![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1766089
¼¼°èÀÇ ÀÓº£µðµå ¹ßÀü ½ÃÀå ¿¹Ãø(-2032³â) : ¿¬·á Á¾·ùº°, ¹ßÀü´É·Âº°, Àü°³ ¹æ½Äº°, ±â¼úº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®Embedded Power Generation Market Forecasts to 2032 - Global Analysis By Fuel Type (Natural Gas, Diesel, Biogas, Renewable Energy, Hydrogen, Coal and Other Fuel Types), Capacity, Deployment Mode, Technology, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÓº£µðµå ¹ßÀü ½ÃÀåÀº 2025³â¿¡ 222¾ï 4,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGR 8.5%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 393¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
Áß¾ÓÁýÁᫎ Àü·Â ¼³ºñ¿¡ ÀÇÁ¸ÇÏÁö ¾Ê°í Àü·ÂÀ» »ç¿ëÇÏ´Â ÁöÁ¡ ¶Ç´Â ±× ±Ùó¿¡¼ ºÐ»êÀûÀ¸·Î Àü·ÂÀ» »ý»êÇÏ´Â °ÍÀ» ÀÓº£µðµå ¹ßÀüÀ̶ó°í ÇÕ´Ï´Ù. ¸¶ÀÌÅ©·Î Åͺó, ž籤 ÆÐ³Î, dz·Â Åͺó, ¿º´ÇÕ¹ßÀü(CHP) ½Ã½ºÅÛ°ú °°Àº ¼Ò±Ô¸ð ±â¼úÀº ¸ðµÎ ÀÓº£µðµå ¹ßÀüÀÇ ÀϺÎÀÔ´Ï´Ù. ¿¡³ÊÁö È¿À²À» ³ôÀ̰í, ±â¾î¹Ú½º ¼Õ½ÇÀ» ÁÙÀ̰í, ½Å·Ú¼ºÀ» ³ôÀ̱â À§ÇØ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº ÀϹÝÀûÀ¸·Î ÁÖ°Å¿ë, »ó¾÷¿ë, »ê¾÷¿ë °Ç¹°¿¡ ¼³Ä¡µË´Ï´Ù. Çö´ëÀÇ Áö¼Ó°¡´ÉÇÑ ¿¡³ÊÁö ÀÎÇÁ¶ó¿¡ ÇʼöÀûÀÎ ¿ä¼ÒÀÎ ÀÓº£µðµå ¹ßÀüÀº Àü·Â¸ÁÀÇ Åº·Â¼ºÀ» ÃËÁøÇϰí, ¹èÃâ·®À» ÁÙÀ̸ç, ¿¡³ÊÁö ÀÚ±Þ·üÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.
±¹Á¦¿¡³ÊÁö±â±¸(IEA)¿¡ µû¸£¸é, Àü ¼¼°è¿¡´Â ¾à 7¾ï 7,000¸¸ ¸íÀÇ »ç¶÷µéÀÌ Àü±â¸¦ »ç¿ëÇÒ ¼ö ¾ø´Âµ¥, ÀÓº£µðµå ¹ßÀü ½Ã½ºÅÛÀº ÀÌ·¯ÇÑ ¿¡³ÊÁö °ÝÂ÷¸¦ ÇØ¼ÒÇÒ ¼ö ÀÖ´Â Áß¿äÇÑ ¼Ö·ç¼ÇÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.
ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛÀº ¼ÛÀü ¼Õ½Ç°ú Áß¾Ó Àü·Â¸Á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙ¿© ±¹ÁöÀûÀÎ ¿¡³ÊÁö »ý»êÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¿Â»çÀÌÆ® ¹ßÀüÀº ¿¡³ÊÁöÀÇ ¾ÈÀü¼º°ú ½Å·Ú¼ºÀ» ³ôÀ̱⠶§¹®¿¡ ¼ÒºñÀÚ¿Í ±â¾÷µé »çÀÌ¿¡¼ Á¡Á¡ ´õ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. ºÐ»êÇü ¼Ö·ç¼ÇÀº Àç»ý °¡´É ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ ´õ¿í °æÁ¦ÀûÀÌ°í »ýÅÂÇÐÀûÀ¸·Î À¯ÀÍÇÏ°Ô µÇ¾ú½À´Ï´Ù. Á¤ºÎµµ ¹ý·ü Á¦Á¤°ú Àμ¾Æ¼ºê Á¦°øÀ» ÅëÇØ ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú, ÀÓº£µðµå ¹ßÀüÀº Çö´ë ¿¡³ÊÁö ½Ã½ºÅÛÀÇ Áß¿äÇÑ ¿ä¼Ò·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù.
³ôÀº Ãʱâ ÅõÀÚ ¹× À¯Áöº¸¼ö ºñ¿ë
ÀÓº£µðµå ½Ã½ºÅÛ ±¸Ãà¿¡´Â °íµµÀÇ ±â¼ú, Ư¼ö °ø±¸, ¼÷·ÃµÈ ÀηÂÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ÀÚº» ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. ¸¹Àº Áß¼Ò±â¾÷ÀÇ °æ¿ì, ¼³Ä¡¸¦ À§ÇÑ ÃæºÐÇÑ ÀÚ±ÝÀ» È®º¸ÇÏ´Â °ÍÀÌ ¾î·Æ½À´Ï´Ù. ¶ÇÇÑ, À¯Áöº¸¼ö ¹× À¯Áöº¸¼ö ºñ¿ëÀÌ Áö¼ÓÀûÀ¸·Î ¹ß»ýÇϱ⠶§¹®¿¡ ½Ã½ºÅÛÀÇ ¸Å·Âµµ°¡ ¶³¾îÁý´Ï´Ù. ¶ÇÇÑ, ÅõÀÚ ¼öÀÍ·üÀÌ ºÒÅõ¸íÇÏ´Ù´Â Á¡µµ µµÀÔÀÇ °É¸²µ¹·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ ½ÅÈï±¹¿¡¼´Â ÀÌ·¯ÇÑ °æÁ¦Àû Àå¾Ö¹°·Î ÀÎÇØ ½ÃÀå °³Ã´ÀÌ ´Ê¾îÁö°í ÀÖ½À´Ï´Ù.
Àç»ý¿¡³ÊÁö ±â¼ú ÅëÇÕ
dz·Â Åͺó, ¹ÙÀÌ¿À¸Å½º ½Ã½ºÅÛ, ž籤 ÆÐ³ÎÀº ¸ðµÎ ¿¡³ÊÁö È¿À²À» °³¼±Çϰí Áß¾Ó ÁýÁᫎ ³×Æ®¿öÅ©¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¹æ¹ýÀº ¿Â½Ç °¡½º ¹èÃâÀ» ÁÙÀ̰í Áö¼Ó°¡´ÉÇÑ ¼ºÀåÀ» ÃËÁøÇÕ´Ï´Ù. ź¼Ò Á߸³ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇØ Á¤ºÎ¿Í ±â¾÷Àº Àç»ý¿¡³ÊÁö¿¡ ´ëÇÑ ÅõÀÚ¸¦ ´Ã¸®°í ÀÖ½À´Ï´Ù. ÀÓº£µðµå Àç»ý¿¡³ÊÁö ½Ã½ºÅÛÀº ±â¼ú °³¹ß·Î ÀÎÇØ ½Å·Ú¼º°ú °æÁ¦¼ºÀÌ Çâ»óµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â µµ½Ã¿Í ³óÃÌ ¸ðµÎ¿¡¼ Áõ°¡ÇÏ´Â ¿¡³ÊÁö ¼ö¿ä¸¦ ÃæÁ·½ÃŰ°í ½ÃÀå È®´ë¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
±ÔÁ¦¿Í ±×¸®µå ÅëÇÕÀÇ °úÁ¦
ÀÓº£µðµå ½Ã½ºÅÛ µµÀÔÀº Áö¿ª¸¶´Ù ´Ù¸¥ Á¤Ã¥°ú ±âÁØ¿¡ µû¶ó º¹ÀâÇØÁö°í ÀÖ½À´Ï´Ù. º¹ÀâÇÑ »óÈ£¿¬°á ±ÔÄ¢°ú Àå±âȵǴ ÀÎÇã°¡ ÀýÂ÷´Â ºñ¿ëÀ» ³ôÀ̰í ÅõÀÚÀÚÀÇ ½Å·Ú¸¦ ¶³¾î¶ß¸³´Ï´Ù. ¿À·¡µÈ ÀÎÇÁ¶ó·Î ÀÎÇØ °èÅë ¿î¿µÀÚ´Â ºÐ»êÇü Àü¿øÀÇ ÅëÇÕÀÌ ¾î·Æ´Ù°í ´À³¢´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ¼Ò±Ô¸ð ¹ßÀü »ç¾÷ÀÚ´Â ¼ø°è·® ¹× ÁöºÒ¿¡ °üÇÑ ±ÔÁ¤ÀÌ ºÒºÐ¸íÇÏ¿© ÀÌ¿ëÀ» ÁÖÀúÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹®Á¦µéÀº ¸ðµÎ ÅëÇÕ Àü·Â ¼Ö·ç¼ÇÀÇ »ç¿ëÀ» Á¦ÇÑÇÏ°í »ê¾÷ ¼ºÀåÀ» ÀúÇØÇϰí ÀÖ½À´Ï´Ù.
