½ÃÀ庸°í¼­
»óǰÄÚµå
1716331

¼¼°èÀÇ AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå : À¯Çüº°, µ¥ÀÌÅÍ À¯Çüº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼® ¹× ¿¹Ãø(-2032³â)

AI Training Dataset Market Forecasts to 2032 - Global Analysis By Type (Text Data, Image Data, Video Data and Audio Data), Data Type (Labeled Data, Unlabeled Data, Synthetic Data and Crowdsourced Data), End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀåÀº 2025³â 32¾ï ´Þ·¯¿¡ ´ÞÇÏ°í ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 23.9%¸¦ ³ªÅ¸³» 2032³â¿¡´Â 144¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

AI ÇнÀ µ¥ÀÌÅͼ¼Æ®´Â ¸Ó½Å·¯´× ¸ðµ¨À» ÇнÀÇÏ´Â µ¥ »ç¿ëµÇ´Â µ¥ÀÌÅÍ ¸ðÀ½À¸·Î, ¸Ó½Å·¯´× ¸ðµ¨ÀÌ ÆÐÅÏÀ» ÀνÄÇÏ°í ¿¹ÃøÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. µ¥ÀÌÅͼ¼Æ®ÀÇ Áú, ¾ç, ´Ù¾ç¼ºÀº ¸ðµ¨ÀÌ ¹ÌÁöÀÇ µ¥ÀÌÅÍ¿¡ ´ëÇØ¼­ ÀϹÝÈ­ÇØ, ¾çÈ£ÇÑ ¼º´ÉÀ» ¹ßÈÖÇϴµ¥ ÀÖ¾î ¸Å¿ì Áß¿äÇÑ ¿ªÇÒÀ» ¿Ï¼öÇÕ´Ï´Ù.

AI¿Í ¸Ó½Å·¯´× ¼ö¿ä Áõ°¡

AI¿Í ¸Ó½Å·¯´×¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ±â¼ú Çõ½ÅÀ» ÃËÁøÇÏ°í ±âȸ¸¦ È®´ëÇÔÀ¸·Î½á AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. ÀÌ ¼ö¿ä´Â µ¥ÀÌÅÍ ¼öÁý, Å¥·¹À̼Ç, ¶óº§¸µÀÇ Áøº¸¸¦ ÃËÁøÇÏ¿© AI ¸ðµ¨ÀÇ Á¤È®¼º°ú ¼º´É Çâ»óÀ¸·Î À̾îÁý´Ï´Ù.

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾È¿¡ ´ëÇÑ ¿ì·Á

±ÔÁ¤ Áؼö ºñ¿ëÀ» ´Ã¸®°í µ¥ÀÌÅÍ °¡¿ë¼ºÀ» Á¦ÇÑÇÏ°í µ¥ÀÌÅÍ °øÀ¯ °üÇàÀ» ÁÙÀÌ¸é µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã¿Í º¸¾È ¹®Á¦°¡ AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀåÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. Ÿ ÀÌ¿ëÀº Á¦ÇÑµÇ°í ´Ù¾çÇÑ Á¤º¸¿¡ ´ëÇÑ ¾×¼¼½º°¡ Á¦Çѵ˴ϴÙ. ÀÌ´Â AI °³¹ßÀ» Áö¿¬½ÃŰ°í ¹ýÀû ¿µÇâÀ» ¹ÞÀ» °¡´É¼ºÀ» ³ôÀÌ°í ±â¾÷ÀÌ Áß¿äÇÑ µ¥ÀÌÅ͸¦ ±³È¯ÇÒ ÀÇ¿åÀ» ¾ø¾Ö¸é¼­ AI ±³À°ÀÇ Çõ½ÅÀ» ¹æÇØÇÏ°í ½ÃÀå È®´ë¸¦ Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.

