½ÃÀ庸°í¼­
»óǰÄÚµå
1734831

¼¼°èÀÇ Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛ ½ÃÀå ¿¹Ãø(-2032³â) : Á¦Ç° À¯Çü, À¯Çü, ±â¼ú, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®

Forward Collision Warning System Market Forecasts to 2032 - Global Analysis By Product Type, Type, Technology, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛ ½ÃÀåÀº 2025³â¿¡ 36¾ï ´Þ·¯, 2032³â¿¡´Â 63¾ï ´Þ·¯¿¡ À̸¦°ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGR 8.2%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛÀº ·¹ÀÌ´õ, Ä«¸Þ¶ó ¶Ç´Â LiDAR¸¦ »ç¿ëÇÏ¿© ÀÓ¹ÚÇÑ Àü¹æ Ãæµ¹À» °¨ÁöÇϴ ÷´Ü ¿îÀüÀÚ Áö¿ø ½Ã½ºÅÛ(ADAS)ÀÔ´Ï´Ù. ½Ã°¢, û°¢ ¶Ç´Â Ã˰¢ ½ÅÈ£¸¦ ÅëÇØ ¿îÀüÀÚ¿¡°Ô °æ°íÇÏ¿© Àû½Ã¿¡ Á¦µ¿ ¶Ç´Â ȸÇÇ Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀϺΠ½Ã½ºÅÛ¿¡´Â Ãæ°ÝÀ» ¿ÏÈ­Çϱâ À§ÇØ ÀÚµ¿ ±ä±Þ Á¦µ¿(AEB)ÀÌ ÅëÇյǾî ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº »óȲ ÀÎ½Ä ¹× ¹ÝÀÀ ½Ã°£À» °³¼±ÇÏ¿© ÈĹæ Ãßµ¹ »ç°í¸¦ Å©°Ô ÁÙ¿© µµ·Î ¾ÈÀüÀ» °­È­Çϰí ÀÚÀ² ÁÖÇà Â÷·®À¸·ÎÀÇ ÀüȯÀ» Áö¿øÇÕ´Ï´Ù.

¿µ±¹ Á¤ºÎ ±â°üÀÎ ±³Åë¾ÈÀü ÀÚ¼± ´Üü Bake¿¡ µû¸£¸é ¿µ±¹¿¡¼­´Â 2022³â¿¡ 1,766¸íÀÇ ±³Åë»ç°í»çÀÚ°¡ ³ª¿ÔÀ¸¸ç, ±× Áß 1,711¸íÀÌ ¿µ±¹¿¡¼­ 55¸íÀÌ ºÏ¾ÆÀÏ·£µå¿¡¼­ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù.

¼¾¼­ ±â¼úÀÇ ±â¼úÀû ¹ßÀü

·¹ÀÌ´õ, LiDAR, Ä«¸Þ¶ó ±â¹Ý ¼¾¼­ ±â¼úÀÇ Çõ½ÅÀÌ Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛÀÇ µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº °¨Áö Á¤È®µµ¿Í ¹ÝÀÀ ½Ã°£À» Çâ»ó½ÃÄÑ Â÷·® ¾ÈÀüÀ» °³¼±ÇÕ´Ï´Ù. ÷´Ü ¿îÀüÀÚ Áö¿ø ½Ã½ºÅÛ(ADAS)¿¡ ¼¾¼­ ÅëÇÕÀÌ Áõ°¡Çϸ鼭 ½ÃÀå ¼ºÀå¿¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù. ´õ ¾ÈÀüÇÑ Â÷·®¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä°¡ Áõ°¡Çϸ鼭 ½Ã½ºÅÛ µµÀÔÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. °­È­µÈ ¾ÈÀü ±â´ÉÀ» Àǹ«È­ÇÏ´Â Á¤ºÎ ±ÔÁ¦°¡ ½ÃÀå ÀáÀç·ÂÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í ±â¼ú ±â¾÷ °£ÀÇ ÆÄÆ®³Ê½ÊÀº ¼¾¼­ °³¹ßÀ» °¡¼ÓÈ­ÇÕ´Ï´Ù.

