시장보고서
상품코드
1660087

자동차 분야의 AI 기반 모델과 적용 사례(2024-2025년)

Research Report on AI Foundation Models and Their Applications in Automotive Field, 2024-2025

발행일: | 리서치사: ResearchInChina | 페이지 정보: 영문 340 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

추론 능력이 기반 모델의 성능을 밀어 올립니다.

2024년 후반 이후 중국 내외의 기반 모델 기업은 추론 모델을 발표하고 Chain-of-Thought(CoT)와 같은 추론 프레임워크를 사용하여 기반 모델이 복잡한 작업을 처리하고 독립적으로 의사결정을 할 수 있는 능력을 강화하고 있습니다.

추론 모델의 집중적인 릴리스는 복잡한 시나리오를 처리하기 위한 기반 모델의 능력을 강화하고 Agent 용도에 대한 기초를 구축하는 것을 목표로 합니다. 예를 들면, 복잡한 시맨틱스에 있어서의 콕핏 어시스턴트의 의도 인식의 강화나, 자동 운전 계획·결정에 있어서의 시공간 예측의 정밀도 향상 등입니다.

2024년 자동차에 탑재된 주류 기반 모델의 추론 기술은 주로 CoT와 그 변종, 예를 들어 ToT(Tree-of-Thought), GoT(Graph-of-Thought), FoT(Forest-of-Thought)를 중심으로 전개되어 생성 모델(예를 들면 확산 모델), 지식 그래프, 인과 추론 모델, 누적 추론 및 다중 모드 추론 체인과 결합되었습니다.

예를 들어, Geely가 제안한 Modularized Thinking Language Model(MeTHanol)은 기반 모델이 인간의 사고를 합성하여 LLM의 숨겨진 레이어를 감독할 수 있게 하고, 인간과 같은 사고 행동을 생성해, 일상 대화나 개인화된 프롬프트에 적응하는 것에 의해 대규모

2025년 추론기술의 초점은 멀티모달 추론으로 전환됩니다. 일반적인 트레이닝 기술은 명령 미세 조정, 멀티모달 컨텍스트 학습, 멀티모달 CoT(M-CoT)를 포함하며, 많은 경우 멀티모달 융합 정렬과 LLM 추론 기술을 결합하여 가능합니다.

설명 가능성은 AI와 사용자의 신뢰 관계를 교차시킵니다.

사용자는 AI의 "유용성"을 경험하기 전에 AI를 신뢰해야합니다. 2025년 AI 시스템의 설명 가능성은 자동차 AI 사용자를 늘리는 데 중요한 요소입니다. 이 과제는 긴 CoT를 입증함으로써 해결할 수 있습니다.

AI 시스템의 설명 가능성은 데이터 설명 가능성, 모델 설명 가능성, 사후 설명 가능성의 세 가지 수준에서 달성될 수 있습니다.

Li Auto의 경우 L3 자율주행은 'AI 추론 시각화 기술'을 사용하여 엔드 투 엔드 VLM 모델의 사고 프로세스를 직관적으로 제시하고, 물리 세계의 지각 입력에서 기반 모델에 의해 출력되는 운전 판단까지의 전체 프로세스를 커버하고, 지능형 드라이빙 시스템에 대한 사용자의 신뢰를 높이고 있습니다.

Li Auto의 "AI 추론 시각화 기술"에서는

주의 시스템은 차량이 인식한 교통 및 환경 정보를 표시하고, 실시간 비디오 스트림에서 교통 참가자의 행동을 평가하며, 히트맵에서 평가 대상을 표시합니다.

엔드 투 엔드(E2E) 모델은 주행 궤적 출력 뒤에 있는 사고 과정을 보여줍니다. 이 모델은 다양한 주행 궤적에 대해 생각하고 10개의 출력 후보 결과를 제시하며 궁극적으로 가장 가능성이 높은 출력 결과를 주행 궤적으로 채택합니다.