AI ±â¼úÀÇ Áøº¸

AI ±â¼úÀÇ Áøº¸´Â º¸´Ù Á¤È®ÇÏ°í ´Ù¾çÇϰí È¿À²ÀûÀÎ µ¥ÀÌÅͼ¼Æ®¸¦ °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀåÀ» ´ëÆø °­È­Çϰí ÀÖ½À´Ï´Ù. ÇнÀ µ¥ÀÌÅÍÀÇ È®À强°ú ½Å·Ú¼ºÀº µ¥ÀÌÅÍ Áõ´ë, ÇÕ¼º µ¥ÀÌÅÍ ÇÕ¼º, ÀÚµ¿ µ¥ÀÌÅÍ ¶óº§¸µ µîÀÇ Çõ½ÅÀ» ÅëÇØ Çâ»óµÇ¾ú½À´Ï´Ù.

µ¥ÀÌÅÍ °ü¸®ÀÇ º¹À⼺

µ¥ÀÌÅÍ °ü¸®ÀÇ º¹À⼺Àº ºñ¿ë°ú ¿î¿µÀÇ ºñÈ¿À²¼ºÀ» Áõ°¡½ÃÄÑ AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀåÀ» ÇöÀúÇÏ°Ô ÀúÇØÇϰí ÀÖ½À´Ï´Ù. Àº Á¢±Ù¼ºÀ» Á¦ÇÑÇϰí, µ¥ÀÌÅÍ Áغñ¸¦ Áö¿¬½Ã۰í, È®À强À» º¹ÀâÇÏ°Ô ÇϹǷÎ, ±â¾÷Àº Áö¿¬, °æºñ Áõ°¡, ÀÚ¿ø Á¦¾à¿¡ Á÷¸éÇϰí, AI ¸ðµ¨ÀÇ °³¹ßÀÌ Áö¿¬µÇ°í, AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå ÀüüÀÇ ¼ºÀåÀÌ Á¦Çѵ˴ϴÙ.

COVID-19ÀÇ ¿µÇâ

COVID-19ÀÇ À¯ÇàÀº AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå¿¡ Å« ¿µÇâÀ» ÁÖ¾î ´Ù¾çÇÏ°í °íǰÁúÀÇ µ¥ÀÌÅÍ ¼ö¿ä¸¦ °¡¼ÓÈ­Çß½À´Ï´Ù. µ¥ÀÌÅÍ ´ÏÁî°¡ ±ÞÁõÇßÁö¸¸, µ¥ÀÌÅÍÀÇ Èñ¼Ò¼º, ÇÁ¶óÀ̹ö½Ã¿¡ ´ëÇÑ ¿ì·Á, ÆíÇâµÈ µ¥ÀÌÅͼ¼Æ® µîÀÇ °úÁ¦°¡ ¶°¿À¸£°í, Æ÷½ºÆ®ÆÇ µ¥¹Í ½Ã´ë¿¡¼­ÀÇ À±¸®ÀûÀÎ µ¥ÀÌÅÍ ¼Ò½Ì°ú µ¥ÀÌÅͼ¼Æ® °ü¸® Àü·«ÀÇ °³¼±¿¡ ÁÖ¸ñÀÌ ¸ð¾ÆÁö°í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È µ¿¿µ»ó µ¥ÀÌÅÍ ¿µ¿ªÀÌ ÃÖ´ëÈ­µÉ Àü¸Á

ºñµð¿À µ¥ÀÌÅÍ ºÎ¹®Àº ¸ðµ¨ÀÇ Á¤È®¼º°ú ¼º´ÉÀ» Çâ»ó½Ã۱â À§ÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÄÄÇ»ÅÍ ºñÀü, ÀÚÀ²ÁÖÇà Â÷·®, °¨½Ã µîÀÇ ºÐ¾ß¿¡¼­ÀÇ ´É·ÂÀÌ Çâ»óµË´Ï´Ù. ¼¼·ÃµÈ AI¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö´Â °¡¿îµ¥, ºñµð¿À µ¥ÀÌÅÍÀÇ ÅëÇÕÀº Çõ½ÅÀ» ÃËÁøÇϰí, ÀÇ»ç°áÁ¤À» °³¼±Çϰí, ¾÷°è ÀüüÀÇ µ¹ÆÄ±¸¸¦ ÃËÁøÇϰí, AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ®¿¡ À־ Áß¿äÇÑ ÀÚ»êÀÌ µÇ°í ÀÖ½À´Ï´Ù.

