![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1797894
¼¼°èÀÇ ÇコÄɾî¿ë ºí·ÏüÀÎ ±â¼ú ½ÃÀå ¿¹Ãø - ³×Æ®¿öÅ© À¯Çüº°, ¹èÆ÷ ¸ðµåº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)Blockchain Technology In Healthcare Market Forecasts to 2032 - Global Analysis By Network Type (Private Networks, Public Networks, Consortium Networks and Other Network Types), Deployment Mode, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÇコÄɾî¿ë ºí·ÏüÀÎ ±â¼ú ½ÃÀåÀº 2025³â 183¾ï 1,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2032³â¿¡´Â 5,203¾ï 3,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 61.3%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù.
ºí·ÏüÀÎ ±â¼úÀº µ¥ÀÌÅÍÀÇ ¾ÈÀü¼º, Åõ¸í¼º, »óÈ£ ¿î¿ë¼ºÀ» Çâ»ó½Ã۰í ÀÇ·á ºÐ¾ß¸¦ º¯È½Ã۰í ÀÖ½À´Ï´Ù. ºí·ÏüÀÎ ±â¼úÀ» ÅëÇØ ȯÀÚ ±â·ÏÀ» ¾ÈÀüÇÏ°í ºÐ»êÀûÀ¸·Î ÀúÀåÇÒ ¼ö ÀÖÀ¸¸ç, Çã°¡¸¦ ¹ÞÀº °³Àθ¸ °³ÀÎ ÀÇ·á µ¥ÀÌÅÍ¿¡ ¾×¼¼½ºÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¸°Ô ÇÏ¸é ´ç»çÀÚÀÇ ½Å·Ú°¡ ³ô¾ÆÁö°í µ¥ÀÌÅÍ À¯Ãâ °¡´É¼ºÀÌ ³·¾ÆÁý´Ï´Ù. ¶ÇÇÑ º¯Á¶ ¹æÁö ¹× °¨»ç °¡´ÉÇÑ °Å·¡ ±â·ÏÀ» Á¦°øÇÔÀ¸·Î½á ºí·ÏüÀÎÀº °ø±Þ¸Á °ü¸®, û±¸, ÀÓ»ó½ÃÇè µîÀÇ ÀýÂ÷¸¦ °¡¼ÓÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á Á¦»ê¾÷ü °£ÀÇ ½Ç½Ã°£ µ¥ÀÌÅÍ °øÀ¯¸¦ ÃËÁøÇÏ´Â ºí·ÏüÀÎÀÇ ´É·ÂÀº ´õ ³ªÀº ȯÀÚ °á°ú, °ü¸® ºñ¿ë Àý°¨, ´õ ³ªÀº Ä¡·á ÄÚµð³×À̼ÇÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù.
¼¼°èº¸°Ç±â±¸(WHO)¿¡ µû¸£¸é ¼¼°è ÀǾàǰÀÇ ÃÖ´ë 10%°¡ À§Á¶Ç°À¸·Î ȯÀÚÀÇ ¾ÈÀü¿¡ ½É°¢ÇÑ À§ÇèÀ» ÃÊ·¡ÇÑ´Ù°í ÇÕ´Ï´Ù. ºí·ÏüÀÎ ±â¹Ý ÃßÀû ½Ã½ºÅÛÀº ÀǾàǰÀ» ÀÎÁõÇÏ°í °ø±Þ¸Á¿¡¼ À§Á¶Ç°À» Á¦°ÅÇϱâ À§ÇØ µµÀԵǾú½À´Ï´Ù.
