![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1797984
¼¼°èÀÇ ¾ËÄ®¸® ¼öÀüÇØ ½ÃÀå : ¿¹Ãø - Á¦Ç° À¯Çüº°, À¯·®º°, ¿ë·®º°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)Alkaline Water Electrolysis Market Forecasts to 2032 - Global Analysis By Product Type, Flow Rate, Capacity, Application, End User and By Geography |
Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ¾ËÄ®¸® ¼öÀüÇØ ½ÃÀåÀº 2025³â¿¡ 2,421¾ï ´Þ·¯·Î ÃßÁ¤µÇ°í, 2032³â±îÁö´Â 8,878¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGR 20.4%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.
¾ËÄ®¸® ¼öÀüÇØ´Â ¾ËÄ®¸®¼º ÀüÇØÁú(ÀϹÝÀûÀ¸·Î ¼ö»êÈÄ®·ý(KOH))À» »ç¿ëÇÏ¿© ¹°À» ¼ö¼Ò¿Í »ê¼Ò·Î ºÐÇØÇÏ°í ¼ö¼Ò¸¦ »ý»êÇϱâ À§ÇÑ È®¸³µÈ Àü±âÈÇÐ °øÁ¤ÀÔ´Ï´Ù. »ó´ëÀûÀ¸·Î ³·Àº ¿Âµµ ¹× ¾Ð·Â¿¡¼ ÀÛµ¿ÇÏ¸ç ºñ¿ë È¿°ú, ³»±¸¼º ¹× »ê¾÷¿ë ¿ëµµ ºÐ¾ß¿¡¼ÀÇ È®À强À¸·ÎºÎÅÍ ¼±È£µË´Ï´Ù. ÀÌ ¹æ¹ýÀº µÎ °³ÀÇ Àü±Ø°ú °Ý¸·À» ÀÌ¿ëÇÏ¿© °¡½º¸¦ ºÐ¸®Çϱ⠶§¹®¿¡ ´ë±Ô¸ð ¼ö¼Ò »ý¼º¿¡ ÀûÇÕÇÕ´Ï´Ù.
Àü·Â ºÐ¾ß¿¡¼ Ŭ¸° ¼ö¼Ò ¼ö¿ä Áõ°¡
¹ßÀü ¹× ¼ö¼Û ºÐ¾ß¿¡¼ Ŭ¸° ¼ö¼Ò ¼ö¿ä Áõ°¡°¡ ¾ËÄ®¸® ¼öÀüÇØ ½ÃÀåÀ» Å©°Ô °ßÀÎÇϰí ÀÖ½À´Ï´Ù. °¢±¹ÀÌ ¿¡³ÊÁö ¹Í½ºÀÇ Å»Åº¼ÒÈ¿¡ Á¾»çÇÏ´Â µ¿¾È ¼ö¼Ò´Â ½ÅÀç»ý ¿¡³ÊÁöÀÇ ÀúÀå ¹× ¿¬·áÀüÁö ¿ëµµÀÇ ¿¬·á·Î¼ Áß¿äÇÑ º¤ÅÍ·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. ¾ËÄ®¸® ½Ã½ºÅÛÀº ¼ö¼Ò¸¦ ´ë·® »ý»êÇϱâ À§ÇÑ ºñ¿ë È¿À²ÀûÀÌ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¾÷°è¿¡¼ ¼ö³â°£ÀÇ ½ÇÀûÀÌ ½Å·Ú¸¦ ³ôÀÌ°í ±âÈÄ º¯È ¸ñÇ¥ ´Þ¼ºÀ» ¸ñÇ¥·Î ÇÏ´Â Àü·Âȸ»ç¿Í Á¤ºÎ¿¡°Ô ¼±È£µÇ´Â ¼±ÅÃÀÌ µÇ¾ú½À´Ï´Ù.
