![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1787866
¼¼°èÀÇ ¿ÀüÀç·á ½ÃÀå ¿¹Ãø(-2032³â) : Àç·á À¯Çü, ¿Âµµ ¹üÀ§, ¸ðµâ À¯Çü, ÇüÅÂ, ¿ëµµ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ºÐ¼®Thermoelectric Materials Market Forecasts to 2032 - Global Analysis By Material Type, Temperature Range, Module Type, Form, Application, End User, and By Geography |
Stratistics MRC¿¡ ÀÇÇϸé, ¿ÀüÀç·á ¼¼°è ½ÃÀåÀº 2025³â¿¡ 8¾ï 6,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ Áß¿¡ CAGR 13.4%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 20¾ï 7,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.
¿ÀüÀç·á´Â Á¦º¤ È¿°ú³ª ÆçƼ¿¡ È¿°ú¿¡ ÀÇÇØ ¿¿¡³ÊÁö¸¦ Àü±â¿¡³ÊÁö·Î Á÷Á¢ º¯È¯Çϰųª, ¹Ý´ë·Î Àü±â¿¡³ÊÁö¸¦ ¿¿¡³ÊÁö·Î º¯È¯Çϴ ÷´Ü ¹°ÁúÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÀç´Â ¿òÁ÷ÀÌ´Â ºÎǰ ¾øÀÌ °íü ¿¡³ÊÁö º¯È¯À» °¡´ÉÇÏ°Ô ÇÏ¿© ¹ßÀü ¹× ³Ã°¢ ÀÀ¿ë ºÐ¾ß¿¡¼ ³ôÀº ½Å·Ú¼º°ú È¿À²¼ºÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ¼ÒÀçµéÀº µ¶Æ¯ÇÑ ¿ÀüµµÀ²°ú Àü±âÀüµµÀ² Ư¼ºÀ¸·Î ÀÎÇØ ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ÀüÀÚ µîÀÇ »ê¾÷¿¡¼ Æó¿ ȸ¼ö, ³Ãµ¿, ¿¡³ÊÁö ¼öÈ®¿¡ ÀϹÝÀûÀ¸·Î »ç¿ëµË´Ï´Ù.
Æó¿ ȸ¼ö ½Ã½ºÅÛ ¼ö¿ä Áõ°¡
ÀÚµ¿Â÷, Á¦Á¶, ¹ßÀü µîÀÇ »ê¾÷¿¡¼ ´ë·®ÀÇ Æó¿ÀÌ ¹ß»ýÇϱ⠶§¹®¿¡ ÀÌ ¼Õ½ÇµÈ ¿¡³ÊÁö¸¦ »ç¿ë °¡´ÉÇÑ Àü±â·Î º¯È¯ÇÏ´Â ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¿Àü Àç·á´Â ¿¡³ÊÁö ȸ¼ö¸¦ À§ÇÑ ½Å·ÚÇÒ ¼ö ÀÖ°í À¯Áöº¸¼ö°¡ ÇÊ¿ä ¾ø´Â ¼Ö·ç¼ÇÀ» Á¦°øÇϸç, ÄÄÆÑÆ®ÇÑ °íü ½Ã½ºÅÛ¿¡ ÅëÇÕÇϱ⿡ ÀÌ»óÀûÀÔ´Ï´Ù. ¼¼°è ¿¡³ÊÁö È¿À² ±âÁØÀÌ °ÈµÇ°í Áö¼Ó°¡´É¼º ¸ñÇ¥°¡ ´õ¿í °ÈµÊ¿¡ µû¶ó ±â¾÷µéÀº ¿î¿µ ºñ¿ë°ú ¹èÃâ·®À» ÁÙÀ̱â À§ÇØ Æó¿ ȸ¼ö¸¦ äÅÃÇϰí ÀÖÀ¸¸ç, ¿¡³ÊÁö Ȱ¿ëÀ» ÃÖÀûÈÇÒ ¼ö Àִ ÷´Ü ¿Àü ¼ÒÀç¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù.