»óÈ£ ¿î¿ë¼ºÀÇ Çʿ伺
ÀÇ·á ½Ã½ºÅÛÀº Á¾Á¾ ¼·Î È¿°úÀûÀÎ Åë½ÅÀ» ¼öÇàÇÏÁö ¾Ê´Â ´Ù¸¥ ÀüÀÚ ÀÇ·á ±â·Ï(EHR) ½Ã½ºÅÛÀ» »ç¿ëÇÏ¸ç »çÀÏ·ÎÈµÇ°í ¿î¿µµÇ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ºñÈ¿À²ÀûÀÎ Ä¿¹Â´ÏÄÉÀ̼Ç, ¹Ýº¹µÈ Áø´Ü, ´ÜÆíÀûÀÎ Ä¡·á´Â ÀÌ·¯ÇÑ »óÈ£ ¿î¿ë¼ºÀÇ ºÎÁ·ÀÇ °á°úÀÔ´Ï´Ù. ȯÀÚ ±â·ÏÀÇ ´ÜÀÏ ¹öÀüÀº ¾ÈÀüÇÏ°í °¨»ç °¡´ÉÇÑ ±â·ÏÀ» À¯ÁöÇÏ¸é¼ º´¿ø, Ŭ¸®´Ð, ¾à±¹, º¸Çè ȸ»ç µî ´Ù¾çÇÑ ÀÇ·á Á¶Á÷ÀÌ ½Ç½Ã°£À¸·Î ¾×¼¼½ºÇÏ°í ¾÷µ¥ÀÌÆ® ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ ºí·ÏüÀÎÀº ÀÇ·á µ¥ÀÌÅ͸¦ ÀúÀåÇÏ°í °øÀ¯Çϱâ À§ÇÑ ÅëÀÏÀûÀÎ ÇÁ·¹ÀÓ¿öÅ© ¿ªÇÒÀ» ÇÕ´Ï´Ù.
Ç¥ÁØÈ ºÎÁ·
ÀÇ·á ¾÷°è¿¡¼ µµÀÔÀÇ °¡Àå Å« Àå¾Ö Áß Çϳª´Â ºí·Ï üÀÎ ÇÁ·ÎÅäÄݰú µ¥ÀÌÅÍ Çü½ÄÀÌ Ç¥ÁØÈµÇÁö ¾ÊÀº °ÍÀÔ´Ï´Ù. ºí·ÏüÀÎ Ç÷§Æû¿¡ µû¶ó ¾ÆÅ°ÅØÃ³, ÄÁ¼¾¼½º ¹æ½Ä, µ¥ÀÌÅÍ ±¸Á¶°¡ ´Ù¸£±â ¶§¹®¿¡ ½Ã½ºÅÛ °£ÀÇ ¿¬°è°¡ ¾î·Æ½À´Ï´Ù. ÀüÀÚ ÀÇ·á±â±â(EHR)¿Í °°Àº ÇöÀçÀÇ ÀÇ·á ½Ã½ºÅÛ°úÀÇ ÅëÇÕÀº ºí·ÏüÀο¡ °Ç° µ¥ÀÌÅ͸¦ ÀúÀåÇÏ°í ±³È¯Çϱâ À§ÇÑ ³Î¸® ¾Ë·ÁÁø Ç¥ÁØÀÌ ¾ø±â ¶§¹®¿¡ ¾î·Á¿î ¿À·ù°¡ ¹ß»ýÇϱ⠽±½À´Ï´Ù. °Ô´Ù°¡ ÀÌ·¯ÇÑ ºÐ´ÜÈ´Â ¿¬±¸ÀÚ, ±ÔÁ¦±â°ü, ÀÇ·áÁ¦»ê¾÷ü°¡ Çù·ÂÇϱ⠾î·Á¿öÁý´Ï´Ù.
