![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1734841
¼¼°èÀÇ Æó±â¹° À¯·¡ ¹ÙÀÌ¿À°¡½º ½ÃÀå ¿¹Ãø(-2032³â) : ¿ø·á À¯Çü, ±â¼ú, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®Waste-Derived Biogas Market Forecasts to 2032 - Global Analysis By Feedstock Type (Organic Waste, Agricultural Residues, Sewage Sludge, Food Waste, Animal Manure, And Industrial Waste), Technology, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Æó±â¹° À¯·¡ ¹ÙÀÌ¿À°¡½º ½ÃÀåÀº 2025³â¿¡ 200¾ï 3,000¸¸ ´Þ·¯, 2032³â¿¡´Â 392¾ï ´Þ·¯¿¡ À̸¦°ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGR 10.1%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.
Æó±â¹° À¯·¡ ¹ÙÀÌ¿À°¡½º´Â ³ó¾÷ ÀÜÀç¹°, À½½Ä¹° Â±â, ºÐ´¢¿Í °°Àº À¯±â Æó±â¹°ÀÇ Çø±â¼º ¼Òȸ¦ ÅëÇØ »ý»êµÇ´Â Àç»ý ¿¡³ÊÁö¿øÀÔ´Ï´Ù. ÀÌ °úÁ¤¿¡¼ »ýºÐÇØ¼º ¹°ÁúÀÌ ºÐÇØµÇ¾î ¸Þź°ú ÀÌ»êÈź¼Ò°¡ ¹æÃâµÇ¸ç, À̸¦ Æ÷ÁýÇϰí Á¤Á¦ÇÏ¿© ¿¬·á·Î »ç¿ëÇÕ´Ï´Ù. ¹ÙÀÌ¿À°¡½º´Â ȼ® ¿¬·áÀÇ Áö¼Ó °¡´ÉÇÑ ´ë¾ÈÀ¸·Î ¿Â½Ç°¡½º ¹èÃâ°ú Æó±â¹° ÃàÀûÀ» ÁÙÀÌ´Â ¿ªÇÒÀ» ÇÕ´Ï´Ù. ¹ÙÀÌ¿À°¡½º´Â ³¹æ, ¹ßÀü, Â÷·® ¿¬·á·Î Ȱ¿ëµÇ¾î ¼øÈ¯ °æÁ¦ ¿øÄ¢¿¡ ±â¿©ÇÕ´Ï´Ù.
¹Ì±¹ ȯ°æº¸È£Ã»(EPA)¿¡ µû¸£¸é ¹ÙÀÌ¿À°¡½º ½Ã½ºÅÛÀº ¿¬°£ 5õ¸¸ Åæ ÀÌ»óÀÇ À¯±â¼º Æó±â¹°À» ¸Å¸³Áö¿¡¼ ÀüȯÇÏ¿© ¸Þź ¹èÃâ·® °¨¼Ò¿¡ ±â¿©ÇÒ ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù.
¼øÈ¯ °æÁ¦ °üÇàÀÇ Ã¤Åà Áõ°¡
¼øÈ¯ °æÁ¦ °üÇà¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ ÃßÁøÀ¸·Î Àç»ý ¿¡³ÊÁö¿øÀ¸·Î¼ Æó±â¹° À¯·¡ ¹ÙÀÌ¿À°¡½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. À¯±â¼º Æó±â¹°¿¡¼ ¹ÙÀÌ¿À°¡½º¸¦ »ý»êÇÏ¸é ¸Å¸³Áö »ç¿ë°ú ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. Àç»ý ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ Á¤ºÎÀÇ Àμ¾Æ¼ºê´Â ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÕ´Ï´Ù. Áö¼Ó °¡´ÉÇÑ Æó±â¹° °ü¸® °üÇàÀÇ Áõ°¡´Â ¹ÙÀÌ¿À°¡½º äÅÃÀ» ÃËÁøÇÕ´Ï´Ù. Çø±â¼º ¼ÒÈ ±â¼úÀÇ Çõ½ÅÀ¸·Î È¿À²¼ºÀÌ Çâ»óµË´Ï´Ù. ȼ® ¿¬·á ÀÇÁ¸µµ¸¦ ³·Ãß·Á´Â ³ë·ÂÀÌ ½ÃÀå È®´ë¸¦ µÞ¹ÞħÇÕ´Ï´Ù.