시각 언어 모델(VLM)은 지각, 추론 및 의사 결정 과정을 대화식으로 표시합니다.

다양한 추론 모델의 상호 작용 인터페이스는 유사하게 추론 프로세스를 분해하기 위해 긴 CoT를 채택합니다. 예를 들어, DeepSeek R1에서는 사용자와의 대화에서 먼저 CoT가 각 노드에서 결정을 제시한 다음 자연어로 설명합니다.

또한 Zhipu의 GLM-Zero-Preview, Alibaba의 QwQ-32B-Preview, Skywork 4.0 o1 등 대부분의 추론 모델은 긴 CoT 추론 프로세스의 시연을 지원합니다.

이 보고서는 중국의 자동차 산업에 대해 조사했으며, AI 기반 모델의 개요, 유형, 공통 기술, 기업, 자동차에의 적용 사례 등의 정보를 제공합니다.

목차

제1장 AI 기반 모델 개요

  • AI 모델의 소개
  • 기반 모델의 소개

제2장 다른 유형의 AI 기반 모델 분석

  • 대규모 언어 모델(LLM)
  • 멀티모달 대규모 언어 모델(MLLM)
  • 시각 언어 모델(VLM)과 시각 언어 행동(VLA) 모델
  • 세계 모델

제3장 AI 기반 모델의 공통 기술

  • 기반 모델의 아키텍처, 관련 알고리즘
  • 시각 처리 알고리즘
  • 트레이닝, 미세 조정 기술
  • 강화 학습
  • 지식 그래프
  • 추론 기술
  • 스파스화
  • 생성 기술

제4장 AI 기반 모델 기업

  • OpenAI
  • Google
  • Meta
  • Anthropic
  • Mistral AI
  • Amazon
  • Stability AI
  • xAI
  • Abu Dhabi Technology Innovation Institute
  • SenseTime
  • Alibaba Cloud
  • Baidu AI Cloud
  • Tencent Cloud
  • ByteDance & Volcano Engine
  • Huawei
  • Zhipu AI
  • Flytek
  • DeepSeek

제5장 자동차에서의 AI 기반 모델 적용 사례

  • 콕핏 케이스
  • 지능형 주행 사례

제6장 AI 기반 모델의 응용 동향

  • 데이터
  • 알고리즘
  • 컴퓨팅 파워
  • 엔지니어링
KTH 25.03.10

Research on AI foundation models and automotive applications: reasoning, cost reduction, and explainability

Reasoning capabilities drive up the performance of foundation models.

Since the second half of 2024, foundation model companies inside and outside China have launched their reasoning models, and enhanced the ability of foundation models to handle complex tasks and make decisions independently by using reasoning frameworks like Chain-of-Thought (CoT).

The intensive releases of reasoning models aim to enhance the ability of foundation models to handle complex scenarios and lay the foundation for Agent application. In the automotive industry, improved reasoning capabilities of foundation models can address sore points in AI applications, for example, enhancing the intent recognition of cockpit assistants in complex semantics and improving the accuracy of spatiotemporal prediction in autonomous driving planning and decision.

In 2024, reasoning technologies of mainstream foundation models introduced in vehicles primarily revolved around CoT and its variants (e.g., Tree-of-Thought (ToT), Graph-of-Thought (GoT), Forest-of-Thought (FoT)), and combined with generative models (e.g., diffusion models), knowledge graphs, causal reasoning models, cumulative reasoning, and multimodal reasoning chains in different scenarios.

For example, the Modularized Thinking Language Model (MeTHanol) proposed by Geely allows foundation models to synthesize human thoughts to supervise the hidden layers of LLMs, and generates human-like thinking behaviors, enhances the thinking and reasoning capabilities of large language models, and improves explainability, by adapting to daily conversations and personalized prompts.

In 2025, the focus of reasoning technology will shift to multimodal reasoning. Common training technologies include instruction fine-tuning, multimodal context learning, and multimodal CoT (M-CoT), and are often enabled by combining multimodal fusion alignment and LLM reasoning technologies.

Explainability bridges trust between AI and users.

Before users experience the "usefulness" of AI, they need to trust it. In 2025, the explainability of AI systems therefore becomes a key factor in increasing the user base of automotive AI. This challenge can be addressed by demonstrating long CoT.

The explainability of AI systems can be achieved at three levels: data explainability, model explainability, and post-hoc explainability.

In Li Auto's case, its L3 autonomous driving uses "AI reasoning visualization technology" to intuitively present the thinking process of end-to-end + VLM models, covering the entire process from physical world perception input to driving decision outputted by the foundation model, enhancing users' trust in intelligent driving systems.

In Li Auto's "AI reasoning visualization technology":

Attention system displays traffic and environmental information perceived by the vehicle, evaluates the behavior of traffic participants in real-time video streams and uses heatmaps to display evaluated objects.

End-to-end (E2E) model displays the thinking process behind driving trajectory output. The model thinks about different driving trajectories, presents 10 candidate output results, and finally adopts the most likely output result as the driving path.

Vision language model (VLM) displays its perception, reasoning, and decision-making processes through dialogue.

Various reasoning models' dialogue interfaces also employ a long CoT to break down the reasoning process as well. Examples include DeepSeek R1 which during conversations with users, first presents the decision at each node through a CoT and then provides explanations in natural language.

Additionally, most reasoning models, including Zhipu's GLM-Zero-Preview, Alibaba's QwQ-32B-Preview, and Skywork 4.0 o1, support demonstration of the long CoT reasoning process.

DeepSeek lowers the barrier to introduction of foundation models in vehicles, enabling both performance improvement and cost reduction.

Does the improvement in reasoning capabilities and overall performance mean higher costs? Not necessarily, as seen with DeepSeek's popularity. In early 2025, OEMs have started connecting to DeepSeek, primarily to enhance the comprehensive capabilities of vehicle foundation models as seen in specific applications.

In fact, before DeepSeek models were launched, OEMs had already been developing and iterating their automotive AI foundation models. In the case of cockpit assistant, some of them had completed the initial construction of cockpit assistant solutions, and connected to cloud foundation model suppliers for trial operation or initially determined suppliers, including cloud service providers like Alibaba Cloud, Tencent Cloud, and Zhipu. They connected to DeepSeek in early 2025, valuing the following:

Strong reasoning performance: for example, the R1 reasoning model is comparable to OpenAI o1, and even excels in mathematical logic.

Lower costs: maintain performance while keeping training and reasoning costs at low levels in the industry.

By connecting to DeepSeek, OEMs can really reduce the costs of hardware procurement, model training, and maintenance, and also maintain performance, when deploying intelligent driving and cockpit assistants:

Low computing overhead technologies facilitate high-level autonomous driving and technological equality, which means high performance models can be deployed on low-compute automotive chips (e.g., edge computing unit), reducing reliance on expensive GPUs. Combined with DualPipe algorithm and FP8 mixed precision training, these technologies optimize computing power utilization, allowing mid- and low-end vehicles to deploy high-level cockpit and autonomous driving features, accelerating the popularization of intelligent cockpits.

Enhance real-time performance. In driving environments, autonomous driving systems need to process large amounts of sensor data in real time, and cockpit assistants need to respond quickly to user commands, while vehicle computing resources are limited. With lower computing overhead, DeepSeek enables faster processing of sensor data, more efficient use of computing power of intelligent driving chips (DeepSeek realizes 90% utilization of NVIDIA A100 chips during server-side training), and lower latency (e.g., on the Qualcomm 8650 platform, with computing power of 100TOPS, DeepSeek reduces the inference response time from 20 milliseconds to 9-10 milliseconds). In intelligent driving systems, it can ensure that driving decisions are timely and accurate, improving driving safety and user experience. In cockpit systems, it helps cockpit assistants to quickly respond to user voice commands, achieving smooth human-computer interaction.