ȯÀÚ µ¥ÀÌÅÍ °ü¸® ¹× ¼ÒÀ¯±Ç °È
ºí·ÏüÀÎÀº ȯÀÚ°¡ ÀÚ½ÅÀÇ ÀÇ·á ±â·ÏÀ» ¿ÏÀüÈ÷ ¼ÒÀ¯ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. Áß¾Ó ÁýÁßÀûÀÎ Á¶Á÷¿¡ ÀÇÁ¸ÇÏ´Â ´ë½Å »ç¶÷µéÀº ºí·ÏüÀÎÀ» ÀÌ¿ëÇÑ ÀÇ·á µ¥ÀÌÅÍ ½Ã½ºÅÛÀ¸·Î °³ÀΠ۸¦ »ç¿ëÇÏ¿© ÀÚ½ÅÀÇ µ¥ÀÌÅÍ¿¡ ´ëÇÑ ¾×¼¼½º¸¦ °ü¸®, °øÀ¯ ¹× Ãë¼ÒÇÒ ¼ö ÀÖ½À´Ï´Ù. À̸¦ ÅëÇØ Åõ¸íÇÏ°í °£ÆíÇÑ µ¿ÀÇ °ü¸®, µÎ ¹øÂ° ¿ÀÇǴϾðÀ» À§ÇÑ µ¥ÀÌÅÍ °øÀ¯, ÀÇ·á Á¦»ê¾÷ü °£ÀÇ ±â·Ï Àü¼ÛÀ» ¿ëÀÌÇÏ°Ô Çϴ ȯÀÚ Á᫐ ÀÇ·á Ç÷§ÆûÀ» °³¹ßÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ °³º° °Ç° °á°úÀÇ ÅëÁ¦¿¡¼ ȯÀÚÀÇ Ã¥ÀÓ°ú Âü¿©¸¦ ÃËÁøÇÕ´Ï´Ù.
ÀüÅëÀûÀÎ ÀÌÇØ°ü°èÀÚÀÇ ¹Ý´ë
ÀÇ·á ºÐ¾ß¿¡´Â ¾ö°ÝÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°ú º¸¼öÀû ¿ª»ç°¡ ÀÖ½À´Ï´Ù. ±ÔÁ¦ ´ç±¹, ÀÇ·á±â°ü, Àü¹®°¡ÀÇ ´ëºÎºÐÀº ºí·ÏüÀÎÀ» Àͼ÷ÇÏÁö ¾ÊÀº ÆÄ±«ÀûÀÎ ±â¼ú·Î º¸°í Àֱ⠶§¹®¿¡ ȸÀÇÀûÀ̰ųª Àû±ØÀûÀ¸·Î ¹Ý´ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ȯÀÚ µ¥ÀÌÅÍÀÇ °ü¸®¸¦ ÀÒ°í, ¿öÅ©Ç÷ο찡 È¥¶õ½º·´°í, Á÷¾÷À» »©¾Ñ±â´Â °Í¿¡ ´ëÇÑ ¿ì·Á·Î, ÇöÀç ½Ã½ºÅÛ¿¡ Àͼ÷ÇÑ ÀÌÇØ°ü°èÀÚ´Â ºí·ÏüÀΠä¿ë¿¡ ²¨·ÁÇÒ ¼ö ÀÖ½À´Ï´Ù. °Ô´Ù°¡, ƯÈ÷ ÁÖ¿ä Á¶Á÷À̳ª Á¤ºÎ·ÎºÎÅÍÀÇ ±¤¹üÀ§ÇÑ ÁöÁö°¡ ¾øÀ¸¸é, ºí·ÏüÀÎ ±â¼úÀÇ Àü°³´Â Á¤Ã¼µÉ ¼ö ÀÖ½À´Ï´Ù.
ÀÇ·á ¾÷°è¿¡¼ ºí·ÏüÀÎÀÇ µµÀÔÀº COVID-19ÀÇ ´ëÀ¯Çà¿¡ ÀÇÇØ Å©°Ô °¡¼ÓÈµÇ°í ¾ÈÀüÇÏ°í °³¹æÀûÀ̰í È¿°úÀûÀÎ µ¥ÀÌÅÍ °øÀ¯ÀÇ ÀÓ¹ÚÇÑ Çʿ伺ÀÌ ÁÖ¸ñ¹Þ°Ô µÇ¾ú½À´Ï´Ù. ºí·ÏüÀÎÀº ¼¼°è ÀÇ·á ½Ã½ºÅÛÀÌ È¯ÀÚ µ¥ÀÌÅÍ °ü¸®, ¹é½Å ¹èÆ÷, °ø±Þ¸Á Åõ¸í¼º È®º¸¸¦ °í¹ÎÇÏ´Â µ¿¾È µ¥ÀÌÅÍ ¹«°á¼º, ÃßÀû¼º, »óÈ£ ¿î¿ë¼ºÀ» º¸ÀåÇÏ´Â ½ÇÇö °¡´ÉÇÑ ¹æ¹ýÀÌ µÇ¾ú½À´Ï´Ù. ¾ÈÀüÇÑ µ¥ÀÌÅÍ ±³È¯À» ÅëÇØ ¿ø°Ý °Ç° ¸ð´ÏÅ͸µ°ú ¿ø°Ý ÀǷḦ °¡´ÉÇÏ°Ô Çϰí, ¹é½Å ÀÎÁõÀ» °¡¼ÓÈÇϰí, ÀÇ·á ¹°ÀÚÀÇ ½Ç½Ã°£ ÃßÀûÀ» °¡´ÉÇÏ°Ô Çß½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ºí·ÏüÀÎ ±â¹ÝÀÇ ÀÇ·á ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½É°ú ÀÚ±ÝÀ» ³ôÀ̰í, ÀÌ ºÐ¾ßÀÇ Àå±âÀûÀÎ µðÁöÅÐ º¯ÈÀÇ ±âÃʸ¦ ½×´Â ¹ÚÂ÷ÀÇ ¿ªÇÒÀ» Çß½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °³ÀÎ ³×Æ®¿öÅ© ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ °ÍÀ¸·Î ¿¹»ó
¿¹Ãø ±â°£ µ¿¾È »ç¼³¸Á ºÎ¹®ÀÌ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ³ôÀº º¸¾È, ±ÔÁ¦µÈ ¾×¼¼½º, HIPAA ¹× GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)°ú °°Àº ¾ö°ÝÇÑ ÀÇ·á ¹ý±Ô Áؼö´Â ÀÌ·¯ÇÑ ÀÌÁ¡ÀÇ ÁÖ¿ä ¿øÀÎÀÔ´Ï´Ù. ÇÁ¶óÀ̺ø ºí·ÏüÀÎÀº ±ÔÁ¦±â°ü, º¸Çè»ç, ÀÇ·á Á¦»ê¾÷ü°¡ Çã°¡Á¦·Î µ¥ÀÌÅÍ ¾×¼¼½º¸¦ Á¦¾îÇÒ ¼ö ÀÖ°Ô ÇÔÀ¸·Î½á ±â¹Ð¼ºÀÌ ³ôÀº ÀÇ·á µ¥ÀÌÅÍÀÇ ±â¹Ð¼º°ú ¹«°á¼ºÀ» º¸ÀåÇÕ´Ï´Ù. °Å·¡ ¼Óµµ °¡¼ÓÈ, È¿°úÀûÀÎ °Å¹ö³Í½º, ¸ÂÃãÇü ¼Ö·ç¼ÇÀ» Á¦°øÇÒ ¼ö ÀÖÀ¸¹Ç·Î °ø±Þ¸Á °ü¸®, º¸Çè û±¸ ó¸®, ÀüÀÚ ÀÇ·á ±â·Ï(EHR)°ú °°Àº ¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ °³ÀÎ ³×Æ®¿öÅ©´Â ÇöÀç Á¤ºÎÀÇ ÀÇ·á ÇÁ·Î±×·¥°ú ´ë±Ô¸ð ÀÇ·á Á¶Á÷¿¡ °¡Àå ÀûÇÕÇÑ ¼±ÅÃÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â °ÍÀº Ŭ¶ó¿ìµå ±â¹Ý ºÎ¹®