´ëÁß ½ÃÀå µµÀÔÀ» Á¦ÇÑÇÏ´Â ³ôÀº ½Ã½ºÅÛ ºñ¿ë

÷´Ü ¼¾¼­ÀÇ ³ôÀº ºñ¿ë°ú Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛÀÇ ÅëÇÕÀ¸·Î ÀÎÇØ ¿¹»êÀÌ Àú·ÅÇÑ Â÷·®¿¡´Â Àû¿ëÀÌ Á¦Çѵ˴ϴÙ. º¹ÀâÇÑ Á¦Á¶ °øÁ¤À¸·Î ÀÎÇØ »ý»ê ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. ½ÅÈï ½ÃÀåÀÇ Á¦ÇÑµÈ ±Ô¸ðÀÇ °æÁ¦´Â °æÁ¦¼ºÀ» ÀúÇØÇÕ´Ï´Ù. Á¤±âÀûÀÎ ¼ÒÇÁÆ®¿þ¾î ¾÷µ¥ÀÌÆ®°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ À¯Áöº¸¼ö ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. Àå±âÀûÀÎ ¾ÈÀü ÇýÅÿ¡ ´ëÇÑ ¼ÒºñÀÚ ÀÎ½Ä ºÎÁ·Àº ½ÃÀå ħÅõ¸¦ ¹æÇØÇÕ´Ï´Ù. ±¸Çü Â÷·®ÀÇ ³ôÀº °³Á¶ ºñ¿ëÀ¸·Î ÀÎÇØ È®À强ÀÌ Á¦Çѵ˴ϴÙ.

AI ±â¹Ý ¿¹Ãø ½Ã½ºÅÛ °³¹ß

Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛ¿¡ Àΰø Áö´ÉÀ» ÅëÇÕÇÏ¸é ¿¹Ãø ºÐ¼®À» ÅëÇØ Ãæµ¹ ȸÇǸ¦ °­È­ÇÒ ¼ö ÀÖ½À´Ï´Ù. AI ±â¹Ý ½Ã½ºÅÛÀº ½Ç½Ã°£ ÀÇ»ç °áÁ¤À» °³¼±ÇÏ¿© ¾ÈÀü ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÚÀ² ÁÖÇà Â÷·® ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϸ鼭 ½ÃÀå ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù. AI ±â¼ú Á¦°ø¾÷ü¿ÍÀÇ ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ¿¹Ãø ¾Ë°í¸®ÁòÀÇ Çõ½ÅÀ» ÃËÁøÇÕ´Ï´Ù. Áö´ÉÇü ¾ÈÀü ½Ã½ºÅÛ¿¡ ´ëÇÑ ±ÔÁ¦ Áö¿øÀº µµÀÔÀ» Àå·ÁÇÕ´Ï´Ù. Ä¿³ØÆ¼µå Â÷·®¿¡ ´ëÇÑ Ãß¼¼´Â ½Ã½ºÅÛÀÇ ¸Å·ÂÀ» ³ôÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛ ½ÃÀåÀÇ ÀáÀç·ÂÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù.