°ø±Þ ¿ø·á ¼öÁý ¹× À¯ÅëÀ» À§ÇÑ Á¦ÇÑµÈ ÀÎÇÁ¶ó
À¯±â Æó±â¹°ÀÇ ¼öÁý°ú À¯ÅëÀ» À§ÇÑ ÀÎÇÁ¶ó°¡ ºÎÁ·ÇÏ¿© ¹ÙÀÌ¿À°¡½º »ý»ê¿¡ °É¸²µ¹ÀÌ µÇ°í ÀÖ½À´Ï´Ù. °ø±Þ ¿ø·á °ø±Þ¸ÁÀ» ±¸ÃàÇÏ´Â µ¥ µå´Â ³ôÀº ºñ¿ëÀº ¼Ò±Ô¸ð ÇÁ·ÎÁ§Æ®¸¦ ¾ïÁ¦ÇÕ´Ï´Ù. ÀϰüµÇÁö ¾ÊÀº Æó±â¹° ǰÁú°ú °¡¿ë¼ºÀº »ý»ê ¾ÈÁ¤¼º¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ³óÃÌ Áö¿ªÀÇ °í±Þ ó¸® ½Ã¼³¿¡ ´ëÇÑ Á¦ÇÑµÈ Á¢±Ù¼ºÀº ¼ºÀåÀ» Á¦ÇÑÇÕ´Ï´Ù. Æó±â¹° °ü¸®ÀÇ ±ÔÁ¦ °ÝÂ÷´Â ¿î¿µÀ» º¹ÀâÇÏ°Ô ¸¸µì´Ï´Ù. Àü¹® ¿î¼ÛÀÇ Çʿ伺Àº ¹°·ù ¹®Á¦¸¦ °¡Áß½Ãŵ´Ï´Ù.
¹ßÀü ¹× ¿î¼Û ºÐ¾ß¿¡¼ ¹ÙÀÌ¿À°¡½º Ȱ¿ë È®´ë
¹ßÀü ¹× Â÷·® ¿¬·á·Î ¹ÙÀÌ¿À°¡½ºÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ½ÃÀå ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À°¡½º ¹ßÀü¼Ò´Â Àü·Â¸Á¿¡ Àç»ý ¿¡³ÊÁö¸¦ °ø±ÞÇÏ¿© äÅÃÀ» ÃËÁøÇÕ´Ï´Ù. ¹ÙÀÌ¿À°¡½º ¿¬·á Â÷·®ÀÇ Áõ°¡´Â Áö¼Ó °¡´ÉÇÑ ¿î¼ÛÀ» Áö¿øÇÕ´Ï´Ù. ¿¡³ÊÁö ¹× ÀÚµ¿Â÷ ȸ»ç¿ÍÀÇ ÆÄÆ®³Ê½ÊÀº Çõ½ÅÀ» ÁÖµµÇÕ´Ï´Ù. ûÁ¤ ¿¡³ÊÁö ¾ÖÇø®ÄÉÀ̼ǿ¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀº ÅõÀÚ¸¦ Àå·ÁÇÕ´Ï´Ù. Żź¼ÒÈ Ãß¼¼´Â ¹ÙÀÌ¿À°¡½ºÀÇ ¸Å·ÂÀ» ´õ¿í ³ô¿©ÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ÀÀ¿ë ºÐ¾ß´Â Æó±â¹° À¯·¡ ¹ÙÀÌ¿À°¡½º ½ÃÀåÀÇ ÀáÀç·ÂÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù.
