![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1734853
¼¼°èÀÇ Æ÷Å丶½ºÅ© ½ÃÀå ¿¹Ãø(-2032³â) : Á¦Ç° À¯Çü, ¸¶½ºÅ© À¯Çü, ±â¼ú ³ëµå, ¿ëµµ, ÃÖÁ¾ »ç¿ëÀÚ, Áö¿ªº° ºÐ¼®Photomask Market Forecasts to 2032 - Global Analysis By Product Type (Reticle, Master Mask, Copy Mask, and Other Product Types), Mask Type, Technology Node, Application, End Users and By Geography |
Stratistics MRC¿¡ µû¸£¸é Æ÷Å丶½ºÅ© ¼¼°èÀÇ ½ÃÀåÀº 2025³â¿¡ 58¾ï 1,000¸¸ ´Þ·¯, 2032³â¿¡´Â 91¾ï 6,000¸¸ ´Þ·¯¿¡ À̸¦°ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 6.7%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.
Æ÷Å丶½ºÅ©´Â ¸¶ÀÌÅ©·Î Á¦Á¶, ƯÈ÷ ¹ÝµµÃ¼ Á¦Á¶¸¦ À§ÇÑ Æ÷Å丮¼Ò±×·¡ÇÇ¿¡ »ç¿ëµÇ´Â Áß¿äÇÑ µµ±¸ÀÔ´Ï´Ù. ºûÀ» ¼±ÅÃÀûÀ¸·Î Â÷´ÜÇϵµ·Ï ÆÐÅÏÈµÈ ºÒÅõ¸í ¹°Áú·Î ÄÚÆÃµÈ À¯¸® ¶Ç´Â ¼®¿µÆÇÀ¸·Î ±¸¼ºµË´Ï´Ù. Æ÷Å丶½ºÅ©´Â Àڿܼ±(UV)¿¡ ³ëÃâµÇ¸é ÆÐÅÏÀ» ½Ç¸®ÄÜ ¿þÀÌÆÛÀÇ °¨±¤Ãþ¿¡ Àü»çÇÕ´Ï´Ù. ÀÌ °øÁ¤À» ÅëÇØ ÁýÀû ȸ·Î ¹× ±âŸ ¸¶ÀÌÅ©·Î µð¹ÙÀ̽º Á¦ÀÛ¿¡ ÇʼöÀûÀÎ º¹ÀâÇÑ È¸·Î ¼³°è¸¦ Á¤¹ÐÇÏ°Ô ¿¡ÄªÇÒ ¼ö ÀÖ½À´Ï´Ù.
¹Ì±¹ »ó¹«ºÎÀÇ º¸°í¼¿¡ µû¸£¸é ¹Ì±¹ÀÇ ¹ÝµµÃ¼ ÆÇ¸Å¾×Àº 2021³â 29% Áõ°¡Çß½À´Ï´Ù.
¹ÝµµÃ¼ ¿¬±¸°³¹ß ÅõÀÚ Áõ°¡
¹ÝµµÃ¼ ±â¼ú¿¡ ´ëÇÑ ¿¬±¸ °³¹ßÀÌ Áõ°¡ÇÏ¸é¼ Æ÷Å丶½ºÅ© ¼³°èÀÇ Çõ½ÅÀÌ ÃËÁøµÇ¾î È¿À²¼º°ú ³»±¸¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÷´Ü Æ÷Å丶½ºÅ©´Â ¹ÝµµÃ¼ Á¦Á¶ÀÇ ÇÙ½É ¿ä¼ÒÀÎ Á¤¹ÐÇÑ È¸·Î ÆÐÅÍ´×À» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±ØÀڿܼ±(EUV) ¸®¼Ò±×·¡ÇÇÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Â÷¼¼´ë Æ÷Å丶½ºÅ©¿¡ ´ëÇÑ ÅõÀÚ°¡ ´õ¿í Ȱ¹ßÇØÁö°í ÀÖ½À´Ï´Ù. ¼±µµÀûÀÎ ¹ÝµµÃ¼ Á¦Á¶¾÷üµéÀº Æ÷Å丶½ºÅ© ±â´ÉÀ» Çâ»óÇÏ°í »ý»ê ºñ¿ëÀ» Àý°¨Çϱâ À§ÇØ R&D ¿¹»êÀ» È®´ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¿¬±¸ ±â°ü°ú ¾÷°è Ç÷¹ÀÌ¾î °£ÀÇ Çù¾÷À¸·Î Æ÷Å丶½ºÅ©ÀÇ ¹ßÀüÀÌ °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
³ôÀº Á¦Á¶ ºñ¿ë