¿¹Ãø ±â°£ µ¿¾È Ŭ¶ó¿ìµå ±â¹Ý ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ È®ÀåÀÇ ¹è°æ¿¡´Â Àúºñ¿ë, È®À强 ¹× À¯¿¬¼ºÀÌ ¶Ù¾î³ª°í, ´ë·®ÀÇ ÀÎÇÁ¶ó ÅõÀÚ ¾øÀÌ ½Å¼ÓÇÏ°Ô µµÀÔÇÒ ¼ö ÀÖ´Â ºí·ÏüÀÎ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ½Ç½Ã°£ µ¥ÀÌÅÍ ¾×¼¼½º, °£´ÜÇÑ ½Ã½ºÅÛ ÅëÇÕ, º´¿ø, º¸Çè ȸ»ç, ¿¬±¸ ±â°ü µîÀÇ ÀÇ·á ÀÌÇØ °ü°èÀÚ°£ÀÇ ¿ø°Ý Çù¾÷Àº ¸ðµÎ Ŭ¶ó¿ìµå ±â¹Ý Ç÷§ÆûÀ» ÅëÇØ °¡´ÉÇÕ´Ï´Ù. ¶ÇÇÑ ¿ø°Ý ÀÇ·á, µðÁöÅÐ °Ç° ¾Û ¹× ¿ø°Ý ¸ð´ÏÅ͸µÀ» Ȱ¿ëÇÏ´Â ÀÇ·á Á¦»ê¾÷ü°¡ ´Ã¾î³²¿¡ µû¶ó ºí·ÏüÀο¡ ÀÇÇØ ±¸µ¿µÇ´Â º¸¾È Ŭ¶ó¿ìµå ÀÎÇÁ¶óÀÇ ¿ä±¸°¡ Ä¿Áö°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ¸ðµ¨Àº ´ë±Ô¸ð ¹èÆ÷, ¿ø°Ý ¾×¼¼½º ¹× Áö¼ÓÀûÀÎ ¾÷µ¥ÀÌÆ®¸¦ Áö¿øÇϹǷΠÇö´ë µ¥ÀÌÅÍ Á᫐ ÀÇ·á ¿¡ÄڽýºÅÛ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇÁö¸¸, ÀÌ´Â ÁÖ·Î Á¤±³ÇÑ ÀÇ·á ½Ã½ºÅÛ, ÃÖ»ó±Þ ºí·ÏüÀÎ ±â¼ú °ø±Þ¾÷üÀÇ °ß°íÇÑ Á¸Àç°¨, ÃÖ÷´Ü µðÁöÅÐ ¼Ö·ç¼ÇÀÇ Á¶±â µµÀÔÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÀÇ·á IT Çõ½ÅÀ» Àå·ÁÇÏ´Â °·ÂÇÑ Á¤ºÎ ÇÁ·Î±×·¥, ¾öû³ ¿¬±¸ °³¹ß ºñ¿ë, ¾ÈÀüÇÏ°í »óÈ£ ¿î¿ë °¡´ÉÇÑ ÀÇ·á µ¥ÀÌÅÍ ½Ã½ºÅÛ¿¡ ´ëÇÑ °ÇÑ ¿ä±¸´Â ¸ðµÎÀÌ Áö¿ª¿¡ ÀÌÀÍÀ» °¡Á®´ÙÁÝ´Ï´Ù. ȯÀÚÀÇ º»ÀÎ È®ÀÎ, º¸Çè û±¸ ó¸®, ÀǾàǰ °ø±Þ üÀÎ ÃßÀû, ÀüÀÚ ÀÇ·á ±â·Ï(EHR)¿¡ ºí·Ï üÀÎÀ» ÀÌ¿ëÇÏ´Â °Í°ú °ü·ÃÇÏ¿© ¹Ì±¹ÀÌ ¼±ÇàÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ ½ÃÀå¿¡¼ ºÏ¹ÌÀÇ ÀÌÁ¡Àº À¯¸®ÇÑ ±ÔÁ¦¿Í ÀÇ·á Á¦»ê¾÷ü¿Í ±â¼ú ±â¾÷ °£ÀÇ °ß°íÇÑ ÆÄÆ®³Ê½Ê¿¡ ÀÇÇØ ´õ¿í °ÈµÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â µðÁöÅÐ ±â¼úÀÇ ±Þ¼ÓÇÑ Áøº¸, ÀÇ·á ÀÎÇÁ¶ó ¼ºÀå, ºí·ÏüÀÎ µµÀÔ¿¡ ´ëÇÑ Á¤ºÎÀÇ µÞ¹ÞħÀÌ Áõ°¡ÇÏ´Â ¹è°æÀÔ´Ï´Ù. È®´ëÇÏ´Â Àα¸¿Í Áõ´ëÇÏ´Â ÀÇ·á ¼ö¿ä¸¦ °ü¸®Çϱâ À§ÇØ Áß±¹, Àεµ, Çѱ¹, ½Ì°¡Æ÷¸£ µî ±¹°¡µéÀº ÀÇ·á Çõ½Å°ú µ¥ÀÌÅÍ º¸¾È¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. Åõ¸í¼º, »óÈ£ ¿î¿ë¼º ¹× µ¥ÀÌÅÍ ¹«°á¼ºÀ» Çâ»ó½ÃŰ´Â ºí·ÏüÀÎÀÇ ´É·ÂÀº ÀÌ Áö¿ªÀÇ ¿ø°Ý ÀÇ·á, Çï½ºÅØ ½ÅÈï ±â¾÷, ±¹°æÀ» ³Ñ¾î¼´Â ÀÇ·á °ü±¤ »ê¾÷¿¡µµ µµ¿òÀÌ µË´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ °ø°ø¡¤¹Î°£ÀÇ·áºÎ¹®Àº ±ÔÁ¦¸é¿¡¼ÀÇ ±àÁ¤ÀûÀÎ ÁøÀü°ú ±× °¡´É¼º¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ºí·ÏüÀÎ ±â¼úÀÇ Ã¤¿ëÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Blockchain Technology In Healthcare Market is accounted for $18.31 billion in 2025 and is expected to reach $520.33 billion by 2032 growing at a CAGR of 61.3% during the forecast period. Blockchain technology is improving data security, transparency, and interoperability, which is transforming the healthcare sector. It makes it possible for patient records to be stored securely and decentralized, guaranteeing that only individuals with permission can access private medical data. This increases stakeholder trust and lowers the chance of data breaches. Additionally, by offering a tamper-proof, auditable record of transactions, blockchain can expedite procedures like supply chain management, billing, and clinical trials. Better patient outcomes, lower administrative costs, and better care coordination can result from its capacity to facilitate real-time data sharing among healthcare providers.
According to the World Health Organization, up to 10% of global pharmaceuticals are counterfeit, posing serious patient safety risks. Blockchain-based tracking systems are being deployed to help authenticate medications and keep counterfeits out of the supply chain.
The necessity of interoperability
Healthcare systems often operate in silos, using different electronic health record (EHR) systems that don't communicate effectively with one another. Ineffective communication, repeated diagnostics, and fragmented care are the results of this lack of interoperability. A single version of a patient's records can be accessed and updated in real time by a variety of healthcare organizations, including hospitals, clinics, pharmacies, and insurers, while preserving a safe and auditable history. Moreover, blockchain can serve as a unified framework for storing and sharing health data.
Absence of standardization
One of the biggest obstacles to adoption in the healthcare industry is the lack of standardized blockchain protocols and data formats. It is challenging for systems to work together because different blockchain platforms employ different architectures, consensus methods, and data structures. Integration with current healthcare systems, such as Electronic Health Records (EHRs), becomes difficult and prone to errors in the absence of a widely recognized standard for storing and exchanging health data on blockchain. Additionally, this fragmentation makes it more difficult for researchers, regulatory agencies, and healthcare providers to work together.