Table of Contents

Definitions

1 Overview of AI Foundation Models

  • 1.1 Introduction to AI Models
  • Definition and Features of AI Models
  • Classification of AI Models by Architecture
  • Classification of AI Models by Task Type/Training Method
  • Classification of AI Models by Supervision Mode
  • Classification of AI Models by Modality
  • Application Process of AI Models
  • 1.2 Introduction to Foundation Models
  • Classification of Foundation Models
  • Current Development of Foundation Models in Automotive Industry
  • Application Scenarios of Foundation Models in Automotive Industry
  • Application Case 1: Application of LLM in Autonomous Driving
  • Application Case 2: Application of VFM in Autonomous Driving
  • Application Case 3: Application of MFM in Autonomous Driving

2 Analysis of AI Foundation Models of Differing Types

  • 2.1 Large Language Models (LLM)
  • Development History of LLM
  • Key Capabilities of LLM
  • Cases of Integration with Other Models
  • 2.2 Multimodal Large Language Models (MLLM)
  • Development and Overview of Large Multimodal Models
  • Large Multimodal Models VS. Large Single-modal Models (1)
  • Large Multimodal Models VS. Large Single-modal Models (2)
  • Technology Panorama of Large Multimodal Models
  • Multimodal Information Representation
  • Multimodal Large Language Models (MLLM)
  • Architecture and Core Components of MLLM
  • Status Quo of MLLM
  • Dataset Evaluation by Different MLLM Representatives
  • Reasoning Capabilities of MLLM
  • Synergy between MLLM and Agent
  • Application Case 1: Application of MLLM in VQA
  • Application Case 2: Application of MLLM in Autonomous Driving
  • 2.3 Vision-Language Models (VLM) and Vision-Language-Action (VLA) Models
  • Development History of VLM
  • Application of VLM
  • Architecture of VLM
  • Evolution of VLM in Intelligent Driving
  • Application Scenarios of VLM: End-to-end Autonomous Driving
  • Application Scenarios of VLM: Combination with Gaussian Framework
  • VLM->VLA
  • VLA Models
  • Principles of VLA
  • Classification of VLA Models
  • Application Cases of VLA (1)
  • Application Cases of VLA (2)
  • Application Cases of VLA (3)
  • Application Cases of VLA (4)
  • Case 1: Core Functions of End-to-End Multimodal Model for Autonomous Driving (EMMA)
  • Case 2: World Model Construction
  • Case 3: Improve Vision-Language Navigation Capabilities
  • Case 4: VLA Generalization Enhancement
  • Case 5: Computing Overhead of VLA
  • 2.4 World Models
  • Key Definitions of World Models and Application Development
  • Basic Architecture of World Models
  • Framework Setup and Implementation Challenges of World Models
  • Video Generation Methods Based on Transformer and Diffusion Models
  • Technical Principle and Path of WorldDreamer
  • World Models and End-to-end Intelligent Driving
  • World Models and End-to-end Intelligent Driving: Data Generation
  • Case 1: Tesla World Model
  • Case 2: NVIDIA
  • Case 3: InfinityDrive
  • Case 4: Worlds Labs Spatial Intelligence
  • Case 5: NIO
  • Case 6: 1X's "World Model"