°ø±Þ ¿ø·áÀÇ °¡¿ë¼º ¹× ǰÁú º¯µ¿
À¯±â Æó±â¹° °ø±Þ ¿ø·áÀÇ °¡¿ë¼º°ú ǰÁúÀÌ ÀÏÁ¤ÇÏÁö ¾ÊÀ¸¸é ¹ÙÀÌ¿À°¡½º »ý»ê¿¡ Â÷ÁúÀÌ »ý±é´Ï´Ù. Æó±â¹° °ø±ÞÀÇ °èÀýÀû º¯È´Â ¿î¿µ ¾ÈÁ¤¼º¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. °ø±Þ ¿ø·áÀÇ ¿À¿°Àº ¹ÙÀÌ¿À°¡½º »ý»ê·®°ú ǰÁúÀ» ¶³¾î¶ß¸³´Ï´Ù. Áö¿ª Æó±â¹° °ø±Þ¿ø¿¡ ´ëÇÑ ÀÇÁ¸µµ´Â Áß´Ü¿¡ ´ëÇÑ Ãë¾à¼ºÀ» ³ôÀÔ´Ï´Ù. Ç¥ÁØÈµÈ Æó±â¹° ºÐ·ù °üÇàÀÌ ºÎÁ·Çϸé 󸮰¡ º¹ÀâÇØÁý´Ï´Ù. ³óÃÌ Áö¿ªÀÇ °ø±Þ ºÎÁ· À§ÇèÀº ¾î·Á¿òÀ» °¡Áß½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ º¯µ¿Àº Æó±â¹° À¯·¡ ¹ÙÀÌ¿À°¡½º ½ÃÀåÀÇ ¾ÈÁ¤¼ºÀ» À§ÇùÇÕ´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ ºÀ¼â¿Í ³ëµ¿·Â ºÎÁ·À¸·Î Æó±â¹° ¼ö°Å¿Í ¹ÙÀÌ¿À°¡½º »ý»ê¿¡ Â÷ÁúÀÌ »ý°å½À´Ï´Ù. ½Ä´ç°ú ±â¾÷¿¡¼ ¹ß»ýÇÏ´Â »ó¾÷¿ë ¾²·¹±â°¡ °¨¼ÒÇÏ¸é¼ °ø±Þ ¿ø·á °ø±Þ¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÇÏÁö¸¸ Àç»ý ¿¡³ÊÁö¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ¹ÙÀÌ¿À°¡½º ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çß½À´Ï´Ù. °ø±Þ¸Á Áö¿¬Àº Àåºñ ¼³Ä¡ ¹× À¯Áöº¸¼ö¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. À§±â ±â°£ µ¿¾È ¿î¿µ ºñ¿ëÀÌ »ó½ÂÇÏ¸é¼ °æÁ¦¼º¿¡ ¹®Á¦°¡ »ý°å½À´Ï´Ù. ÆÒµ¥¹ÍÀº Áö¼Ó °¡´ÉÇÑ Æó±â¹° °ü¸®ÀÇ Çʿ伺À» °Á¶Çϸç ȸº¹À» ÃËÁøÇß½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ Ã»Á¤ ¿¡³ÊÁöÀÇ ¼ºÀåÀº ½ÃÀå È®´ë¸¦ ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
À¯±â Æó±â¹° ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ±Ô¸ð°¡ µÉ Àü¸Á
À¯±â Æó±â¹° ºÎ¹®Àº ³ó¾÷ ¹× µµ½Ã ÀÚ¿øÀÇ Ç³ºÎÇÑ °¡¿ë¼º¿¡ ÈûÀÔ¾î ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. À¯±â Æó±â¹°Àº ¹ÙÀÌ¿À°¡½º »ý»êÀ» À§ÇÑ ºñ¿ë È¿À²ÀûÀÎ °ø±Þ ¿ø·á·Î äÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Æó±â¹° ó¸® ±â¼úÀÇ ¹ßÀüÀº ¹ÙÀÌ¿À°¡½º·ÎÀÇ È¿À²ÀûÀÎ ÀüȯÀ» º¸ÀåÇÕ´Ï´Ù. Áö¼Ó °¡´ÉÇÑ Æó±â¹° °ü¸®ÀÇ Áõ°¡´Â ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» µÞ¹ÞħÇÕ´Ï´Ù. À¯±â Æó±â¹° ÀçȰ¿ë¿¡ ´ëÇÑ ±ÔÁ¦ Àμ¾Æ¼ºê´Â ½ÃÀåÀÇ ½Å·Ú¸¦ º¸ÀåÇÕ´Ï´Ù. ´Ù¾çÇÑ ¹ÙÀÌ¿À°¡½º ½Ã½ºÅÛ¿¡¼ À¯±â¼º Æó±â¹°ÀÇ ´Ù¸ñÀû¼ºÀº ½ÃÀå Á¡À¯À²À» °ÈÇÕ´Ï´Ù.