COVID-19ÀÇ ¿µÇâ
COVID-19´Â °ø±Þ¸Á¿¡ È¥¶õÀ» ÃÊ·¡Çϰí, ÇÁ·ÎÁ§Æ® ÀÏÁ¤À» Áö¿¬½Ã۰í, ½Å±Ô ¼³ºñ ÅõÀÚ¸¦ °¨¼Ò½ÃÅ´À¸·Î½á ÀÓº£µðµå ¹ßÀü ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. »ê¾÷ Ȱµ¿ÀÇ Ä§Ã¼¿Í °¡µ¿ Áß´ÜÀ¸·Î ÀÎÇÑ ¿¡³ÊÁö ¼ö¿ä °¨¼Ò´Â ½ÃÀå ¼ºÀåÀ» ÀúÇØÇß½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¶ÇÇÑ ½Å·ÚÇÒ ¼ö ÀÖ´Â ºÐ»êÇü ¿¡³ÊÁö ½Ã½ºÅÛÀÇ Á߿伺À» °Á¶Çϰí, ź·Â¼ºÀ» À§ÇÑ ÀÓº£µðµå Àü¿ø ¼Ö·ç¼Ç¿¡ ´ëÇÑ »õ·Î¿î °ü½ÉÀ» ºÒ·¯ÀÏÀ¸Ä×½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄÀÇ È¸º¹Àº ûÁ¤¿¡³ÊÁö¿¡ ´ëÇÑ Á¤ºÎÀÇ ºÎ¾çÃ¥°ú ÇÔ²² ½ÃÀå ȸº¹À» ÃËÁøÇÏ°í ºÐ»êÇü Àü¿ø ±â¼úÀÇ Ã¤ÅÃÀ» °¡¼ÓÈÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È µðÁ© ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
µðÁ© ºÐ¾ß´Â ¿ø°ÝÁö ¹× ¿ÀÇÁ±×¸®µå ¾ÖÇø®ÄÉÀ̼ǿ¡¼ÀÇ ½Å·Ú¼º°ú È¿À²¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. µðÁ© ¹ßÀü±â´Â ºü¸¥ ½Ãµ¿ ½Ã°£°ú ¾ÈÁ¤ÀûÀÎ Àü·Â °ø±ÞÀ» Á¦°øÇϱ⠶§¹®¿¡ ¹é¾÷ ¹× ºñ»ó Àü¿ø ½Ã½ºÅÛ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. °ß°íÇÑ ¼³°è·Î »ê¾÷, »ó¾÷ ¹× ÁÖ°Å ºÐ¾ßÀÇ ¿¾ÇÇÑ È¯°æ¿¡¼ ¿¬¼ÓÀûÀÎ ÀÛµ¿À» Áö¿øÇÕ´Ï´Ù. ±â¼úÀÇ ¹ßÀüÀ¸·Î ¿¬·á È¿À²ÀÌ °³¼±µÇ°í ¹èÃâ°¡½º°¡ °¨¼ÒÇÔ¿¡ µû¶ó ½ÃÀå¿¡¼ÀÇ ¸Å·ÂÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µðÁ© ¿¬·á°¡ ±¤¹üÀ§ÇÏ°Ô »ç¿ë °¡´ÉÇϱ⠶§¹®¿¡ Àü ¼¼°èÀûÀ¸·Î ¹èÆ÷ ¹× À¯Áöº¸¼ö°¡ ¿ëÀÌÇÕ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È »ó¾÷¿ë °Ç¹° ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È »ó¾÷¿ë °Ç¹° ºÎ¹®Àº ½Å·ÚÇÒ ¼ö ÀÖ´Â ºÐ»êÇü ¿¡³ÊÁö ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÏ¿© °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ °Ç¹°Àº ¿î¿µÀ» À§ÇØ ¹«Á¤Àü Àü·ÂÀ» ÇÊ¿ä·Î ÇÏ´Â °æ¿ì°¡ ¸¹¾Æ ž籤 ÆÐ³Î, ¿¬·áÀüÁö, ¸¶ÀÌÅ©·Î Åͺó°ú °°Àº ÇöÀå ¹ßÀü ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. Áö¼Ó°¡´É¼º°ú ģȯ°æ ÀÎÁõ¿¡ ´ëÇÑ Á߿伺ÀÌ ³ô¾ÆÁü¿¡ µû¶ó ±â¾÷µéÀº ´õ ±ú²ýÇÑ ÀÓº£µðµå ½Ã½ºÅÛÀ» ÅëÇÕÇϵµ·Ï µ¿±â¸¦ ºÎ¿©Çϰí ÀÖ½À´Ï´Ù. ¿¡³ÊÁö ºñ¿ëÀÇ »ó½ÂÀ¸·Î ÀÎÇØ »ó¾÷ ½Ã¼³µéÀº ºñ¿ë È¿À²ÀûÀÎ ÀÚ±ÞÀÚÁ·Çü Àü¿ø °ø±Þ ÀåÄ¡¿¡ ´ëÇÑ ÅõÀÚ¸¦ Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ® ¿¡³ÊÁö °ü¸® ½Ã½ºÅÛÀÇ ¹ßÀüÀ¸·Î È¿À²¼º°ú Á¦¾î°¡ Çâ»óµÇ¾î ÀÓº£µðµå ¹ßÀüÀÌ »ó¾÷¿ë »ç¿ëÀÚ¿¡°Ô ´õ¿í ¸Å·ÂÀûÀ¸·Î ´Ù°¡¿À°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¿¡³ÊÁö ¼ö¿ä Áõ°¡¿Í »ê¾÷È È®´ë·Î ÀÎÇØ ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡µéÀº ¿¡³ÊÁö ¾Èº¸¸¦ °ÈÇÏ°í ¼ÛÀü ¼Õ½ÇÀ» ÁÙÀ̱â À§ÇØ ºÐ»êÇü Àü·Â ½Ã½ºÅÛ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. Á¤ºÎÀÇ Áö¿ø Á¤Ã¥°ú Àç»ý¿¡³ÊÁö ÅëÇÕ¿¡ ´ëÇÑ °ÇÑ ÁýÁß·ÂÀÌ ½ÃÀå È®´ë¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ½º¸¶Æ® ±×¸®µå ÀÎÇÁ¶ó¿Í ºÐ»êÇü ¿¡³ÊÁö ÀÚ¿øÀÇ Áõ°¡´Â ÀÌ Áö¿ªÀÇ µµ½Ã¿Í ³óÃÌ ºÎ¹® ¸ðµÎ¿¡¼ ÀÓº£µðµå ¹ßÀü ±â¼úÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì´Â ÀÎÇÁ¶ó°¡ ¼º¼÷Çϰí Áö¼Ó°¡´É¼º°ú ¹èÃâ °¨¼Ò¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â ³ëÈÄÈµÈ Áß¾Ó ÁýÁᫎ Àü·Â¸ÁÀ» º¸´Ù ź·ÂÀûÀÎ Áö¿ª ¹ÐÂøÇü Àü¿øÀ¸·Î ´ëüÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. ¼ºÀåÀÇ ÁÖ¿ä ¿äÀÎÀº ûÁ¤¿¡³ÊÁö ±â¼ú, ¸¶ÀÌÅ©·Î±×¸®µå, ¿º´ÇÕ¹ßÀü(CHP) ½Ã½ºÅÛÀÇ Ã¤Åà Ȯ´ëÀÔ´Ï´Ù. ÀÌ ½ÃÀåÀº ¾Æ½Ã¾ÆÅÂÆò¾ç¸¸Å ºü¸£°Ô ¼ºÀåÇÏÁö´Â ¾ÊÁö¸¸, °·ÂÇÑ R&D, ±â¼ú Çõ½Å, ¿¡³ÊÁö ÀÚ¸³°ú Àü·Â¸Á ¾ÈÁ¤È¸¦ À§ÇÑ ±ÔÁ¦ Áö¿ø µîÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Embedded Power Generation Market is accounted for $22.24 billion in 2025 and is expected to reach $39.37 billion by 2032 growing at a CAGR of 8.5% during the forecast period. The decentralised production of electricity at or close to the point of use, as opposed to depending on centralised power facilities, is known as embedded power generation. Small-scale technologies like microturbines, solar panels, wind turbines, and combined heat and power (CHP) systems are all part of it. In order to increase energy efficiency, lower gearbox losses, and boost dependability, these systems are usually installed into residential, commercial, or industrial buildings. An essential part of contemporary, sustainable energy infrastructures, embedded power generation promotes grid resilience, reduces emissions, and permits increased energy independence.
According to the Inteational Energy Agency (IEA), there are approximately 770 million people globally without access to electricity, and embedded power generation systems could be a key solution to bridge this energy gap.
Rising demand for decentralized energy systems