Enhanced control and ownership of patient data
Blockchain can empower patients to have full ownership of their medical records. Instead of depending on centralized organizations, people can use private keys to manage, share, and revoke access to their data with blockchain-based health data systems. This makes it possible to develop patient-centered healthcare platforms that facilitate transparent and easy consent management, data sharing for second opinions, and record transfers between providers. Furthermore, it promotes patient responsibility and involvement in controlling individual health outcomes.
Opposition from conventional stakeholders
The healthcare sector has a strict regulatory framework and a conservative history. Many regulators, healthcare organizations, and professionals may be skeptical of or actively opposed to blockchain because they see it as an unfamiliar and disruptive technology. Due to concerns about losing control over patient data, workflow disruptions, or job displacement, stakeholders who are accustomed to current systems might be reluctant to embrace blockchain. Moreover, the deployment of blockchain technology may stall if there isn't broad support, particularly from major organizations and governments.
Blockchain adoption in the healthcare industry was greatly accelerated by the COVID-19 pandemic, which brought attention to the pressing need for safe, open, and effective data sharing. Blockchain became a feasible way to guarantee data integrity, traceability, and interoperability as healthcare systems around the world struggled to manage patient data, vaccine distribution, and supply chain transparency. Through safe data exchange, it enabled remote health monitoring and telemedicine, expedited vaccine certification, and enabled real-time tracking of medical supplies. However, the crisis served as a spur, raising interest in and funding for blockchain-based medical solutions and laying the groundwork for the sector's long-term digital transformation.