½À½Ä ¼ÒÈ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» °¡Áú Àü¸Á
¿¹Ãø ±â°£ µ¿¾È ½À½Ä ¼ÒÈ ºÎ¹®Àº °í½Àµµ À¯±â Æó±â¹° ó¸® È¿À²¼ºÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½À½Ä ¼ÒÈ ½Ã½ºÅÛÀº ³ôÀº ¹ÙÀÌ¿À°¡½º »ý»ê·®À» Á¦°øÇÏ¿© ³ó¾÷ ¹× µµ½Ã ÀÀ¿ë ºÐ¾ß¿¡¼ äÅÃÀ» ÃËÁøÇÕ´Ï´Ù. ´ë±Ô¸ð ¹ÙÀÌ¿À°¡½º Ç÷£Æ®ÀÇ Áõ°¡´Â ÀÌ ºÎ¹®ÀÇ È®ÀåÀ» ÃËÁøÇÕ´Ï´Ù. ¼ÒÈ ±â¼úÀÇ Çõ½ÅÀ¸·Î È®À强°ú ºñ¿ë È¿À²¼ºÀÌ Çâ»óµÇ¾ú½À´Ï´Ù. Æó±â¹° °ü¸® ȸ»ç¿ÍÀÇ ÆÄÆ®³Ê½ÊÀÌ ÇÁ·ÎÁ§Æ® °³¹ßÀ» ÃËÁøÇÕ´Ï´Ù. Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö »ý»ê¿¡ ÁßÁ¡À» µÎ¾î ¼ºÀåÀ» Áö¿øÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀº Áß±¹°ú Àεµ¿Í °°Àº ±¹°¡ÀÇ °·ÂÇÑ Æó±â¹° °ü¸® ¹× Àç»ý ¿¡³ÊÁö ºÎ¹®À¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ³ôÀº À¯±â Æó±â¹° ¹ß»ýÀº ¹ÙÀÌ¿À°¡½º »ý»êÀ» ÁÖµµÇÕ´Ï´Ù. ûÁ¤ ¿¡³ÊÁö¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÀº ½ÃÀå ¼ºÀåÀ» °ÈÇÕ´Ï´Ù. ÁÖ¿ä ¹ÙÀÌ¿À°¡½º Ç÷£Æ® ¿î¿µ¾÷üÀÇ Á¸Àç´Â Áö¿ª Áö¹è·ÂÀ» °ÈÇÕ´Ï´Ù. ¿¡³ÊÁö ¼ö¿ä Áõ°¡´Â ¹ÙÀÌ¿À°¡½º µµÀÔÀ» ÃËÁøÇÕ´Ï´Ù. Áö¼Ó °¡´ÉÇÑ Æó±â¹° °ü¸®¿¡ ´ëÇÑ °ü½ÉÀÌ È®ÀåÀ» Áö¿øÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀº Àç»ý ¿¡³ÊÁö ¹× Æó±â¹° °ü¸®¿¡ ´ëÇÑ °·ÂÇÑ ÅõÀÚ·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀÇ Ã·´Ü ¹ÙÀÌ¿À°¡½º »ýŰè´Â »ý»ê ±â¼úÀÇ Çõ½ÅÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ûÁ¤ ¿¡³ÊÁö¿¡ ´ëÇÑ ±ÔÁ¦ Áö¿øÀº äÅÃÀ» ÃËÁøÇÕ´Ï´Ù. ¼±µµÀûÀÎ ¿¡³ÊÁö ±â¾÷ÀÇ Á¸Àç´Â ½ÃÀå ¼ºÀåÀ» ÃËÁøÇÕ´Ï´Ù. ¼øÈ¯ °æÁ¦ °üÇà¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼ È®ÀåÀ» Áö¿øÇÕ´Ï´Ù. ¹ÙÀÌ¿À°¡½º ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ´Â ÇÁ·ÎÁ§Æ® È®À强À» ÃËÁøÇÕ´Ï´Ù.
According to Stratistics MRC, the Global Waste-Derived Biogas Market is accounted for $20.03 billion in 2025 and is expected to reach $39.2 billion by 2032 growing at a CAGR of 10.1% during the forecast period. Waste-Derived Biogas is a renewable energy source produced through the anaerobic digestion of organic waste, such as agricultural residues, food scraps, and manure. This process breaks down biodegradable material, releasing methane and carbon dioxide, which are then captured and purified for use as fuel. Biogas serves as a sustainable alternative to fossil fuels, reducing greenhouse gas emissions and waste accumulation. It is utilized for heating, electricity generation, and as a vehicle fuel, contributing to circular economy principles.
According to the U.S. Environmental Protection Agency (EPA), biogas systems have the potential to divert over 50 million tons of organic waste from landfills annually, thus contributing to a reduction in methane emissions.