¶óº§ÀÌ ¾ø´Â µ¥ÀÌÅÍ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀÌ ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¶óº§ÀÌ ¾ø´Â µ¥ÀÌÅÍ ºÎ¹®Àº ¸ðµ¨ °³¹ßÀ» À§ÇÑ ¹æ´ëÇÏ°í ºñ¿ë È¿À²ÀûÀÎ ¸®¼Ò½º¸¦ Á¦°øÇϱ⠶§¹®¿¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¶óº§ÀÌ ¾ø´Â µ¥ÀÌÅÍÀÇ Çʿ伺 ¾øÀÌ ÆÐÅϰú ÅëÂû·ÂÀ» °¨ÁöÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº AI ±â¼úÀÇ ±Þ¼ÓÇÑ Áøº¸¿Í ÇコÄɾî, ±ÝÀ¶, Á¦Á¶ µî ¾÷°è Àüü¿¡¼­ µ¥ÀÌÅÍ ±¸µ¿ ¼Ö·ç¼Ç ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®¿¡ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI ¸ðµ¨ÀÇ Á¤È®¼º°ú È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ µ¥ÀÌÅÍ ¼öÁý°ú ó¸®ÀÇ ±ÞÁõÀº Çõ½ÅÀ» ÃËÁøÇÏ°í °æÁ¦ °³¹ßÀ» µÞ¹ÞħÇÏ°í ±â¾÷ÀÇ ¾÷¹« È¿À²È­¸¦ Áö¿øÇÔÀ¸·Î½á ¾Æ½Ã¾ÆÅÂÆò¾çÀ» AI ÁÖµµÀÇ ¼¼°èÀû Áøº¸¿¡ À־ÀÇ ÁÖ¿ä ±â¾÷·Î¼­ ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.¿ë ±âȸ¸¦ âÃâÇϰí, µ¥ÀÌÅÍ ÁÖµµÀÇ ÀÇ»ç°áÁ¤À» °­È­Çϰí, ÇコÄɾî, ±ÝÀ¶, ÀÚÀ²ÁÖÇàÂ÷ µîÀÇ ºÐ¾ß¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

¹«·á »ç¿ëÀÚ ÁöÁ¤ ¿ÀÆÛ¸µ

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå : À¯Çüº°

  • ÅØ½ºÆ® µ¥ÀÌÅÍ
  • À̹ÌÁö µ¥ÀÌÅÍ
  • ºñµð¿À µ¥ÀÌÅÍ
  • ¿Àµð¿À µ¥ÀÌÅÍ

Á¦6Àå ¼¼°èÀÇ AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå : µ¥ÀÌÅÍ À¯Çüº°

  • ·¹À̺íÀÌ ÁöÁ¤µÈ µ¥ÀÌÅÍ
  • ·¹À̺íÀÌ ¾ø´Â µ¥ÀÌÅÍ
  • ÇÕ¼º µ¥ÀÌÅÍ
  • Å©¶ó¿ìµå¼Ò½Ì µ¥ÀÌÅÍ

Á¦7Àå ¼¼°èÀÇ AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • IT ¹× Åë½Å
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • ÀºÇà, ±ÝÀ¶¼­ºñ½º ¹× º¸Çè(BFSI)
  • ¼Ò¸Å ¹× EÄ¿¸Ó½º
  • ÀÚµ¿Â÷ ¹× ¿î¼Û
  • Á¦Á¶
  • Á¤ºÎ ¹× ¹æÀ§
  • ¹Ìµð¾î ¹× ¿£ÅÍÅ×ÀÎ¸ÕÆ®
  • ±³À°
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦8Àå ¼¼°èÀÇ AI Æ®·¹ÀÌ´× µ¥ÀÌÅͼ¼Æ® ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Google LLC
  • Appen Limited
  • Scale AI, Inc.
  • Amazon Web Services, Inc.(AWS)
  • Microsoft Corporation
  • IBM Corporation
  • Lionbridge Technologies, Inc.
  • Samasource Inc.
  • Cogito Tech LLC
  • Deep Vision Data
  • Alegion Inc.
  • iMerit Technology Services
  • Clickworker GmbH
  • Shaip
  • Defined.ai
  • Datagen
  • CVEDIA
  • Labelbox, Inc.
  • SuperAnnotate AI, Inc.
  • CloudFactory Ltd.
KTH