ºü¸¥ ±â¼ú ³ëÈÄÈ­

ADASÀÇ ºü¸¥ ±â¼ú ¹ßÀü ¼Óµµ´Â Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛÀÇ ºü¸¥ ³ëÈÄÈ­·Î À̾îÁý´Ï´Ù. ¼¾¼­ ¹× ¼ÒÇÁÆ®¿þ¾î ±â¼úÀÇ ÀæÀº ¾÷µ¥ÀÌÆ®´Â ¸¹Àº ºñ¿ëÀÌ µå´Â ¾÷µî±Þ¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. V2X(Â÷·®-»ç¹° °£ Åë½Å) Åë½Å°ú °°Àº »õ·Î¿î ´ë¾ÈÀÌ µîÀåÇϸ鼭 ½Ã½ºÅÛ °ü·Ã¼º¿¡ µµÀüÇϰí ÀÖ½À´Ï´Ù. ½Ã½ºÅÛ ¼³°èÀÇ Ç¥ÁØÈ­ ºÎÁ·À¸·Î ȣȯ¼ºÀÌ º¹ÀâÇØÁý´Ï´Ù. Çõ½Å¿¡ ¹ß¸ÂÃß±â À§ÇÑ ³ôÀº R&D ºñ¿ëÀº Á¦Á¶¾÷ü¿¡ ºÎ´ãÀ» ÁÝ´Ï´Ù. ¿À·¡µÈ ½Ã½ºÅÛÀÇ À§ÇèÀº ¼ÒºñÀÚÀÇ ½Å·Ú¸¦ ¶³¾î¶ß¸³´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ÀÚµ¿Â÷ »ý»êÀÌ ÁߴܵǸ鼭 Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛÀÇ ÅëÇÕÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. °ø±Þ¸Á Áß´ÜÀº ¼¾¼­ °¡¿ë¼º¿¡ ¿µÇâÀ» ¹ÌÃÄ ½Ã½ºÅÛ Á¦Á¶¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÏÁö¸¸ ÆÒµ¥¹Í ÀÌÈÄ Â÷·® ¾ÈÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ ADAS ±â´É¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù. ³ëµ¿·Â ºÎÁ·°ú ¹°·ù ¹®Á¦·Î »ý»ê °øÁ¤¿¡ Â÷ÁúÀ» ºú¾ú½À´Ï´Ù. À§±â ±â°£ µ¿¾È ¿øÀÚÀç ºñ¿ë »ó½ÂÀº °æÁ¦¼º¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÆÒµ¥¹ÍÀº ÀÚÀ² ÁÖÇà¿¡ ´ëÇÑ ÅõÀÚ¸¦ °¡¼ÓÈ­ÇÏ¿© ȸº¹À» ÃËÁøÇß½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ ÀÚµ¿Â÷ ÆÇ¸ÅÀÇ ¼ºÀåÀº ½ÃÀå È®´ë¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Ç×°ø Ãæµ¹ ¹æÁö ½Ã½ºÅÛ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ±Ô¸ð°¡ µÉ Àü¸Á

Ç×°ø Ãæµ¹ ¹æÁö ½Ã½ºÅÛ ºÎ¹®Àº Ç×°ø ¾ÈÀüÀ» Çâ»ó½ÃŰ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ¼öÇàÇÏ¿© ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº °øÁß Ãæµ¹À» ¹æÁöÇϱâ À§ÇØ »ó¾÷¿ë ¹× ±º¿ë Ç×°ø±â¿¡ ³Î¸® äÅõǰí ÀÖ½À´Ï´Ù. ·¹ÀÌ´õ ¹× Æ®·£½ºÆù´õ ±â¼úÀÇ ¹ßÀüÀº ³ôÀº Á¤È®µµ¿Í ½Å·Ú¼ºÀ» º¸ÀåÇÕ´Ï´Ù. ¾ö°ÝÇÑ Ç×°ø ¾ÈÀü ±ÔÁ¤ÀÌ ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ ±â¾÷°úÀÇ ÆÄÆ®³Ê½ÊÀ» ÅëÇØ ½ÃÀå Á¡À¯À²À» °­È­ÇÕ´Ï´Ù. Ç×°ø±â À¯Çü¿¡ µû¸¥ Ç×°ø ½Ã½ºÅÛÀÇ ´Ù¾ç¼ºÀÌ ¼ö¿ä¸¦ µÞ¹ÞħÇÕ´Ï´Ù.

ÀûÀÀÇü Å©·çÁî Á¦¾î ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» °¡Áú Àü¸Á