Localised energy production is made possible by these systems, which lessen transmission losses and dependency on central grids. On-site generating is becoming more and more popular among consumers and businesses due to its increased energy security and dependability. Decentralised solutions are now more economical and ecologically beneficial thanks to developments in renewable technologies. By enacting laws and offering incentives, governments are also promoting these kinds of systems. Consequently, embedded power generation is emerging as a key element of contemporary energy systems.
High initial investment and maintenance cost
Advanced technology, specialised tools, and trained labour are needed to set up embedded systems, which raises the cost of capital. It can be difficult for many small and medium-sized businesses to set aside enough money for installation. Furthermore, the systems become less appealing due to the constant costs associated with maintenance and servicing. Adoption is further deterred by uncertainty over return on investment. Market penetration is slowed by these financial obstacles, particularly in developing nations.
Integration of renewable energy technologies
Wind turbines, biomass systems, and solar panels all improve energy efficiency and lessen reliance on centralised networks. These methods reduce greenhouse gas emissions, which promotes sustainable growth. To reach carbon neutrality targets, governments and businesses are investing more in renewable energy. Embedded renewable systems are becoming more dependable and economical because to technological developments. This change meets the growing energy needs of both urban and rural areas, which propels market expansion.
Regulatory and grid integration challenges
The implementation of embedded systems is complicated by regionally disparate policies and standards. Complicated interconnection rules and drawn-out permitting procedures raise expenses and erode investor confidence. Because of antiquated infrastructure, grid operators frequently find it difficult to integrate decentralised power sources. Small-scale producers are deterred by unclear rules about net metering and payment. All of these problems limit the use of integrated power solutions and slow industry growth.