°í¼º´É ¼ÒÀ縦 ±¸Çϱ⠾î·Á¿ò
È¿À²ÀûÀÎ ¿Àüº¯È¯À» À§Çؼ´Â ³ôÀº ZT(¿ÀüµµÀ²)¸¦ °¡Áø Àç·á°¡ ÇÊ¿äÇÏÁö¸¸, Èñ¼ÒÇϰųª °í°¡À̰ųª ´ë±Ô¸ð ÇÕ¼ºÀÌ ¾î·Æ´Ù´Â ´ÜÁ¡ÀÌ ÀÖ½À´Ï´Ù. Åڷ縣, ºñ½º¹«Æ®, °Ô¸£¸¶´½°ú °°Àº °í¼º´É ¿Àü ÈÇÕ¹°¿¡ ÀÚÁÖ »ç¿ëµÇ´Â ¿ø¼Ò´Â Èñ¼ÒÇϰųª °ø±Þ¸ÁÀÌ ²÷¾îÁú ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ Àç·á¸¦ °¡°øÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ°í ³»±¸¼ºÀÌ ¶Ù¾î³ ÀåÄ¡·Î ÅëÇÕÇÏ´Â º¹À⼺ÀÌ Á¦Á¶»óÀÇ °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦ÇÑÀº »ê¾÷ Àü¹ÝÀÇ ´ë·® äÅÃÀ» ¹æÇØÇϰí, ºñ¿ë È¿À²¼ºÀ» Á¦ÇÑÇϸç, ¿¬±¸°³¹ß ³ë·ÂÀ» µÐȽÃ۰í, ±Ã±ØÀûÀ¸·Î ¿ÀüÀç·á ½ÃÀåÀÇ ¼ºÀå ÀáÀç·ÂÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù.
ÈÞ´ë¿ë ¹× ¿þ¾î·¯ºí ±â±â¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡
ÇÇÆ®´Ï½º Æ®·¡Ä¿³ª ÀÇ·á¿ë ¼¾¼¿Í °°Àº ¿þ¾î·¯ºí ±â±â´Â ¼ÒÇüÀÇ ¿¡³ÊÁö È¿À²ÀûÀÎ Àü¿ø¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁö°í ÀÖÀ¸¸ç, ¿Àü ¹ßÀü±â´Â ü¿ÂÀ» ÀÌ¿ëÇÏ¿© »ç¿ë °¡´ÉÇÑ Àü±â·Î º¯È¯ÇÒ ¼ö ÀÖ´Â ´É·Â ´öºÐ¿¡ ½º¸¶Æ®ÇÑ ¼Ö·ç¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. À¯¿¬ÇÏ°í ¼ÒÇüÈµÈ ¿Àü ¼ÒÀçÀÇ Çõ½ÅÀ¸·Î ÀÇ·ù ¹× ¾×¼¼¼¸®¿¡ ½±°Ô ÅëÇÕÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. µ¿½Ã¿¡ ȯ°æ¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁö¸é¼ Áö¼Ó °¡´ÉÇÑ ±â¼ú¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. »ç¹°ÀÎÅͳÝ(IoT)°ú Ä¿³ØÆ¼µå ÇコÄÉ¾î ±â±âÀÇ º¸±ÞÀ¸·Î ¹èÅ͸®°¡ ÇÊ¿ä ¾ø´Â »ó½Ã ¹ßÀüÀÇ Çʿ伺ÀÌ °¡¼Óȵǰí ÀÖÀ¸¸ç, ¿ÀüÀç·á´Â ¿þ¾î·¯ºí ±â¼ú ¹ßÀüÀÇ ÃÖÀü¼±¿¡ À§Ä¡Çϰí ÀÖ½À´Ï´Ù.
´Ù¸¥ ¿¡³ÊÁö ȸ¼ö ±â¼ú°úÀÇ °æÀï
À¯±â ·©Å² »çÀÌŬ, ¿±³È¯±â, »óº¯È ¹°Áú°ú °°Àº ´ëü ±â¼úÀº Á¾Á¾ ´õ ³ôÀº È¿À², ´õ ³·Àº ºñ¿ë ¶Ç´Â ƯÁ¤ ¿ëµµ¿¡ ´ëÇÑ ´õ ³ªÀº È®À强À» Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼º¼÷ÇÏ°í ³Î¸® äÅÃµÈ ½Ã½ºÅÛÀº ƯÈ÷ ¼º´É°ú ÅõÀÚ ¼öÀÍ·üÀÌ Áß¿äÇÑ ´ë±Ô¸ð »ê¾÷ ¼³ºñ¿¡¼ ¿Àü ¼Ö·ç¼ÇÀ» ´É°¡Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °æÀï ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ ¼º´É Â÷À̰¡ °è¼Ó ¹ú¾îÁö°í ÀÖ½À´Ï´Ù. ±× °á°ú, »ê¾÷°è´Â ¿Àü ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÁÖÀúÇÏ°Ô µÇ°í, È޴뼺, °íü »óÅ ÀÛµ¿, ³·Àº À¯Áöº¸¼ö ¿ä±¸ »çÇ×°ú °°Àº ÀåÁ¡¿¡µµ ºÒ±¸ÇÏ°í ¿Àü ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ°¡ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù.
