![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1438137
¼¼°èÀÇ ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(FESS) ½ÃÀå ¿¹Ãø(-2030³â) : À¯Çüº°, ¸² À¯Çüº°, ÅëÇÕº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®Flywheel Energy Storage System Market Forecasts to 2030 - Global Analysis By Type (Low-Speed Flywheels and High-Speed Flywheels), Rim Type (Carbon-Fiber Composite Rim, Steel Rim and Aluminum Rim), Integration, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(FESS) ½ÃÀåÀº 2023³â¿¡ 14¾ï 2,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇß°í ¿¹Ãø ±â°£ Áß CAGRÀº 4.4%·Î, 2030³â¿¡´Â 19¾ï 5,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(FESS)Àº ¿¡³ÊÁö¸¦ µ¿ÀûÀ¸·Î ÀúÀåÇϰí À׿© Àü·ÂÀ» ȸÀü ¿îµ¿À¸·Î º¯È¯ÇÕ´Ï´Ù. ¼ö¿ä°¡ ÀûÀº ½Ã±â¿¡´Â °Å´ëÇÑ ÇöóÀÌÈÙÀ» °¡¼Ó½ÃÄÑ ¿¡³ÊÁö¸¦ ÃàÀûÇϰí, ¼ö¿ä°¡ ±ÞÁõÇϸé ÇöóÀÌÈÙÀ» °¨¼Ó½ÃÄÑ ÃàÀûÇÑ ¿¡³ÊÁö¸¦ ¹æÃâÇÕ´Ï´Ù. ÀÌ ½Å¼ÓÇÑ ¿¡³ÊÁö À̵¿Àº ½Å¼ÓÇÑ ÀÀ´ä ½Ã°£À» °¡´ÉÇÏ°Ô Çϸç, ÇöóÀÌÈÙÀº ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤È ¹× ¹é¾÷ Àü¿øÀ¸·Î À¯¿ëÇÕ´Ï´Ù. ±× ±â°èÀû ¼ºÁú¿¡ ÀÇÇØ »çÀÌŬ È¿À²ÀÌ ³ô°í, °æ³â ¿È°¡ Àû½À´Ï´Ù.
±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é 2035³â±îÁö °³¹ßµµ»ó±¹ÀÌ ¿¡³ÊÁö »ý»ê°ú ¼ÒºñÀÇ ÃÑ ¼ºÀåÀÇ 80%¸¦ Â÷ÁöÇÏ°Ô µÈ´Ù°í ÇÕ´Ï´Ù.
¿¡³ÊÁö ÀúÀåÀÇ ÀÌÁ¡¿¡ ´ëÇÑ ÀÎ½Ä Áõ°¡
ÇöóÀÌÈÙ ½Ã½ºÅÛÀÇ ½Å¼ÓÇÑ ÀÀ´ä ½Ã°£, ¿ì¼öÇÑ ¿¡³ÊÁö °æÁ¦¼º, ½Å·Ú¼ºÀº Àü·Â ȸ»ç¿Í »ê¾÷°è°¡ È¿°úÀûÀÎ ¿¡³ÊÁö °ü¸®ÀÇ Á߿伺À» ÀνÄÇÔ¿¡ µû¶ó ´õ¿í ¹Ù¶÷Á÷ÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀǽÄÀÇ °íÁ¶¿¡ ´õÇØ, ÇöóÀÌÈÙ ±â¼úÀÌ ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼º°ú Àç»ý °¡´É ¿¡³ÊÁöÀÇ ÅëÇÕ¿¡ ¿Ï¼öÇÏ´Â ±â´É¿¡ ´ëÇÑ ÀÌÇØ°¡ ÁøÇàµÊÀ¸·Î½á, ÇöóÀÌÈÙ ½Ã½ºÅÛÀÇ Ã¤¿ëÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù. Áö½ÄÀÇ À¯ÀÍÇÑ ¿µÇâÀº ±â¼ú Çâ»ó°ú Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀ¸·Î ´õ¿í ÁõÆøµË´Ï´Ù. À̰ÍÀº ½ÃÀåÀÇ »ó½ÂÀ¸·Î À̾îÁö°í, ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀåÀº ¿¡³ÊÁö ȯ°æ º¯ÈÀÇ ÁÖ¿ä ±â¾÷·Î È®¸³µË´Ï´Ù.