3 Common Technologies in AI Foundation Models

  • Common Foundation Model Algorithms and Architectures
  • Comparison of Features and Application Scenarios between Foundation Model Algorithms
  • 3.1 Foundation Model Architectures and Related Algorithms
  • Transformer: Architecture and Features
  • Transformer: Algorithm Mechanisms
  • Transformer: Multi-head Attention Mechanisms and Their Variants
  • KAN: Potential to Replace MLP
  • KAN: Cases of Integration with Transformer Architecture
  • MAMBA: Introduction
  • MAMBA: Architectural Foundations
  • MAMBA: Latest Developments
  • MAMBA: Application Scenarios
  • MAMBA: Cases of Integration with Transformer Architecture
  • Applicability of CNN in the Era of Foundation Models
  • Applicability of RNN Variants in the Era of Foundation Models
  • 3.2 Visual Processing Algorithms
  • Common Vision Algorithms
  • ViT
  • CLIP Scenarios and Features
  • CLIP Workflow
  • LLaVA Model
  • 3.3 Training and Fine-Tuning Technologies
  • Foundation Model Training Process
  • Training Case: Geely's CPT Enhancement Solution
  • Instruction Fine-tuning
  • Training Case: Geely's Fine-tuning Framework for Multi-round Dialogues
  • 3.4 Reinforcement Learning
  • Introduction to Reinforcement Learning
  • Reinforcement Learning Process
  • Comparison between Some Reinforcement Learning Technology Routes
  • Cases of Reinforcement Learning (1)-(3)
  • 3.5 Knowledge Graphs
  • Optimization Directions for Retrieval-Augmented Generation (RAG)
  • Evolution Directions of RAG (1): KAG
  • Evolution Directions of RAG (2): CAG
  • Evolution Directions of RAG (3): GraphRAG
  • RAG Application Case 1:
  • RAG Application Case 2:
  • RAG Application Case 3: Li Auto
  • RAG Application Case 4: Geely
  • Comparison between RAG Routes
  • Function Call
  • 3.6 Reasoning Technologies
  • Reasoning Process of Transformer Models
  • Evaluation of Reasoning Capabilities
  • Three Optimization Directions for Foundation Model Reasoning
  • Reasoning Task Types (1)
  • Reasoning Task Types (2)
  • Reasoning Task Types (3)
  • Common Reasoning Algorithm 1: CoT
  • Common Reasoning Algorithm 2: GoT/ToT
  • Comparison between Common Reasoning Algorithms
  • Common Reasoning Algorithm 3: PagedAttention
  • Reasoning Case 1: Geely
  • Reasoning Case 2: NVIDIA
  • 3.7 Sparsification
  • Characteristics of MoE Architecture
  • Principles of MoE Architecture
  • MoE Training Strategies
  • Advantages and Challenges of MoE
  • MoE Models from Different Foundation Model Companies
  • Evolution Direction of MoE
  • 3.8 Generation Technologies
  • Introduction to Generative Models
  • Comparison between Generation Technologies
  • Case 1: Li Auto
  • Case 2: XPeng
  • Case 3: SAIC