Æ÷Å丶½ºÅ© °³¹ß¿¡´Â Á¤±³ÇÑ ±â¼ú°ú °íµµ·Î Àü¹®ÈµÈ Àåºñ°¡ ÇÊ¿äÇϸç, ÀÌ´Â »ó´çÇÑ ÀÚº» ÅõÀÚ·Î À̾îÁý´Ï´Ù. ÁýÀû ȸ·ÎÀÇ º¹À⼺ÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¾ö°ÝÇÑ »ç¾çÀ» °®Ãá °í±Þ Æ÷Å丶½ºÅ©°¡ ÇÊ¿äÇØÁö¸é¼ ºñ¿ëÀÌ ´õ¿í »ó½ÂÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ »ý»ê °øÁ¤¿¡´Â °ªºñ½Ñ ¿øÀÚÀç¿Í º¹ÀâÇÑ Á¦Á¶ ±â¼úÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ °æÁ¦¼ºÀ» È®º¸ÇÏ´Â °Íµµ ¾î·Á¿î °úÁ¦ÀÔ´Ï´Ù. ³ôÀº ¿î¿µ ºñ¿ëÀº ¼Ò±Ô¸ð Á¦Á¶¾÷üÀÇ ½ÃÀå ÁøÀÔÀ» ¹æÇØÇÏ¿© »ê¾÷ È®ÀåÀ» Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù.
¸®¼Ò±×·¡ÇÇ ±â¼úÀÇ ¹ßÀü
¸®¼Ò±×·¡ÇÇ ±â¼úÀÇ ¹ßÀüÀº Æ÷Å丶½ºÅ© »ê¾÷¿¡ Çõ¸íÀ» ÀÏÀ¸Å°¸ç ¹ÝµµÃ¼ Á¦Á¶ÀÇ Á¤¹Ðµµ¿Í È¿À²¼ºÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. EUV ¸®¼Ò±×·¡ÇÇ·ÎÀÇ ÀüȯÀº Æ÷Å丶½ºÅ©ÀÇ ÇØ»óµµ¿Í Á¤È®¼ºÀ» Å©°Ô Çâ»ó½ÃÄÑ Ä¨ ¼º´ÉÀ» °³¼±Çϰí ÀÖ½À´Ï´Ù. ±¤ÇÐ ±ÙÁ¢ º¸Á¤(OPC) ¹× ¿ª¸®¼Ò±×·¡ÇÇ ±â¼ú(ILT)°ú °°Àº Çõ½ÅÀ¸·Î ¼³°è ÇÁ·Î¼¼½º°¡ °³¼±µÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÄÄÇ»ÅÍ ¸®¼Ò±×·¡ÇÇÀÇ ÅëÇÕÀ¸·Î Æ÷Å丶½ºÅ© °³¹ßÀÌ °£¼ÒÈµÇ¾î ¹ÝµµÃ¼ Á¦Ç°ÀÇ ½ÃÀå Ãâ½Ã°¡ °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
Á¦ÇÑµÈ ¼÷·Ã ³ëµ¿·Â
Æ÷Å丶½ºÅ© »ê¾÷¿¡´Â ¹ÝµµÃ¼ ¸®¼Ò±×·¡ÇÇ ¹× ±¤ÇÐ °øÇп¡ ´ëÇÑ Àü¹® Áö½ÄÀ» °®Ãá °íµµ·Î ¼÷·ÃµÈ Àü¹®°¡°¡ ÇÊ¿äÇÕ´Ï´Ù. ±×·¯³ª °í±Þ Æ÷Å丶½ºÅ© °³¹ßÀ» ó¸®ÇÒ ¼ö ÀÖ´Â ÀÚ°ÝÀ» °®Ãá ¿£Áö´Ï¾î¿Í ±â¼úÀÚ°¡ ºÎÁ·ÇÕ´Ï´Ù. ¸®¼Ò±×·¡ÇÇ ±â¼úÀÇ º¹À⼺°ú ÁøÈÇÏ´Â »ê¾÷ Ç¥ÁØÀ¸·Î ÀÎÇØ Áö¼ÓÀûÀÎ ±â¼ú °³¹ßÀÌ ÇʼöÀûÀÔ´Ï´Ù. ±â¾÷Àº Àü¹® ÀÎÀ縦 ä¿ëÇϰí À¯ÁöÇÏ´Â µ¥ ¾î·Á¿òÀ» °ÞÀ¸¸ç »ý»ê È¿À²¼º°ú Çõ½Å¿¡ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Àη Á¦ÇÑÀ¸·Î ÀÎÇØ Â÷¼¼´ë Æ÷Å丶½ºÅ© ±â¼ú µµÀÔÀÌ ´Ê¾îÁ® ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19 ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ Àü ¼¼°è ¹ÝµµÃ¼ °ø±Þ¸ÁÀÌ Áß´ÜµÇ¸é¼ Æ÷Å丶½ºÅ© »ý»ê°ú À¯Åë¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ºÀ¼â¿Í Á¦ÇÑ Á¶Ä¡·Î ÀÎÇØ Á¦Á¶ ½Ã¼³ÀÌ ÀϽÃÀûÀ¸·Î Æó¼âµÇ¾î ¹ÝµµÃ¼ Á¦Á¶°¡ Áö¿¬µÇ¾ú½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹Í ÀÌÈÄ È¸º¹¼¼·Î ¹ÝµµÃ¼ ¼ö¿ä°¡ ±ÞÁõÇÏ¸é¼ Æ÷Å丶½ºÅ© °³¹ß¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çß½À´Ï´Ù. ¿ø°Ý ±Ù¹«¿Í ÀüÀÚ ±â±â »ç¿ëÀÌ Áõ°¡ÇÏ¸é¼ ¹ÝµµÃ¼ »ý»ê·®ÀÌ ´õ¿í Áõ°¡ÇÏ¿© Æ÷Å丶½ºÅ© ½ÃÀå¿¡µµ µµ¿òÀÌ µÇ¾ú½À´Ï´Ù.
·¹Æ¼Å¬ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ±Ô¸ð°¡ µÉ Àü¸Á