ȯ°æ¿¡ ´ëÇÑ ¿ì·Á
ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(FESS)ÀÇ È¯°æ¿¡ ´ëÇÑ ¿ì·Á´Â ÁÖ·Î °Ç¼³¿¡ »ç¿ëµÇ´Â Àç·á¿Í Á¦Á¶ ¹× Æó±â ½Ã ÀáÀçÀûÀÎ ¿µÇâÀ¸·Î ÀÎÇØ ¹ß»ýÇÕ´Ï´Ù. FESS´Â ÀϹÝÀûÀ¸·Î ¸î °¡Áö ´ë¾Èº¸´Ù ±ú²ýÇÏ´Ù°í ¿©°ÜÁöÁö¸¸ ȯ°æ ¹ßÀÚ±¹¿¡ ´ëÇÑ ¿ì·Á°¡ ³²¾Æ ÀÖ½À´Ï´Ù. Àç·á ÃßÃâ ¹× °¡°ø ¹× »ç¿ë ÈÄ Æó±â´Â »ýŰ迡 ¾Ç¿µÇâÀ» ¹ÌÄ¡´Â ¿øÀÎÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ¿ì·Á°¡ ½ÃÀå ¼ºÀåÀ» ¹æÇØÇϰí ÀÖ½À´Ï´Ù.
Á¤ºÎ Áö¿ø°ú Àμ¾Æ¼ºê Áõ°¡
¼¼°è °¢±¹ÀÇ Á¤ºÎ´Â ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤°ú Àç»ý°¡´É¿¡³ÊÁöÀÇ ÅëÇÕ¿¡ ÀÖ¾î¼ÀÇ ¿¡³ÊÁö ÀúÀåÀÇ Á߿伺À» ÀνÄÇϰí ÀÖ½À´Ï´Ù. ÀçÁ¤ Áö¿ø, º¸Á¶±Ý, À¯¸®ÇÑ Á¤Ã¥À» Á¦°øÇÔÀ¸·Î½á Á¤ºÎ´Â FESS ±â¼úÀÇ Ã¤ÅÃÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¿øÀº ±â¾÷ ¹× Àü·Â ȸ»çÀÇ Ãʱâ ÅõÀÚ À庮À» ÁÙÀÏ »Ó¸¸ ¾Æ´Ï¶ó Á¶ÀåÀûÀÎ ±ÔÁ¦ ȯ°æÀ» À°¼ºÇÕ´Ï´Ù. ±× °á°ú, Á¤ºÎÀÇ µÞ¹ÞħÀÌ Ã˸ÅÀÇ ¿ªÇÒÀ» Çϰí, FESSÀÇ Ã¤¿ëÀ» ÃËÁøÇϰí, ÀÌ ±â¼ú¿¡ À¯¸®ÇÑ ½ÃÀå »óȲÀ» Á¶¼ºÇϰí ÀÖ½À´Ï´Ù.
³ôÀº Ãʱ⠺ñ¿ë
ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(FESS)Àº Á¤¹Ð °¡°ø ºÎǰ, ÷´Ü Àç·á, º¹ÀâÇÑ Á¦¾î ½Ã½ºÅÛ µî °í±Þ ¿£Áö´Ï¾î¸µÀÌ ÇÊ¿äÇϹǷΠÃʱ⠺ñ¿ëÀÌ ³ô½À´Ï´Ù. °í¼Ó ȸÀü ºÎǰÀÇ Á¦Á¶ ¹× ÅëÇÕÀº ºñ¿ë »ó½ÂÀÇ ¿øÀÎÀÌ µË´Ï´Ù. ±â¾÷ ¹× Àü·Â ȸ»ç´Â Ãʱâ ÅõÀÚ°¡ ºÎÇǸ¦ ÀÒ°í Ãʱ⠺ñ¿ëÀÌ ³·À» °ÍÀ¸·Î º¸ÀÌ´Â ´ëü ¿¡³ÊÁö ÀúÀå ¿É¼ÇÀ» ¼±ÅÃÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºñ¿ë ¿äÀÎÀº ½ÃÀåÀÇ Àå¾Ö°¡µÇ°í º¸±ÞÀÌ Á¦Çѵ˴ϴÙ.