¿¹Ãø ±â°£ µ¿¾È ÀûÀÀ Çü Å©·çÁî Á¦¾î ºÎ¹®Àº ¹Ý ÀÚÀ² ÁÖÇà ±â´É¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾î´ðƼºê Å©·çÁî Á¦¾î ½Ã½ºÅÛÀº ÀÚµ¿ ¼Óµµ Á¶Á¤À» ÅëÇØ ¿îÀüÀÚÀÇ ÆíÀǼº°ú ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. ÇÁ¸®¹Ì¾ö ¹× Àü±âÀÚµ¿Â÷ ÆÇ¸ÅÀÇ Áõ°¡´Â ¼¼±×¸ÕÆ® È®ÀåÀ» ÃËÁøÇÕ´Ï´Ù. AI ¹× ¼¾¼­ À¶ÇÕÀÇ Çõ½ÅÀ¸·Î ½Ã½ºÅÛ ¼º´ÉÀÌ Çâ»óµË´Ï´Ù. ADAS ÅëÇÕ¿¡ ´ëÇÑ ±ÔÁ¦ Áö¿øÀº äÅÃÀ» ÃËÁøÇÕ´Ï´Ù. ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿ÍÀÇ ÆÄÆ®³Ê½ÊÀÌ ±â¼ú ¹ßÀüÀ» ÁÖµµÇÕ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀº Áß±¹°ú ÀϺ»°ú °°Àº ±¹°¡ÀÇ ÅºÅºÇÑ ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ »ê¾÷À¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ³ôÀº Â÷·® »ý»ê ¹× ÆÇ¸Å·®Àº Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ãŵ´Ï´Ù. Â÷·® ¾ÈÀü Ç¥ÁØ¿¡ ´ëÇÑ Á¤ºÎÀÇ Àǹ«È­´Â ½ÃÀå ¼ºÀåÀ» °­È­ÇÕ´Ï´Ù. ÁÖ¿ä ¼¾¼­ Á¦Á¶¾÷üÀÇ Á¸Àç´Â Áö¿ª Áö¹è·ÂÀ» °­È­ÇÕ´Ï´Ù. µµ·Î ¾ÈÀü¿¡ ´ëÇÑ ¼ÒºñÀÚ ÀνÄÀÌ ³ô¾ÆÁö¸é¼­ äÅ÷üÀÌ Áõ°¡ÇÕ´Ï´Ù. ÀÚÀ² ÁÖÇà ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀÌ È®ÀåÀ» Áö¿øÇÕ´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀº ÀÚÀ² ÁÖÇà Â÷·® ±â¼ú ¹× Ç×°ø ¾ÈÀü¿¡ ´ëÇÑ °­·ÂÇÑ ÅõÀÚ·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ Ã·´Ü R&D »ýŰè´Â ¼¾¼­ ¹× AI ±â¼úÀÇ Çõ½ÅÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. Â÷·®°ú Ç×°ø±â¿¡ ´ëÇÑ ¾ö°ÝÇÑ ¾ÈÀü ±ÔÁ¦°¡ µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼±µµÀûÀÎ ÀÚµ¿Â÷ Á¦Á¶¾÷ü¿Í Ç×°ø¿ìÁÖ ±â¾÷ÀÇ Á¸Àç´Â ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÕ´Ï´Ù. ÇÁ¸®¹Ì¾ö ¾ÈÀü ±â´É¿¡ ´ëÇÑ ¼ÒºñÀÚ ¼ö¿ä Áõ°¡°¡ ½ÃÀå È®´ë¸¦ µÞ¹ÞħÇÕ´Ï´Ù. ½º¸¶Æ® ±³Åë ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ°¡ Á¦Ç° °³¹ßÀ» ÃËÁøÇÕ´Ï´Ù.

¹«·á ¸ÂÃãÈ­ ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·Î ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3°³»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø ¹× CAGR(Âü°í : Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • Á¦Ç°ºÐ¼®
  • ±â¼ú ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛ ½ÃÀå : Á¦Ç° À¯Çüº°

  • Ç×°ø Ãæµ¹ ¹æÁö ½Ã½ºÅÛ
  • ±³Åë Ãæµ¹ ¹æÁö ½Ã½ºÅÛ
  • FLARM
  • ÇÕ¼º ºñÀü
  • ±âŸ Á¦Ç° À¯Çü

Á¦6Àå ¼¼°èÀÇ Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛ ½ÃÀå : À¯Çüº°

  • ÀûÀÀÇü Å©·çÁî Á¦¾î
  • ÀÚµ¿ ±ä±Þ Á¦µ¿ ½Ã½ºÅÛ
  • Â÷¼± ÀÏÅ» °æ°í ½Ã½ºÅÛ
  • ÁÖÂ÷ º¸Á¶
  • »ç°¢Áö´ë °¨Áö
  • ±âŸ À¯Çü