4 AI Foundation Model Companies

  • Development History of Mainstream Foundation Models
  • Mainstream Foundation Models and Their Companies (Foreign)
  • Mainstream Foundation Models and Their Companies (Chinese)
  • Rankings of Evaluated Foundation Models
  • 4.1 OpenAI
  • Product Layout
  • Product Iteration History
  • GPT Series: Features
  • GPT Series: Architecture
  • From GPT-4V to 4o
  • Reasoning Model OpenAI o1
  • SORA: Features
  • SORA: Performance Evaluation
  • SORA: Advantages and Limitations
  • 4.2 Google
  • Development History of Foundation Models
  • Typical Model BERT: Architecture
  • Typical Model BERT: Variants
  • Gemini Model
  • Cases of Foundation Models in the Automotive Industry
  • 4.3 Meta
  • LLAMA3.3
  • LLAMA Series: Evolution
  • LLAMA Series: Features
  • LLAMA Series: Training Methods
  • LLAMA Series: Alpaca
  • LLAMA Series: Vicuna
  • 4.4 Anthropic
  • Claude Performance Evaluation
  • Claude-based PC-side Agent
  • 4.5 Mistral AI
  • Expert Model: Architecture
  • Expert Model: Algorithm Features (1)
  • Expert Model: Algorithm Features (2)
  • Large Language Model: Mistral Large 2
  • 4.6 Amazon
  • Nova Product System
  • Application Cases of Amazon AI Cloud in the Automotive Industry (1)-(3)
  • 4.7 Stability AI
  • Product System
  • Stable Diffusion Architecture Based on Diffusion Models
  • Comparison between Stable Diffusion Video Generation Technology with Competitors
  • 4.8 xAI
  • Product System
  • Capabilities of xAI Models
  • Capabilities of Grok-2
  • Capabilities of Grok-0/1
  • 4.9 Abu Dhabi Technology Innovation Institute
  • Iteration History of Falcon Model Series
  • Parameters of Falcon 3 Series
  • Evaluation of Falcon 3 Series
  • 4.10 SenseTime
  • Major Foundation Model Product Systems
  • Major Foundation Model Product Systems
  • Foundation Model Training Facilities
  • Functional Scenarios of Foundation Models
  • Foundation Model Technologies
  • 4.11 Alibaba Cloud
  • Foundation Model Product System
  • End-cloud Integration Solutions of Foundation Models
  • 4.12 Baidu AI Cloud
  • Foundation Model Product System
  • 4.13 Tencent Cloud
  • Foundation Model Product System
  • Reasoning Service Solutions (1)-(3)
  • Generation Scenario Solutions for Foundation Models
  • Q&A Scenario Solutions for Foundation Models
  • 4.14 ByteDance & Volcano Engine
  • Doubao Model System
  • Functional Highlights of Volcano Engine's Cockpit
  • 4.15 Huawei
  • Pangu Model Product System
  • Application Cases of Pangu Models in Data Synthesis
  • LLM Architecture of Pangu Models
  • Capabilities of Pangu Models: Multimodal Technology
  • Capabilities of Pangu Models: Thinking & Reasoning Technology
  • AI Cloud Services of Pangu Models
  • 4.16 Zhipu AI
  • Product System
  • Foundation Model Base in the Automotive Industry
  • Technical Features
  • 4.17 Flytek
  • Product System
  • Functional and Technical Highlights
  • Cockpit AI System
  • 4.18 DeepSeek
  • Product System
  • Technical Inspiration from DeepSeek V3
  • Technical Highlights of DeepSeek R1
  • Application Cases of DeepSeek (1)-(3)

5 Application Cases of AI Foundation Models in Automotive

  • 5.1 Cockpit Cases
  • Lenovo's AI Vehicle Computing Framework Used in Cockpits
  • In-cabin Functions of Thundersoft's Rubik Foundation Model
  • LLM Empowers Smart Eye's DMS/OMS Assistance System
  • Application of DIT in Voice Processing Scenarios
  • Application of Unisound's Shanhai Model in Cockpits
  • Phoenix Auto Intelligence's Cockpit Smart Brain
  • 5.2 Intelligent Driving Cases
  • Li Auto: Multimodal Technology in Autonomous Driving (1)
  • Li Auto: Multimodal Technology in Autonomous Driving (2)
  • Li Auto: Multimodal Technology in Autonomous Driving (3): Overcoming 2D Limitations
  • Li Auto: Data Generation Technology (1)
  • Li Auto: Data Generation Technology (2)
  • Li Auto: CoT Technology in DriveVLM
  • Li Auto: Application of Visual Processing
  • Li Auto: Data Selection
  • Geely: Application of Visual Processing
  • Geely: Multimodal Learning Framework
  • Waymo: Generative World Model GAIA-1
  • Tesla: Algorithm Architecture (Including NeRF)
  • Tesla: Skeleton, Neck, and Head of Vision Algorithms
  • Tesla: Core of Visual System - HydraNet
  • Giga's World Model

6 Application Trends of AI Foundation Models

  • 6.1 Data
  • Trend 1:
  • Trend 2:
  • 6.2 Algorithm
  • Trend 1:
  • Trend 2:
  • Trend 3
  • Trend 4:
  • 6.3 Computing Power
  • Trend 1:
  • Trend 2:
  • 6.4 Engineering
  • Trend 1
  • Trend 2
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제