The private networks segment is expected to be the largest during the forecast period
The private networks segment is expected to account for the largest market share during the forecast period. High security, regulated access, and adherence to strict healthcare laws like HIPAA and GDPR are the main causes of this dominance. Private blockchains guarantee the confidentiality and integrity of sensitive medical data by enabling regulatory agencies, insurers, and healthcare providers to control data access in a permission setting. They are ideal for applications like supply chain management, insurance claim processing, and electronic health records (EHRs) because of their capacity to provide faster transaction speeds, effective governance, and customized solutions. Furthermore, private networks are now the go-to option for government health programs and large healthcare organizations.
The cloud-based segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the cloud-based segment is predicted to witness the highest growth rate. This expansion is being driven by the increasing demand for blockchain solutions that are low-cost, scalable, and flexible and that can be quickly deployed without requiring significant infrastructure investments. Real-time data access, simple system integration, and remote collaboration amongst healthcare stakeholders, such as hospitals, insurers, and research institutes, are all made possible by cloud-based platforms. Additionally, the need for secure cloud infrastructure driven by blockchain is growing as more healthcare providers use telemedicine, digital health apps, and remote monitoring. The cloud model is perfect for contemporary, data-driven healthcare ecosystems because it can accommodate large-scale deployment, remote access, and continuous updates.
During the forecast period, the North America region is expected to hold the largest market share, principally propelled by its sophisticated healthcare system, robust presence of top blockchain technology suppliers, and early adoption of cutting-edge digital solutions. Strong government programs encouraging health IT innovations, large R&D expenditures, and a strong need for safe, interoperable health data systems all benefit the area. When it comes to using blockchain for patient identity verification, insurance claims processing, drug supply chain tracking, and electronic health records (EHRs), the US is leading the way. Moreover, the dominance of North America in this market is further reinforced by favorable regulations and robust partnerships between healthcare providers and tech companies.
Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by the swift advancement of digital technology, the growth of healthcare infrastructure, and the growing backing of the government for the adoption of blockchain. For the purpose of managing expanding populations and increasing healthcare demands, nations such as China, India, South Korea, and Singapore are making significant investments in healthcare innovation and data security. Block chain's capacity to improve transparency, interoperability, and data integrity is also helping the region's telemedicine, health tech startups, and cross-border medical tourism industries. Additionally, the Asia-Pacific public and private healthcare sectors are adopting blockchain technology more quickly due to positive regulatory developments and growing awareness of its potential.
Key players in the market
Some of the key players in Blockchain Technology In Healthcare Market include Change, Healthcare, IBM, BurstIQ, Medicalchain SA, Guardtime Health, Oracle, Blockpharma, Patientory Inc, Avaneer Health, iSolve, LLC, Pokitdok, IRYO, Dentacoin, FarmaTrust and Blockpill.
In June 2025, Oracle unveiled a new research and development (R&D) centre in Casablanca to fast-track innovation across its rapidly growing cloud and AI solutions. Equipped with state-of-the-art technologies, the new Oracle R&D centre will employ 1000 Moroccan IT professionals.
In April 2025, IBM and BNP Paribas announce the renewal and strengthening of the bank's partnership with IBM Cloud for 10 years, aimed at further bolstering its resilience, accelerating its cloud-native strategy, and supporting the development of generative artificial intelligence. This multi-year partnership is part of the bank's ongoing technology investments and multicloud strategy to support business growth, benefiting customers and employees.
In June 2023, BurstIQ announces the acquisition of Olive AI's business intelligence solution. This strategic move expands BurstIQ's portfolio of innovative products, reinforcing its commitment to helping healthcare organizations navigate the complexities of data-driven solutions while maintaining strict privacy and compliance standards. The acquired solution, now known as LifeGraph Intelligence, further enhances BurstIQ's offerings, revolutionizing how organizations see and use their data.