·¹Æ¼Å¬ ºÎ¹®Àº ¹ÝµµÃ¼ µð¹ÙÀ̽ºÀÇ Áö¼ÓÀûÀÎ È®ÀåÀ¸·Î ÀÎÇØ °í±Þ ³ëµå¿¡ °íÁ¤¹Ð ÆÐÅÍ´×ÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. EUV ¸®¼Ò±×·¡ÇÇ¿Í 3D IC Æ÷ÀåÀÇ Ã¤ÅÃÀº º¹ÀâÇÑ ·¹Æ¼Å¬ ¼³°èÀÇ Çʿ伺À» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ AI, 5G ¹× ÀÚµ¿Â÷ ÀüÀÚ ÀåÄ¡¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÷´Ü Ĩ »ý»êÀÌ °¡¼ÓÈµÇ¸é¼ Æ÷Å丶½ºÅ© Á¦Á¶ °øÁ¤¿¡¼ °íǰÁú ·¹Æ¼Å¬¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
ÀüÀÚ ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ Àü¸Á
¿¹Ãø ±â°£ µ¿¾È ÀüÀÚ ºÎ¹®Àº ½º¸¶Æ® Æù, ³ëÆ®ºÏ ¹× IoT ±â±â¿Í °°Àº ¼ÒÇüÈ ¹× °í¼º´É ÀåÄ¡¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´õ ºü¸£°í, ´õ ÀÛ°í, ´õ ¿¡³ÊÁö È¿À²ÀûÀÎ ÀüÀÚ±â±â¿¡ ´ëÇÑ ¼ÒºñÀÚÀÇ ±â´ë°¡ ³ô¾ÆÁö¸é¼ ¹ÝµµÃ¼ Á¦Á¶¾÷ü´Â Á¤¹ÐÇÑ Ä¨ Á¦ÀÛÀ» À§ÇÑ °í±Þ Æ÷Å丶½ºÅ©¸¦ ÇÊ¿ä·Î ÇÕ´Ï´Ù. ¶ÇÇÑ µð½ºÇ÷¹ÀÌ ±â¼ú, ¿þ¾î·¯ºí, ½º¸¶Æ® Ȩ ±â±âÀÇ ±Þ¼ÓÇÑ Çõ½ÅÀ¸·Î ÀÎÇØ ÀüÀÚ Á¦Ç° »ý»ê¿¡ °íÇØ»óµµ Æ÷Å丶½ºÅ© ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ °è¼Ó Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾ç Áö¿ªÀº ¹ÝµµÃ¼ Á¦Á¶ ºÐ¾ß¿¡¼ ¿ìÀ§¸¦ Á¡Çϰí Àֱ⠶§¹®¿¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ´ë¸¸, Çѱ¹, Áß±¹, ÀϺ»°ú °°Àº ±¹°¡¿¡´Â TSMC, »ï¼º, SKÇÏÀ̴нº¸¦ ºñ·ÔÇÑ ÁÖ¿ä ¹ÝµµÃ¼ ÆÕÀÌ ÀÖ¾î ÷´Ü Æ÷Å丶½ºÅ©¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í ¹ÝµµÃ¼ ÀÎÇÁ¶ó¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ÀÌ Áö¿ªÀÇ ½ÃÀå ¼ºÀåÀ» ´õ¿í °ÈÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì Áö¿ªÀº ¹ÝµµÃ¼ ¿¬±¸ °³¹ß, ƯÈ÷ ±ØÀڿܼ±(EUV) ¸®¼Ò±×·¡ÇÇ¿Í °°Àº ÷´Ü ±â¼ú ºÐ¾ß¿¡¼ ÀÌ Áö¿ªÀÇ ¸®´õ½ÊÀ¸·Î ÀÎÇØ ´õ ÀÛÀº °øÁ¤ ³ëµå¿Í º¹ÀâÇÑ Ä¨ ¼³°è¸¦ À§ÇÑ °íÁ¤¹Ð Æ÷Å丶½ºÅ©°¡ ÇÊ¿äÇϱ⠶§¹®¿¡ °¡Àå ³ôÀº CAGRÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ ¼ÒºñÀÚ °¡Àü, Àü±âÀÚµ¿Â÷ ¹× AI ±â¹Ý ¾ÖÇø®ÄÉÀ̼ǿ¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÔ¿¡ µû¶ó ÀÌ·¯ÇÑ Á¤±³ÇÑ ÀåÄ¡ÀÇ ¿ä±¸ »çÇ×À» ÃæÁ·Çϱâ À§ÇÑ °í±Þ Æ÷Å丶½ºÅ©ÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Photomask Market is accounted for $5.81 billion in 2025 