Äڷγª19 »çÅ´ ¿Àü Àç·á ½ÃÀåÀ» Å©°Ô È¥¶õ¿¡ ºü¶ß·È½À´Ï´Ù. °ø±Þ¸Á È¥¶õ, °øÀå Æó¼â, ÁÖ¿ä Á¦Á¶ Áö¿ªÀÇ ³ëµ¿·Â ºÎÁ·À¸·Î ÀÎÇØ »ý»ê ¹× ÀÚÀç ¼ö±Þ¿¡ Â÷ÁúÀÌ »ý°å½À´Ï´Ù. ÀÚµ¿Â÷ ¹× °¡Àü ºÎ¹® ¼ö¿ä °¨¼Ò´Â ¼ºÀå¼¼¸¦ ´õ¿í µÐȽÃÄ×½À´Ï´Ù. ±×·¯³ª µ¥ÀÌÅͼ¾ÅÍ¿Í ¿ø°Ý ±Ù¹« Áõ°¡·Î IT ¹× Åë½Å ºÐ¾ßÀÇ ¿Àü Ä𷯿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ Àü¹ÝÀûÀÎ ºÎÁ¤ÀûÀÎ ¿µÇâÀ» ÀϺΠ¿ÏȽÃÄ×½À´Ï´Ù. ½ÃÀåÀº ÇöÀç »ê¾÷ Ȱµ¿ÀÇ È¸º¹°ú ¿¡³ÊÁö È¿À²¿¡ ´ëÇÑ Àü ¼¼°èÀÇ °ü½ÉÀ¸·Î ȸº¹¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºñ½º¹«½º Åڷ縣ȹ°(Bi2Te3) ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
ºñ½º¹«Æ® ÅÚ·ç¸£È ºñ½º¹«Æ®(Bi2Te3) ºÎ¹®Àº ½Ç¿Â¿¡ °¡±î¿î ¿Âµµ¿¡¼ ³ôÀº È¿À²À» ¹ßÈÖÇÏ¿© ³ÃÀå, ÀüÀÚ±â±â ³Ã°¢, ÈÞ´ë¿ë ¹ßÀü µîÀÇ ¿ëµµ¿¡ ÀûÇÕÇϸç, ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ôÀº Á¦º¤ °è¼ö, ³·Àº ¿ÀüµµÀ² µî ¿ì¼öÇÑ ¿Àü Ư¼ºÀÌ º¸±ÞÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¼ÒÇü, Àú¼ÒÀ½, °í ½Å·Ú¼º °íü ³Ã°¢ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ¸é¼ ¿Àü Àç·á ½ÃÀå¿¡¼ ºñ½º¹«Æ® ÅÚ·ç¸£È ºñ½º¹«Æ®ÀÇ ¼ºÀåÀÌ Áö¼ÓµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ÀÚµ¿Â÷ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¿¡³ÊÁö È¿À²°ú ¹è±â°¡½º °¨Ãà¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ÀÚµ¿Â÷ ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ¿Àü ¹ßÀü±â´Â ¹è±â ½Ã½ºÅÛÀÇ Æó¿À» Àü±â·Î º¯È¯ÇÏ¿© Àüü ¿¬·á È¿À²À» °³¼±Çϱâ À§ÇØ ÀÚµ¿Â÷¿¡ Á¡Á¡ ´õ ¸¹ÀÌ ÅëÇյǰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Àü±âÀÚµ¿Â÷ ¹× ÇÏÀ̺긮µå ÀÚµ¿Â÷´Â ¿ °ü¸® ¹× ¹èÅ͸® ³Ã°¢À» À§ÇØ ¿Àü ¸ðµâÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. Áö¼Ó °¡´ÉÇÑ ¸ðºô¸®Æ¼ÀÇ ÃßÁø°ú ȯ°æ ±ÔÁ¦ °È·Î ÀÎÇØ ÀÚµ¿Â÷ ¿ëµµ¿¡¼ ¿Àü±âÀÇ Ã¤ÅÃÀÌ ´õ¿í °¡¼Óȵǰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ »ê¾÷È, ÀÚµ¿Â÷ »ý»ê Áõ°¡, ¿¡³ÊÁö È¿À² ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡µéÀº ÀüÀÚ, ÀÚµ¿Â÷ ±â¼ú Çõ½Å, Àç»ý¿¡³ÊÁö¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖÀ¸¸ç, ¿Àü ÀÀ¿ëÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ûÁ¤ ¿¡³ÊÁö¿¡ ´ëÇÑ Á¤ºÎÀÇ ¿ì´ë Á¶Ä¡¿Í ÷´Ü ¼ÒÀç¿¡ ´ëÇÑ ´ë±Ô¸ð ¿¬±¸°³¹ß ÅõÀÚ°¡ ÀÌ Áö¿ª Àüü ½ÃÀå È®´ë¿¡ ´õ¿í ±â¿©Çϰí ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ¿¡³ÊÁö È¿À²°ú °íµµÀÇ ¿°ü¸®°¡ Áß¿äÇÑ ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ, ¹æ»ê ºÐ¾ß¿¡¼ ¼ö¿ä°¡ ³ô±â ¶§¹®ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀº Ȱ¹ßÇÑ ¿¬±¸ ÀÚ±Ý, ±â¼ú Çõ½Å, ¿¡³ÊÁö ¼öÈ® ¼Ö·ç¼ÇÀÇ Á¶±â µµÀÔ µîÀÇ ÇýÅÃÀ» ´©¸®°í ÀÖ½À´Ï´Ù. Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼ ûÁ¤ ±â¼ú ¹× Æó¿ ȸ¼ö ½Ã½ºÅÛÀ» Áö¿øÇÏ´Â Á¤ºÎÀÇ ÀÌ´Ï¼ÅÆ¼ºê¿Í ÇÔ²² ÀüÀÚ, ÇコÄɾî, »ê¾÷ Á¦Á¶ µî »ê¾÷ Àü¹Ý ½ÃÀå ¼ºÀåÀ» ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Thermoelectric Materials Market is accounted for $0.86 billion in 2025 and is expected to reach $2.07 billion by 2032 growing at a CAGR of 13.4% during the forecast period. Thermoelectric materials are advanced substances that convert heat energy directly into electrical energy and vice versa through the Seebeck and Peltier effects. These materials enable solid-state energy conversion without moving parts, making them highly reliable and efficient for power generation and cooling applications. They are commonly used in waste heat recovery, refrigeration, and energy harvesting across industries such as automotive, aerospace, and electronics due to their unique thermal and electrical conductivity properties.
Rising demand for waste heat recovery systems
Industries such as automotive, manufacturing, and power generation produce vast amounts of waste heat, leading to increased interest in technologies that can convert this lost energy into usable electricity. Thermoelectric materials offer a reliable and maintenance-free solution for energy recovery, making them ideal for integration into compact, solid-state systems. As global energy efficiency standards tighten and sustainability goals become more aggressive, companies are adopting waste heat recovery to reduce operational costs and emissions, further boosting demand for advanced thermoelectric materials that can optimize energy use.
Limited availability of high-performance materials
Efficient thermoelectric conversion requires materials with a high figure of merit (ZT), which are often rare, expensive, or difficult to synthesize at scale. Elements like tellurium, bismuth, and germanium commonly used in high-performance thermoelectric compounds are either scarce or subject to supply chain disruptions. Additionally, the complexity of processing and integrating these materials into reliable, durable devices poses manufacturing challenges. These limitations hinder mass adoption across industries, restrict cost-effectiveness, and slow down research and development efforts, ultimately constraining the growth potential of the thermoelectric materials market.