Increasing adoption of circular economy practices
The global push for circular economy practices is driving demand for waste-derived biogas as a renewable energy source. Biogas production from organic waste reduces landfill use and greenhouse gas emissions. Government incentives for renewable energy projects boost market growth. The rise in sustainable waste management practices fuels biogas adoption. Innovations in anaerobic digestion technologies enhance efficiency. The focus on reducing fossil fuel reliance supports market expansion.
Limited infrastructure for feedstock collection and distribution
The lack of robust infrastructure for collecting and distributing organic waste hinders biogas production. High costs of establishing feedstock supply chains deter small-scale projects. Inconsistent waste quality and availability affect production stability. Limited access to advanced processing facilities in rural areas restricts growth. Regulatory gaps in waste management complicate operations. The need for specialized transportation adds logistical challenges.
Expanding biogas applications in electricity generation and transportation
The growing use of biogas in electricity generation and as a vehicle fuel is creating market opportunities. Biogas-powered plants provide renewable energy for grids, boosting adoption. The rise in biogas-fueled vehicles supports sustainable transportation. Partnerships with energy and automotive firms drive innovation. Government support for clean energy applications encourages investment. The trend toward decarbonization enhances biogas's appeal. These applications are expanding the waste-derived biogas market's potential.
Fluctuations in feedstock availability and quality
Inconsistent availability and quality of organic waste feedstock disrupt biogas production. Seasonal variations in waste supply affect operational stability. Contamination in feedstock reduces biogas yield and quality. Dependence on local waste sources increases vulnerability to disruptions. Lack of standardized waste sorting practices complicates processing. The risk of supply shortages in rural areas adds challenges. These fluctuations threaten the stability of the waste-derived biogas market.
The COVID-19 pandemic disrupted waste collection and biogas production due to lockdowns and labor shortages. Reduced commercial waste from restaurants and businesses impacted feedstock supply. However, the focus on renewable energy boosted investments in biogas projects. Supply chain delays affected equipment installation and maintenance. Rising operational costs during the crisis challenged affordability. The pandemic highlighted the need for sustainable waste management, driving recovery. Post-pandemic growth in clean energy is expected to fuel market expansion.
The organic waste segment is expected to be the largest during the forecast period
The organic waste segment is expected to account for the largest market share during the forecast period propelled by its abundant availability from agricultural and municipal sources. Organic waste is a cost-effective feedstock for biogas production, driving adoption. Advances in waste processing technologies ensure efficient conversion to biogas. The rise in sustainable waste management supports segment growth. Regulatory incentives for organic waste recycling ensure market trust. The versatility of organic waste in various biogas systems strengthens market share.
The wet digestion segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the wet digestion segment is predicted to witness the highest growth rate driven by its efficiency in processing high-moisture organic waste. Wet digestion systems offer high biogas yields, boosting adoption in agricultural and municipal applications. The rise in large-scale biogas plants fuels segment expansion. Innovations in digestion technology improve scalability and cost-effectiveness. Partnerships with waste management firms drive project development. The focus on sustainable energy production supports growth.
During the forecast period, the Asia Pacific region is expected to hold the largest market share owing to its robust waste management and renewable energy sectors in countries like China and India. High organic waste generation drives biogas production. Government support for clean energy strengthens market growth. The presence of key biogas plant operators enhances regional dominance. Rising energy demand fuels biogas adoption. The focus on sustainable waste management supports expansion.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR fueled by strong investments in renewable energy and waste management. The region's advanced biogas ecosystem drives innovation in production technologies. Regulatory support for clean energy boosts adoption. The presence of leading energy firms fosters market growth. Growing awareness of circular economy practices supports expansion. Investments in biogas infrastructure drive project scalability.
Key players in the market
Some of the key players in Waste-Derived Biogas Market include AB Holding SPA, Ameresco Inc., Biogen Greenfinch, Biovale Ltd., Bioprocess Control AB, Clarke Energy Ltd., ENGIE SA, Isofoton SA, PlanET Biogas Global GmbH, SCS Energy, Bright Biomethane, Greenlane Renewables Inc., Hitachi Zosen Inova AG, MT-Energie GmbH, and Schmack Biogas GmbH.
In April 2025, ENGIE opened Europe's largest food waste-to-biogas plant in France, processing 300K tons/year into RNG for 10,000 households while capturing 200K tons CO2 annually.
In March 2025, Ameresco Inc. introduced an AI-optimized biogas plant, improving energy output by 15% for municipal waste facilities.
In March 2025, Bright Biomethane patented its membrane-based biogas purification tech, achieving 99.9% methane purity at half the energy cost of conventional amine scrubbing.