COVID-19ÀÇ ¿µÇâ
COVID-19ÀÇ À¯ÇàÀº °ø±Þ¸Á È¥¶õ, ÇÁ·ÎÁ§Æ® Áö¿¬, ÅõÀÚ °¨¼Ò·Î À̾îÁ® ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(FESS) ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ¿î¿µ Á¤Áö ¹× ±ÔÁ¦´Â Á¦Á¶ ¹× ¼³Ä¡ ÇÁ·Î¼¼½º¿¡ ¿µÇâÀ» ÁÖ¾î ½ÃÀå ¼ºÀåÀÇ µÐÈ·Î À̾îÁ³½À´Ï´Ù. ±×·¯³ª ½ÅÀç»ý¿¡³ÊÁö¿Í ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼º¿¡ ´ëÇÑ ÁÖ¸ñ Áõ°¡´Â Áö¼Ó°¡´ÉÇÑ ¼Ö·ç¼Ç¿¡ ´ëÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í ÇÔ²² ¼¼°è°æÁ¦°¡ À¯Çà ÀÌÈÄ Á¡Â÷ ¾ÈÁ¤ÈµÊ¿¡ µû¶ó ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(FESS) ½ÃÀåÀÇ È¸º¹ ±×¸®°í ¹Ì·¡ÀÇ ¼ºÀåÀ» °ßÀÎÇß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È Àç»ý °¡´É ¿¡³ÊÁö ÅëÇÕ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»ó
½ÅÀç»ý¿¡³ÊÁö ÅëÇÕ ºÐ¾ß´Â À¯¸®ÇÑ ¼ºÀåÀ» ÀÌ·ç´Â °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù. ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(FESS)Àº dz·ÂÀ̳ª ž籤°ú °°Àº Àü¿øÀÇ °£ÇæÀûÀΠƯ¼ºÀ» ´Ù·ç´Â °ÍÀ¸·Î Àç»ý°¡´É ¿¡³ÊÁö ÅëÇÕ¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. FESS´Â ÇÇÅ© ¹ßÀü ±â°£ µ¿¾È À׿© ¿¡³ÊÁö¸¦ È¿À²ÀûÀ¸·Î ÀúÀåÇÏ°í ¼ö¿ä°¡ ³ô°Å³ª Àç»ý °¡´É ¿¡³ÊÁö ¹ßÀüÀÌ ºÒȰ¼ºÀÏ ¶§ À̸¦ ¹æÃâÇÔÀ¸·Î½á ½Å¼ÓÇÑ ÀÀ´ä ´É·ÂÀ» Á¦°øÇÕ´Ï´Ù. À̸¦ ÅëÇØ °èÅë ¾ÈÁ¤È, Á֯ļö Á¶Á¤ ¹× ¾ÈÁ¤ÀûÀÎ Àü¿ø °ø±ÞÀÌ °¡´ÉÇÕ´Ï´Ù. ½ÅÀç»ý¿¡³ÊÁö ¿ë·®ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó FESS´Â ¼ÒÁßÇÑ ¼Ö·ç¼ÇÀ¸·Î ÀÛ¿ëÇÏ¿© ¼ÛÀü¸ÁÀÇ ½Å·Ú¼ºÀ» ³ôÀÌ°í ±âÁ¸ Àü·Â ½Ã½ºÅÛ¿¡ ûÁ¤ ¿¡³ÊÁö¿øÀ» ¿øÈ°ÇÏ°Ô ÅëÇÕÇÒ ¼ö ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµÇ´Â »ê¾÷ ºÎ¹®
¿¹Ãø ±â°£ µ¿¾È CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµÇ´Â °ÍÀº »ê¾÷ ºÎ¹®ÀÔ´Ï´Ù. ÇöóÀÌÈÙ ¿¡³ÊÁö ÀúÀå ½Ã½ºÅÛ(FESS)Àº ¿¡³ÊÁö È¿À²À» ³ôÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â Àü·Â ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á »ê¾÷ ºÐ¾ß¿¡¼ °¡Ä¡ ÀÖ´Â ¿ëµµÀ» ¹ß°ßÇϰí ÀÖ½À´Ï´Ù. »ê¾÷ºÐ¾ß¿¡¼ FESS´Â ¹«Á¤ÀüÀü¿øÀ¸·Î¼ ±â´ÉÇÏ¿© ¼ÛÀü¸Á º¯µ¿À̳ª Á¤Àü½Ã ¾ÈÁ¤µÈ Àü¿øÀ» È®º¸ÇÕ´Ï´Ù. ½Å¼ÓÇÑ ¹ÝÀÀ°ú ³ôÀº ¿¡³ÊÁö ¹Ðµµ´Â »ý»ê Áß´ÜÀ» ¹æÁöÇÏ´Â Áß¿äÇÑ ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀÌÁ¡À¸·Î ÀÎÇØ FESS´Â ±×¸®µå ¾ÈÁ¤¼º, ºñ¿ë Àý°¨, »ê¾÷ ºÎ¹®ÀÇ ½Å·Ú¼º Çâ»ó¿¡ ±â¿©ÇÏ¿© ¸Å·ÂÀûÀÎ ¿¡³ÊÁö ÀúÀå ¼Ö·ç¼ÇÀÌ µÇ¾ú½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ±Þ¼ÓÇÑ »ê¾÷È, ¿¡³ÊÁö ¼ö¿ä Áõ°¡, Àç»ý °¡´É ¿¡³ÊÁö¿øÀ¸·ÎÀÇ ÀüȯÀÌ FESSÀÇ Ã¤¿ëÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡µéÀº ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼ºÀ» ³ôÀ̰í Àç»ý °¡´É ¿¡³ÊÁöÀÇ ÅëÇÕÀ» Áö¿øÇϱâ À§ÇØ ¿¡³ÊÁö ÀúÀå ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿ø Á¤Ã¥, Àμ¾Æ¼ºê, ÀÌ´Ï¼ÅÆ¼ºêµµ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ FESS ½ÃÀåÀº °æÁ¦ ¼ºÀå, ¿¡³ÊÁö Àüȯ ¸ñÇ¥ ¹× ÀÌ Áö¿ªÀÇ À¯¸®ÇÑ ±ÔÁ¦ ȯ°æÀÇ Á¶ÇÕÀ¸·Î ´õ¿í °³Ã´µÉ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È À¯·´ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯·´Àº ½ÅÀç»ý¿¡³ÊÁöÀÇ ÅëÇÕ°ú ¼ÛÀü¸ÁÀÇ ¾ÈÁ¤¼ºÀ» Áß½ÃÇϰí Àֱ⠶§¹®¿¡ °ßÁ¶ÇÑ ¼ºÀåÀ» ÀÌ·ç°í ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê, ¾ö°ÝÇÑ È¯°æ ±ÔÁ¦, ¿¡³ÊÁö ÀúÀå ±â¼ú¿¡ ´ëÇÑ Àμ¾Æ¼ºê°¡ ½ÃÀå È®´ë¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. À¯·´ÀÌ º¸´Ù ±ú²ýÇÑ ¿¡³ÊÁö¿øÀ¸·ÎÀÇ ÀüȯÀ» °è¼ÓÇϰí ÀÖ´Â °¡¿îµ¥, FESS ½ÃÀåÀº ´õ¿í ¹ßÀüÀÇ Å¼¼¸¦ ¸¶·ÃÇϰí ÀÖ¾î ÅõÀÚ¿Í ÆÄÆ®³Ê½ÊÀÇ È®´ë°¡ ÀÌ Áö¿ª¿¡¼ÀÇ ÇöóÀÌÈÙ ±â¼úÀÇ ¿ªµ¿ÀûÀ̰í À¯¸ÁÇÑ »óȲÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Flywheel Energy Storage System Market is accounted for $1.42 billion in 2023 and is expected to reach $1.95 billion by 2030 growing at a CAGR of 4.4% during the forecast period. Flywheel energy storage systems store energy kinetically, converting excess electricity into rotational motion. During periods of low demand, the system accelerates a massive flywheel to store energy, and when demand spikes, it releases the stored energy by decelerating the flywheel. This rapid energy transfer enables quick response times, making flywheels valuable for grid stabilization and backup power. Their mechanical nature allows for high cycle efficiency and minimal degradation over time.
According to the International Energy Agency (IEA), by 2035, the developing nations will represent 80% of the total growth in energy production and consumption.
Increasing awareness of energy storage benefits
Flywheel system's quick response times, great energy economy, and dependability are becoming more desirable as utilities and industry increasingly realise the importance of effective energy management. Adoption of these systems is accelerated by this increased awareness as well as a developing comprehension of the function flywheel technology plays in grid stability and integration of renewable energy. The beneficial impact of knowledge is further amplified by technological improvements and a focus on sustainable energy solutions. This leads to the rise of the market and establishes flywheel energy storage as a major player in the changing energy environment.
Environmental concerns
Environmental concerns in Flywheel Energy Storage Systems (FESS) primarily arise from the materials used in construction and potential impacts during manufacturing and disposal. While FESS is generally considered cleaner than some alternatives, concerns linger about the environmental footprint. The extraction and processing of materials, as well as the end-of-life disposal, contributes to negative ecological effects. These concerns hinder the market growth.