According to Stratistics MRC, the Global AI Training Dataset Market is accounted for $3.2 billion in 2025 and is expected to reach $14.4 billion by 2032 growing at a CAGR of 23.9% during the forecast period. An AI training dataset is a collection of data used to train machine learning models, enabling them to recognize patterns and make predictions. It typically consists of labeled examples, where each data point includes both input features (e.g., images, text, or numerical values) and corresponding output labels or categories (e.g., object classes or predicted values). The quality, quantity, and diversity of the dataset play a crucial role in the model's ability to generalize and perform well on unseen data. Training datasets are carefully curated, preprocessed, and split into subsets for training, validation, and testing.

Market Dynamics:

Driver:

Growing Demand for AI and Machine Learning

The growing demand for AI and machine learning is significantly impacting the AI training dataset market by driving innovation and expanding opportunities. As industries increasingly rely on AI for decision-making, automation, and insights, the need for high-quality, diverse datasets intensifies. This demand fuels advancements in data collection, curation, and labeling, resulting in improved AI model accuracy and performance. Consequently, the AI training dataset market experiences robust growth, attracting investments and enhancing the development of smarter, more efficient AI systems.

Restraint:

Data Privacy and Security Concerns

By raising compliance costs, restricting data availability, and decreasing data-sharing practices, data privacy and security issues might impede the market for AI training datasets. Data usage is restricted by stricter laws, such as GDPR, which limits access to a variety of information. This might hinder innovation in AI training by slowing down AI development, raising the possibility of legal repercussions, and discouraging firms from exchanging important data, thus it limits the market expansion.

Opportunity:

Advancements in AI Technologies

AI technological advancements are considerably enhancing the AI training dataset market by allowing for more accurate, diverse, and efficient datasets. The need for well selected, real-world data is increasing as machine learning models need big, high-quality datasets. The scalability and dependability of training data are being improved by innovations such as data augmentation, synthetic data synthesis, and automated data labeling. This propels the industry's expansion and speeds up the development of AI in fields like healthcare, finance, and autonomous systems, opening up a plethora of options for data suppliers.

Threat:

Complexity of Data Management

The complexity of data management significantly hinders the AI training dataset market by increasing costs and operational inefficiencies. Handling vast, diverse, and unstructured data requires extensive processing, storage, and cleaning efforts. This complexity limits accessibility, slows data preparation, and complicates scalability. Consequently, businesses face delays, higher expenses, and resource constraints, slowing AI model development and limiting the overall growth of the AI training dataset market.

Covid-19 Impact

The COVID-19 pandemic significantly impacted the AI training dataset market, accelerating the demand for diverse and high-quality data. With industries shifting to digital platforms, the need for data to train AI models in sectors like healthcare, e-commerce, and finance surged. However, challenges such as data scarcity, privacy concerns, and biased datasets emerged, prompting a focus on ethical data sourcing and improved dataset management strategies in the post-pandemic era.

The video data segment is expected to be the largest during the forecast period

The video data segment is expected to account for the largest market share during the forecast period, as it enhances model accuracy and performance. By providing rich, real-world visual and temporal information, video data enables AI systems to better understand context, motion, and dynamic interactions. This boosts capabilities in areas like computer vision, autonomous vehicles, and surveillance. As demand for sophisticated AI grows, the integration of video data is driving innovation, improving decision-making, and fostering breakthroughs across industries, making it a key asset in AI training datasets.

