Overview
    • 7.4.3 Expal (Maxam Group) Mechanical and Electronic Fuzes Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.4.4 Expal (Maxam Group) Mechanical and Electronic Fuzes Product Offerings
    • 7.4.5 Expal (Maxam Group) Recent Development
  • 7.5 JUNGHANS Microtec GmbH
    • 7.5.1 JUNGHANS Microtec GmbH Company Information
    • 7.5.2 JUNGHANS Microtec GmbH Introduction and Business Overview
    • 7.5.3 JUNGHANS Microtec GmbH Mechanical and Electronic Fuzes Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.5.4 JUNGHANS Microtec GmbH Mechanical and Electronic Fuzes Product Offerings
    • 7.5.5 JUNGHANS Microtec GmbH Recent Development
  • 7.6 Reutech Fuchs Electronics
    • 7.6.1 Reutech Fuchs Electronics Company Information
    • 7.6.2 Reutech Fuchs Electronics Introduction and Business Overview
    • 7.6.3 Reutech Fuchs Electronics Mechanical and Electronic Fuzes Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.6.4 Reutech Fuchs Electronics Mechanical and Electronic Fuzes Product Offerings
    • 7.6.5 Reutech Fuchs Electronics Recent Development
  • 7.7 DIXI Microtechniques
    • 7.7.1 DIXI Microtechniques Company Information
    • 7.7.2 DIXI Microtechniques Introduction and Business Overview
    • 7.7.3 DIXI Microtechniques Mechanical and Electronic Fuzes Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.7.4 DIXI Microtechniques Mechanical and Electronic Fuzes Product Offerings
    • 7.7.5 DIXI Microtechniques Recent Development
  • 7.8 Anhui Great Wall Military Industry
    • 7.8.1 Anhui Great Wall Military Industry Company Information
    • 7.8.2 Anhui Great Wall Military Industry Introduction and Business Overview
    • 7.8.3 Anhui Great Wall Military Industry Mechanical and Electronic Fuzes Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.8.4 Anhui Great Wall Military Industry Mechanical and Electronic Fuzes Product Offerings
    • 7.8.5 Anhui Great Wall Military Industry Recent Development
  • 7.9 Sandeep Metalcraft
    • 7.9.1 Sandeep Metalcraft Company Information
    • 7.9.2 Sandeep Metalcraft Introduction and Business Overview
    • 7.9.3 Sandeep Metalcraft Mechanical and Electronic Fuzes Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.9.4 Sandeep Metalcraft Mechanical and Electronic Fuzes Product Offerings
    • 7.9.5 Sandeep Metalcraft Recent Development
  • 7.10 Reshef Technologies
    • 7.10.1 Reshef Technologies Company Information
    • 7.10.2 Reshef Technologies Introduction and Business Overview
    • 7.10.3 Reshef Technologies Mechanical and Electronic Fuzes Sales, Revenue, Price and Gross Margin (2020-2025)
    • 7.10.4 Reshef Technologies Mechanical and Electronic Fuzes Product Offerings
    • 7.10.5 Reshef Technologies Recent Development

8 Industry Chain Analysis

  • 8.1 Mechanical and Electronic Fuzes Industrial Chain
  • 8.2 Mechanical and Electronic Fuzes Upstream Analysis
    • 8.2.1 Key Raw Materials
    • 8.2.2 Raw Materials Key Suppliers
    • 8.2.3 Manufacturing Cost Structure
  • 8.3 Midstream Analysis
  • 8.4 Downstream Analysis (Customers Analysis)
  • 8.5 Sales Model and Sales Channels
    • 8.5.1 Mechanical and Electronic Fuzes Sales Model
    • 8.5.2 Sales Channel
    • 8.5.3 Mechanical and Electronic Fuzes Distributors

9 Research Findings and Conclusion

10 Appendix

  • 10.1 Research Methodology
    • 10.1.1 Methodology/Research Approach
      • 10.1.1.1 Research Programs/Design
      • 10.1.1.2 Market Size Estimation
      • 10.1.1.3 Market Breakdown and Data Triangulation
    • 10.1.2 Data Source
      • 10.1.2.1 Secondary Sources
      • 10.1.2.2 Primary Sources
  • 10.2 Author Details
  • 10.3 Disclaimer
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제