Growing demand for portable and wearable devices
Wearable devices such as fitness trackers and medical sensors increasingly rely on compact, energy-efficient power sources, with thermoelectric generators emerging as a smart solution thanks to their ability to harness body heat and convert it into usable electricity. Innovations in flexible, miniaturized thermoelectric materials have made it easier to embed them into garments and accessories. At the same time, growing environmental awareness is driving interest in sustainable technologies. As the Internet of Things (IoT) and connected healthcare devices become more widespread, the need for constant, battery-free power harvesting is accelerating, placing thermoelectric materials at the forefront of wearable tech advancements.
Competition from other energy recovery technologies
Alternative technologies such as organic Rankine cycles, heat exchangers, and phase change materials often offer higher efficiency, lower costs, or better scalability for specific applications. These mature and widely adopted systems overshadow thermoelectric solutions, especially in large-scale industrial setups where performance and return on investment are critical. Moreover, advancements in competing technologies continue to widen the performance gap. As a result, industries may hesitate to invest in thermoelectric systems, limiting their deployment despite their advantages in portability, solid-state operation, and low maintenance requirements.
The COVID-19 pandemic significantly disrupted the thermoelectric materials market. Supply chain disruptions, factory closures, and labor shortages in key manufacturing regions hindered production and material availability. Reduced demand from the automotive and consumer electronics sectors further slowed growth. However, increased adoption of data centers and remote work spurred demand for thermoelectric coolers in IT and telecom, partially mitigating the overall negative impact. The market is now recovering, driven by renewed industrial activity and a global focus on energy efficiency.
The bismuth telluride (Bi2Te3) segment is expected to be the largest during the forecast period
The bismuth telluride (Bi2Te3) segment is expected to account for the largest market share during the forecast period, due to its high efficiency at near-room temperatures, making it ideal for applications in refrigeration, cooling of electronic devices, and portable power generation. Its excellent thermoelectric properties, including high Seebeck coefficient and low thermal conductivity, drive its widespread use. The increasing demand for compact, silent, and reliable solid-state cooling systems continues to boost the growth of bismuth telluride in the thermoelectric materials market.
The automotive segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the automotive segment is predicted to witness the highest growth rate, due to the growing emphasis on energy efficiency and emission reduction. Thermoelectric generators are increasingly integrated into vehicles to convert waste heat from exhaust systems into electricity, improving overall fuel efficiency. Additionally, electric and hybrid vehicles benefit from thermoelectric modules for thermal management and battery cooling. The push for sustainable mobility and stricter environmental regulations further accelerates thermoelectric adoption in automotive applications.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to rapid industrialization, increasing automotive production, and rising demand for energy-efficient technologies. Countries like China, Japan, and South Korea are investing heavily in electronics, automotive innovation, and renewable energy, driving thermoelectric applications. Additionally, government incentives for clean energy and significant R&D investments in advanced materials further contribute to the market's expansion across the region.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to strong demand in automotive, aerospace, and defense sectors, where energy efficiency and advanced thermal management are critical. The region benefits from robust research funding, technological innovation, and early adoption of energy-harvesting solutions. Growing interest in sustainable energy, coupled with government initiatives supporting clean technologies and waste heat recovery systems, further fuels market growth across industries such as electronics, healthcare, and industrial manufacturing.
Key players in the market
Some of the key players in Thermoelectric Materials Market include Ferrotec Holdings Corporation, Custom Thermoelectric LLC, Laird Thermal Systems, Phononic, Inc., Gentherm Inc., Thermonamic Electronics Corp. Ltd., Coherent Corp., TE Technology, Inc., Kyocera Corporation, Evident Thermoelectrics, Komatsu Ltd., TEC Microsystems GmbH, Global Power Technologies Inc., European Thermodynamics Limited, and CUI Devices.
In March 2024, Hach introduced the new BioTector B7000 Online ATP Monitoring System for real-time detection of microbial contamination in water treatment processes. It provides rapid results in 5-10 minutes.
In March 2024, Thermo Fisher launched the new Dionex Inuvion Ion Chromatography system designed for simplified and versatile ion analysis for environmental, industrial and municipal water testing labs.
In February 2024, Thermo Fisher announced the launch of its 'Make in India' Class 1 analyser-based Continuous Ambient Air Quality Monitoring System (CAAQMS) to support India's environmental monitoring efforts.