Á¦7Àå ¼¼°èÀÇ Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛ ½ÃÀå : ±â¼úº°

  • LiDAR
  • ·¹ÀÌ´õ
  • Ä«¸Þ¶ó
  • ÃÊÀ½ÆÄ
  • ±âŸ ±â¼ú

Á¦8Àå ¼¼°èÀÇ Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • OEM
  • ¾ÖÇÁÅ͸¶ÄÏ
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ Àü¹æ Ãæµ¹ °æ°í ½Ã½ºÅÛ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Bosch
  • Continental AG
  • Denso Corporation
  • ZF Friedrichshafen
  • Valeo
  • Magna International
  • Aptiv
  • Mobileye(Intel)
  • NVIDIA
  • Qualcomm
  • Autoliv
  • Hella(FORVIA)
  • Veoneer
  • Panasonic Automotive
  • Infineon Technologies
HBR 25.06.09

According to Stratistics MRC, the Global Forward Collision Warning System Market is accounted for $3.6 billion in 2025 and is expected to reach $6.3 billion by 2032 growing at a CAGR of 8.2% during the forecast period. Forward Collision Warning System is an advanced driver-assistance system (ADAS) that detects imminent frontal collisions using radar, cameras, or LiDAR. It alerts the driver through visual, auditory, or haptic signals, enabling timely braking or evasive action. Some systems integrate automatic emergency braking (AEB) to mitigate impact. This technology significantly reduces rear-end collisions, enhancing road safety and supporting the transition toward autonomous vehicles by improving situational awareness and reaction times.

According to the Bake, The Road Safety Charity, a UK-based government organization, there were 1,766 road deaths in 2022 in the UK, with 1,711 occurring in Britain and 55 in Northern Ireland.

Market Dynamics:

Driver:

Technological advancements in sensor technologies

Innovations in radar, LiDAR, and camera-based sensor technologies are driving the adoption of forward collision warning systems. These advancements enhance detection accuracy and response times, improving vehicle safety. The growing integration of sensors in advanced driver-assistance systems (ADAS) fuels market growth. Increasing consumer demand for safer vehicles supports system deployment. Government regulations mandating enhanced safety features boost market potential. Partnerships between automakers and tech firms accelerate sensor development.

Restraint:

High system costs limiting mass-market adoption

The high costs of advanced sensors and integration in forward collision warning systems restrict their adoption in budget-friendly vehicles. Complex manufacturing processes increase production expenses. Limited economies of scale in emerging markets deter affordability. The need for regular software updates adds maintenance costs. Lack of consumer awareness about long-term safety benefits hinders market penetration. High retrofit costs for older vehicles limit scalability.

Opportunity:

Development of AI-based predictive systems

The integration of artificial intelligence in forward collision warning systems enables predictive analytics for enhanced collision avoidance. AI-driven systems improve real-time decision-making, boosting safety performance. Growing investments in autonomous vehicle technologies create market opportunities. Partnerships with AI technology providers foster innovation in predictive algorithms. Regulatory support for intelligent safety systems encourages adoption. The trend toward connected vehicles enhances system appeal. This development is expanding the forward collision warning system market's potential.

Threat:

Rapid technological obsolescence

The fast pace of technological advancements in ADAS leads to rapid obsolescence of forward collision warning systems. Frequent updates in sensor and software technologies require costly upgrades. Emerging alternatives, like vehicle-to-everything (V2X) communication, challenge system relevance. Lack of standardization in system designs complicates compatibility. High R&D costs to keep pace with innovations strain manufacturers. The risk of outdated systems reduces consumer trust.

Covid-19 Impact:

The COVID-19 pandemic disrupted automotive production, delaying the integration of forward collision warning systems. Supply chain disruptions impacted sensor availability, affecting system manufacturing. However, the focus on vehicle safety post-pandemic boosted demand for ADAS features. Labor shortages and logistics challenges hindered production processes. Rising raw material costs during the crisis affected affordability. The pandemic accelerated investments in autonomous driving, driving recovery. Post-pandemic growth in automotive sales is expected to fuel market expansion.

The airborne collision avoidance system segment is expected to be the largest during the forecast period

The airborne collision avoidance system segment is expected to account for the largest market share during the forecast period propelled by its critical role in enhancing aviation safety. These systems are widely adopted in commercial and military aircraft to prevent mid-air collisions. Advances in radar and transponder technologies ensure high accuracy and reliability. Stringent aviation safety regulations drive segment growth. Partnerships with aerospace firms strengthen market share. The versatility of airborne systems across aircraft types supports demand.