Mounting government support and incentives
Governments worldwide are increasingly recognizing the importance of energy storage for grid stability and renewable energy integration. By offering financial support, subsidies, and favourable policies, governments encourage the adoption of FESS technologies. This support not only reduces initial investment barriers for businesses and utilities but also fosters a conducive regulatory environment. As a result, the growing governmental backing acts as a catalyst, driving increased adoption of FESS and fostering a favourable market landscape for the technology.
High initial costs
Flywheel Energy Storage Systems (FESS) incurs high initial costs due to the sophisticated engineering required for precision-machined components, advanced materials, and intricate control systems. The manufacturing and integration of high-speed rotating components contribute to elevated expenses. Businesses and utilities may be deterred by the upfront investment, choosing alternative energy storage options with perceived lower initial costs. This cost factor becomes a hindrance in the market, limiting widespread adoption.
Covid-19 Impact
The covid-19 pandemic has affected the flywheel energy storage system market significantly by causing disruptions in supply chains, project delays, and reduced investments. Lockdowns and restrictions have impacted manufacturing and installation processes, leading to a slowdown in market growth. However, the increasing focus on renewable energy and grid stability, coupled with government initiatives for sustainable solutions, driven the recovery and future growth of the flywheel energy storage system market as the global economy gradually stabilizes post-pandemic.
The renewable integration segment is expected to be the largest during the forecast period
The renewable integration segment is estimated to have a lucrative growth. Flywheel energy storage systems play a crucial role in renewable energy integration by addressing the intermittent nature of sources like wind and solar. FESS provides rapid response capabilities, efficiently storing excess energy during peak generation periods and releasing it when demand is high or renewable sources are inactive. This enables grid stabilization, frequency regulation, and ensures a consistent power supply. As renewable energy capacity grows, FESS serves as a valuable solution, enhancing the reliability of the grid and facilitating seamless integration of clean energy sources into existing power systems.
The industrial segment is expected to have the highest CAGR during the forecast period
The industrial segment is anticipated to witness the highest CAGR growth during the forecast period. Flywheel energy storage systems find valuable applications in the industrial sector by enhancing energy efficiency and providing reliable power solutions. In industries, FESS acts as an uninterruptible power supply, ensuring a stable power source during grid fluctuations or outages. Their rapid response and high energy density make them ideal for critical applications, preventing production disruptions. With these benefits, FESS contributes to grid stability, cost savings, and increased reliability in the industrial sector, making it a compelling energy storage solution.
Asia Pacific is projected to hold the largest market share during the forecast period. Rapid industrialization, increasing energy demand, and a shift towards renewable energy sources drive the adoption of FESS. Countries like China, Japan, and South Korea are investing heavily in energy storage technologies to enhance grid stability and support renewable integration. Additionally, supportive government policies, incentives, and initiatives for sustainable energy solutions contribute to the market's expansion. The Asia-Pacific FESS market is poised for further development, driven by a combination of economic growth, energy transition goals, and favourable regulatory environments in the region.
Europe is projected to have the highest CAGR over the forecast period. Europe is experiencing robust growth due to the region's emphasis on renewable energy integration and grid stability. Government initiatives, stringent environmental regulations, and incentives for energy storage technologies contribute to market expansion. As Europe continues its transition to cleaner energy sources, the FESS market is poised for further development, with increased investments and partnerships shaping a dynamic and promising landscape for flywheel technology in the region.
Key players in the market
Some of the key players profiled in the Flywheel Energy Storage System Market include Kinetic Traction Systems, Beacon Power LLC, Active Power, Temporal Power Limited, Powerthru, Vycon Energy, Amber Kinetics, Energiestro, Rheinmetall AG, Siemens AG, The Boeing Company, Adaptive Balancing Power GmbH, GKN Hybrid Power Limited, Pentadyne Power Corporation, STORNETIC GmbH and Calnetix Technologies LLC.
In July 2022, Active Power partnered with Central Power to bring live PowerHouse power outage demonstrations alongside Central Power standby generators. The PowerHouse has the company's flagship cleansource plus MMS 1.33MW UPS with automatic transfer.
In June 2022, Adaptive Balancing Power delivered a new charging infrastructure with flywheel storage, enabling switching to e-buses in the area even without expanding the power grids. The pantograph charging station using the high-performance flywheel mass storage will likely go into operation after the test phase in regular driving operations.