The unlabeled data segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the unlabeled data segment is predicted to witness the highest growth rate, as it offers a vast, cost-effective resource for model development. These datasets enable unsupervised and semi-supervised learning, allowing AI systems to detect patterns and insights without the need for labeled data, which can be time-consuming and expensive to create. The growing availability of unlabeled data enhances the scalability and efficiency of AI training, driving innovation and improving the performance of machine learning models across various industries.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to rapid advancements in AI technologies and an increasing demand for data-driven solutions across industries like healthcare, finance, and manufacturing. The region's diverse population provides a rich source of data, enhancing the accuracy and effectiveness of AI models. This surge in data collection and processing fosters innovation, boosts economic development, and helps companies enhance operational efficiency, positioning Asia Pacific as a key player in AI-driven global advancements.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, as businesses and research institutions embrace AI, the demand for diverse, high-quality datasets has surged, fostering the development of more accurate and efficient AI models. This growth is creating job opportunities, enhancing data-driven decision-making, and boosting sectors like healthcare, finance, and autonomous vehicles. North America's strong tech infrastructure and investment in AI research are propelling the region as a global leader in AI innovation.

Key players in the market

Some of the key players profiled in the AI Training Dataset Market include Google LLC, Appen Limited, Scale AI, Inc., Amazon Web Services, Inc. (AWS), Microsoft Corporation, IBM Corporation, Lionbridge Technologies, Inc., Samasource Inc., Cogito Tech LLC, Deep Vision Data, Alegion Inc., iMerit Technology Services, Clickworker GmbH, Shaip, Defined.ai, Datagen, CVEDIA, Labelbox, Inc., SuperAnnotate AI, Inc. and CloudFactory Ltd.

Key Developments:

In March 2025, IBM announced the availability of Intel(R) Gaudi(R) 3 AI accelerators on IBM Cloud. This offering delivers Intel Gaudi 3 in a public cloud environment for production workloads. Through this collaboration, IBM Cloud aims to help clients more cost-effectively scale and deploy enterprise AI.

In March 2025, Vodafone and IBM announced a collaboration aimed at protecting customers and their data from future risks related to quantum computers when browsing the Internet on their smartphones.

In August 2024, Intel and IBM have announced a collaboration to deploy Intel(R) Gaudi(R) 3 AI accelerators as a service on IBM Cloud, aimed at improving cost-effectiveness and performance for enterprise AI workloads.

Types Covered:

  • Text Data
  • Image Data
  • Video Data
  • Audio Data

Data Types Covered:

  • Labeled Data
  • Unlabeled Data
  • Synthetic Data
  • Crowdsourced Data

End Users Covered:

  • IT & Telecommunications
  • Healthcare & Life Sciences
  • Banking, Financial Services & Insurance (BFSI)
  • Retail & E-commerce
  • Automotive & Transportation
  • Manufacturing
  • Government & Defense
  • Media & Entertainment
  • Education
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global AI Training Dataset Market, By Type

  • 5.1 Introduction
  • 5.2 Text Data
  • 5.3 Image Data
  • 5.4 Video Data
  • 5.5 Audio Data

6 Global AI Training Dataset Market, By Data Type

  • 6.1 Introduction
  • 6.2 Labeled Data
  • 6.3 Unlabeled Data
  • 6.4 Synthetic Data
  • 6.5 Crowdsourced Data

7 Global AI Training Dataset Market, By End User

  • 7.1 Introduction
  • 7.2 IT & Telecommunications
  • 7.3 Healthcare & Life Sciences
  • 7.4 Banking, Financial Services & Insurance (BFSI)
  • 7.5 Retail & E-commerce
  • 7.6 Automotive & Transportation
  • 7.7 Manufacturing
  • 7.8 Government & Defense
  • 7.9 Media & Entertainment
  • 7.10 Education
  • 7.11 Other End Users

8 Global AI Training Dataset Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Google LLC
  • 10.2 Appen Limited
  • 10.3 Scale AI, Inc.
  • 10.4 Amazon Web Services, Inc. (AWS)
  • 10.5 Microsoft Corporation
  • 10.6 IBM Corporation
  • 10.7 Lionbridge Technologies, Inc.
  • 10.8 Samasource Inc.
  • 10.9 Cogito Tech LLC
  • 10.10 Deep Vision Data
  • 10.11 Alegion Inc.
  • 10.12 iMerit Technology Services
  • 10.13 Clickworker GmbH
  • 10.14 Shaip
  • 10.15 Defined.ai
  • 10.16 Datagen
  • 10.17 CVEDIA
  • 10.18 Labelbox, Inc.
  • 10.19 SuperAnnotate AI, Inc.
  • 10.20 CloudFactory Ltd.
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