Covid-19 Impact
The COVID-19 pandemic significantly impacted the embedded power generation market by disrupting supply chains, delaying project timelines, and reducing investments in new installations. Industrial slowdowns and decreased energy demand during lockdowns hindered market growth. However, the crisis also highlighted the importance of reliable, decentralized energy systems, prompting renewed interest in embedded power solutions for resilience. Post-pandemic recovery, along with government stimulus for clean energy, is expected to drive market resurgence and accelerate adoption of distributed power technologies.
The diesel segment is expected to be the largest during the forecast period
The diesel segment is expected to account for the largest market share during the forecast period, due to its reliability and efficiency in remote and off-grid applications. Diesel generators offer quick start-up times and consistent power supply, making them ideal for backup and emergency power systems. Their robust design supports continuous operation in harsh environments across industrial, commercial, and residential sectors. Technological advancements have improved fuel efficiency and reduced emissions, enhancing their market appeal. Additionally, the widespread availability of diesel fuel ensures easy deployment and maintenance globally.
The commercial buildings segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the commercial buildings segment is predicted to witness the highest growth rate by driving demand for reliable and decentralized energy solutions. These buildings often require uninterrupted power for operations, pushing the adoption of on-site generation technologies like solar panels, fuel cells, and microturbines. Increasing emphasis on sustainability and green certifications motivates businesses to integrate cleaner embedded systems. Rising energy costs further encourage commercial facilities to invest in cost-effective, self-sufficient power sources. Additionally, advancements in smart energy management systems enhance efficiency and control, making embedded generation more attractive for commercial users.
During the forecast period, the Asia Pacific region is expected to hold the largest market share due to increasing energy demand, expanding industrialization. Countries like China, India, and Japan are heavily investing in decentralized power systems to enhance energy security and reduce transmission losses. Supportive government policies and a strong focus on renewable energy integration further fuel market expansion. Additionally, the rise in smart grid infrastructure and distributed energy resources is encouraging the adoption of embedded power generation technologies across both urban and rural sectors in the region.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR by mature infrastructure and a strong emphasis on sustainability and emission reduction. The U.S. and Canada are focusing on replacing aging centralized grids with more resilient, localized power sources. Growth is primarily driven by the rising adoption of clean energy technologies, microgrids, and combined heat and power (CHP) systems. While the market is not growing as rapidly as in Asia Pacific, it benefits from robust R&D, technological innovation, and regulatory support for energy independence and grid stability.
Key players in the market
Some of the key players profiled in the Embedded Power Generation Market include General Electric (GE), Siemens AG, Caterpillar Inc., Cummins Inc., Schneider Electric, Mitsubishi Heavy Industries Ltd., Rolls-Royce Holdings plc, Wartsila Corporation, ABB Ltd., Kohler Co., MTU Onsite Energy, Capstone Turbine Corporation, Generac Holdings Inc., Doosan Corporation, Yanmar Co., Ltd., Atlas Copco AB, Aggreko plc and Himoinsa S.L.
In May 2025, Siemens entered into an agreement with TURN2X to become its preferred supplier and technology partner. The collaboration aims to scale up TURN2X's green energy production, leveraging Siemens' advanced technology portfolio to significantly enhance TURN2X's production capabilities in the embedded power generation sector.
In September 2024, Cummins announced a partnership with Bosch Global Software, ETAS, and KPIT to launch Eclipse CANought, an open-source project for commercial vehicle telematics. The project, part of the Eclipse Software Defined Vehicle initiative, will be integrated into telematics offerings starting in 2025, simplifying software integration and enabling secure, standardized access to vehicle ECUs.
In July 2024, Siemens AG and Boson Energy signed a Memorandum of Understanding to collaborate on waste-to-hydrogen technology. This partnership focuses on converting non-recyclable waste into hydrogen, supporting the transition to green energy and embedded power generation solutions.