The adaptive cruise control segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the adaptive cruise control segment is predicted to witness the highest growth rate driven by increasing consumer demand for semi-autonomous driving features. Adaptive cruise control systems enhance driver convenience and safety through automated speed adjustments. The rise in premium and electric vehicle sales fuels segment expansion. Innovations in AI and sensor fusion improve system performance. Regulatory support for ADAS integration boosts adoption. Partnerships with automakers drive technological advancements.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share owing to its robust automotive and aerospace industries in countries like China and Japan. High vehicle production and sales drive demand for forward collision warning systems. Government mandates for vehicle safety standards strengthen market growth. The presence of key sensor manufacturers enhances regional dominance. Rising consumer awareness of road safety fuels adoption. The focus on autonomous driving technologies supports expansion.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR fueled by strong investments in autonomous vehicle technologies and aviation safety. The region's advanced R&D ecosystem drives innovation in sensor and AI technologies. Stringent safety regulations for vehicles and aircraft boost adoption. The presence of leading automakers and aerospace firms fosters market growth. Growing consumer demand for premium safety features supports expansion. Investments in smart transportation infrastructure drive product development.

Key players in the market

Some of the key players in Forward Collision Warning System Market include Bosch, Continental AG, Denso Corporation, ZF Friedrichshafen, Valeo, Magna International, Aptiv, Mobileye (Intel), NVIDIA, Qualcomm, Autoliv, Hella (FORVIA), Veoneer, Panasonic Automotive, and Infineon Technologies.

Key Developments:

In April 2025, Bosch launched an AI-enhanced forward collision warning system, improving detection accuracy by 20% for urban environments using advanced radar and camera fusion technology.

In April 2025, Mobileye introduced the EyeQ6 High system-on-chip, enhancing advanced driver-assistance systems with improved performance, safety, and comfort features, aiming to reduce traffic accidents globally.

In February 2025, Mobileye (Intel) unveiled a next-generation FCW system with 5G V2X integration, enabling real-time traffic data sharing, enhancing collision avoidance by 25% in dense traffic.

Product Types Covered:

  • Airborne Collision Avoidance System
  • Traffic Collision Avoidance System
  • FLARM
  • Synthetic Vision
  • Other Product Types

Types Covered:

  • Adaptive Cruise Control
  • Autonomous Emergency Braking
  • Lane Departure Warning System
  • Parking Assistance
  • Blind Spot Detection
  • Other Types

Technologies Covered:

  • LIDAR
  • RADAR
  • Camera
  • Ultrasonic
  • Other Technologies

End Users Covered:

  • OEMs
  • Aftermarket
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Technology Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Forward Collision Warning System Market, By Product Type

  • 5.1 Introduction
  • 5.2 Airborne Collision Avoidance System
  • 5.3 Traffic Collision Avoidance System
  • 5.4 FLARM
  • 5.5 Synthetic Vision
  • 5.6 Other Product Types

6 Global Forward Collision Warning System Market, By Type

  • 6.1 Introduction
  • 6.2 Adaptive Cruise Control
  • 6.3 Autonomous Emergency Braking
  • 6.4 Lane Departure Warning System
  • 6.6 Parking Assistance
  • 6.6 Blind Spot Detection
  • 6.7 Other Types

7 Global Forward Collision Warning System Market, By Technology

  • 7.1 Introduction
  • 7.2 LIDAR
  • 7.3 RADAR
  • 7.4 Camera
  • 7.5 Ultrasonic
  • 7.7 Other Technologies

8 Global Forward Collision Warning System Market, By End User

  • 8.1 Introduction
  • 8.2 OEMs
  • 8.3 Aftermarket
  • 8.4 Other End Users

9 Global Forward Collision Warning System Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Bosch
  • 11.2 Continental AG
  • 11.3 Denso Corporation
  • 11.4 ZF Friedrichshafen
  • 11.5 Valeo
  • 11.6 Magna International
  • 11.7 Aptiv
  • 11.8 Mobileye (Intel)
  • 11.9 NVIDIA
  • 11.10 Qualcomm
  • 11.11 Autoliv
  • 11.12 Hella (FORVIA)
  • 11.13 Veoneer
  • 11.14 Panasonic Automotive
  • 11.15 Infineon Technologies
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