and is expected to reach $9.16 billion by 2032 growing at a CAGR of 6.7% during the forecast period. A photomask is a crucial tool used in photolithography for micro-fabrication, particularly in semiconductor manufacturing. It consists of a glass or quartz plate coated with an opaque material patterned to block light selectively. When exposed to ultraviolet (UV) light, the photomask transfers its pattern onto a photosensitive layer on a silicon wafer. This process enables the precise etching of intricate circuit designs essential for creating integrated circuits and other micro-devices.
According to a report by the U.S. According to the Department of Commerce, the sale of semiconductors in the United States grew 29% in 2021.
Rising investment in semiconductor R&D
Increasing research and development in semiconductor technology is fuelling innovations in photomask designs, improving their efficiency and durability. Advanced photomasks enable precise circuit patterning, a crucial aspect of semiconductor fabrication. The growing adoption of extreme ultraviolet (EUV) lithography is further driving investment in next-generation photomasks. Leading semiconductor manufacturers are expanding their R&D budgets to enhance photomask capabilities and reduce production costs. Additionally, collaborations between research institutions and industry players are accelerating photomask advancements.
High production costs
The development of photomasks requires sophisticated technologies and highly specialized equipment, leading to significant capital investment. The increasing complexity of integrated circuits demands advanced photomasks with stringent specifications, further driving up costs. Additionally, the production process involves expensive raw materials and intricate manufacturing techniques, making affordability a challenge. High operational costs can deter smaller manufacturers from entering the market, limiting industry expansion.
Technological advancements in lithography
Advancements in lithography technologies are revolutionizing the photomask industry, enabling higher precision and efficiency in semiconductor manufacturing. The transition to EUV lithography is significantly enhancing the resolution and accuracy of photomasks, improving chip performance. Innovations such as optical proximity correction (OPC) and inverse lithography technology (ILT) are refining the design process. Additionally, the integration of computational lithography is streamlining photomask development, accelerating time-to-market for semiconductor products.
Limited skilled workforce
The photomask industry requires highly skilled professionals with expertise in semiconductor lithography and optical engineering. However, there is a shortage of qualified engineers and technicians capable of handling advanced photomask development. The complexity of lithographic technologies and evolving industry standards make continuous skill development essential. Companies face challenges in recruiting and retaining specialized talent, impacting production efficiency and innovation. Workforce limitations may slow down the adoption of next-generation photomask technologies, affecting market growth.
Covid-19 Impact
The COVID-19 pandemic disrupted global semiconductor supply chains, affecting photomask production and distribution. Lockdowns and restrictions led to temporary shutdowns of manufacturing facilities, causing delays in semiconductor fabrication. However, the post-pandemic recovery witnessed a surge in semiconductor demand, driving investments in photomask development. The rise in remote work and electronic device usage further boosted semiconductor production, benefiting the photomask market.
The reticle segment is expected to be the largest during the forecast period
The reticle segment is expected to account for the largest market share during the forecast period, due to the continuous scaling of semiconductor devices, requiring high-precision patterning for advanced nodes. The adoption of EUV lithography and 3D IC packaging further fuels the need for complex reticle designs. Additionally, increased investment in AI, 5G, and automotive electronics accelerates the production of advanced chips, thereby boosting the demand for high-quality reticles in photomask fabrication processes
The electronics segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the electronics segment is predicted to witness the highest growth rate, due to the rising demand for miniaturized and high-performance devices like smartphones, laptops, and IoT gadgets. As consumer expectations push for faster, smaller, and more energy-efficient electronics, semiconductor manufacturers require advanced photomasks for precise chip fabrication. Additionally, rapid innovation in display technologies, wearables, and smart home devices continues to fuel the need for high-resolution photomask solutions in electronics production.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to its dominance in semiconductor manufacturing. Countries like Taiwan, South Korea, China, and Japan host major semiconductor fabs, including TSMC, Samsung, and SK Hynix, fueling demand for advanced photomasks. Additionally, government initiatives and increased investments in semiconductor infrastructure further bolster the region's market growth.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to the region's leadership in semiconductor research and development, particularly in advanced technologies like Extreme Ultraviolet (EUV) lithography, necessitates high-precision photomasks for smaller process nodes and intricate chip designs. Additionally, the increasing demand for consumer electronics, electric vehicles, and AI-driven applications further propels the need for advanced photomasks to meet the requirements of these sophisticated devices.
Key players in the market
Some of the key players profiled in the Photomask Market include Advance Reproductions Corporation, Applied Materials Inc., Compugraphics International Limited, Dai Nippon Printing Co., Ltd., HOYA Corporation, Infinite Graphics Incorporated, KLA Corporation, Lasertec Corporation, LG Innotek Co., Ltd., Mycronic AB, Nippon Filcon Co., Ltd., Photronics, Inc., Qingyi Photomask Limited, SK-Electronics Co., Ltd., and Taiwan Mask Corporation (TMC).
In April 2025, Applied Materials, Inc. announced it has purchased 9 percent of the outstanding shares of the common stock of BE Semiconductor Industries N.V. (Besi), a leading manufacturer of assembly equipment for the semiconductor industry. Applied and Besi have been successfully collaborating since 2020, and recently extended their agreement, to co-develop the industry's first fully integrated equipment solution for die-based hybrid bonding.
In June 2016, Advance Reproductions Corp. is pleased to announce the installation of its Next-Generation Laser Writer for Photomask manufacturing. The Mycronic FPS5500 is the latest technology offering from Mycronic AB, Taby, Sweden. Installation was completed in July 2016 and is currently in production for photomask manufacturing.