³ôÀº Àü·Â ¿ä±¸ »çÇ×
¾ËÄ®¸® ¼öÀüÇØ ½Ã½ºÅÛÀÇ ³ôÀº Àü·Â ¿ä±¸ »çÇ×Àº ƯÈ÷ °í°¡ÀÇ Àü·Â ¹× ź¼Ò Áý¾àÀûÀÎ Àü·ÂÀ» »ç¿ëÇÏ´Â Áö¿ª¿¡¼ ¿©ÀüÈ÷ Å« °úÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ ÇÁ·Î¼¼½º´Â ÀÔÁõµÇ°í ¾ÈÁ¤ÀûÀÌÁö¸¸ ¿¡³ÊÁö ¼Òºñ°¡ ³ô±â ¶§¹®¿¡ Àúºñ¿ë ½ÅÀç»ý Àü·Â°ú °áÇÕÇÏÁö ¾Ê´Â ÇÑ ¼öÀͼºÀÌ Á¦Çѵ˴ϴÙ. ¶ÇÇÑ, ¼ÛÀü¸Á¿¡ ´ëÇÑ ÀÇÁ¸Àº À¯¿¬¼ºÀ» ¹æÇØÇÏ°í ¿îÀü ºñ¿ëÀ» Áõ°¡½Ãŵ´Ï´Ù. ÀÌ Á¦¾àÀº ƯÈ÷ °íü »êȹ° ÀüÇØÁ¶ ¹× ¾ç¼ºÀÚ ±³È¯¸·(PEM) ½Ã½ºÅÛ°ú °°Àº º¸´Ù È¿À²ÀûÀÌ°í ¼±ÁøÀûÀÎ ÀüÇØ ±â¼ú°ú ºñ±³ÇÒ ¶§ ¾÷°è¸¦ Á¶½É½º·´°Ô ÇÕ´Ï´Ù.
½ÅÀç»ý ¿¡³ÊÁö ÅëÇÕ È®´ë
½ÅÀç»ý ¿¡³ÊÁö ÅëÇÕÀÇ È®´ë´Â ¾ËÄ®¸® ¼öÀüÇØ µµÀÔÀÇ Å« ±âȸ°¡ µË´Ï´Ù. dz·Â¹ßÀü ¹× ž籤 ¹ßÀüÀÇ ¼³ºñ ¿ë·®ÀÌ ¼¼°èÀûÀ¸·Î È®´ëµÊ¿¡ µû¶ó À׿© ½ÅÀç»ý Àü·ÂÀ» ¾ËÄ®¸® ½Ã½ºÅÛ¿¡ ÀÇÇÑ ±×¸° ¼ö¼Ò Á¦Á¶¿¡ È¿À²ÀûÀ¸·Î ÀÌ¿ëÇÒ ¼ö ÀÖ°Ô µË´Ï´Ù. ¿ÀÇÁ ±×¸®µå Àü¿ø ¹× ÇÏÀ̺긮µå Àü¿ø°úÀÇ È£È¯¼ºÀº ¿ø°ÝÁö ¹× ºÐ»ê ¿ëµµÀÇ ¸Å·ÂÀ» Çâ»ó½Ãŵ´Ï´Ù. ½ÅÀç»ý ¿¡³ÊÁö¿Í ÀüÇØÀÇ À¶ÇÕÀº ¾ïÁ¦¸¦ ¿ÏÈÇϰí, ¿¡³ÊÁö ÀúÀåÀ» °³¼±Çϸç, ƯÈ÷ ³Ý Á¦·Î ¸ñÇ¥·Î ÀÌÇàÇϰí ÀÖ´Â ½ÃÀå¿¡¼ ±¹°¡ÀÇ ¼ö¼Ò Àü·«À» Áö¿øÇÕ´Ï´Ù.
º¯µ¿ÇÏ´Â Àç»ý¿¡³ÊÁö °ø±Þ
º¯µ¿ÇÏ´Â Àç»ý¿¡³ÊÁö °ø±ÞÀº ¾ËÄ®¸® ¼öÀüÇØ ½Ã½ºÅÛÀÇ ¼º´É°ú °æÁ¦¼º¿¡ Áß¿äÇÑ À§ÇùÀ» ÃÊ·¡ÇÕ´Ï´Ù. PEM ÀüÇØÁ¶¿Í ´Þ¸® ¾ËÄ®¸® ½Ã½ºÅÛÀº °£ÇæÀûÀÎ Àü·ÂÀ» È¿À²ÀûÀ¸·Î ó¸®ÇÏ´Â µ¥ ÇÊ¿äÇÑ µ¿Àû ÀÀ´ä ´É·ÂÀÌ ºÎÁ·ÇÕ´Ï´Ù. ÀÌ ¶§¹®¿¡ ž籤À̳ª dz·ÂÀÇ º¯µ¿ ÀԷ¿¡ ´ëÇØ¼ ÃÖÀûÀ¸·Î ¿îÀüÇÏ´Â ´É·ÂÀÌ Á¦Çѵ˴ϴÙ. Àü·Â ÀÔ·ÂÀÌ ÀÏÁ¤ÇÏÁö ¾ÊÀº °ÍÀº ºÎǰÀÇ ¼ö¸íÀ̳ª ¼ö¼Ò ¼øµµ¿¡µµ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ¾î, À¯Áö º¸¼ö ºñ¿ë Áõ°¡ ¹× ¿îÀü È¿À²ÀÇ ÀúÇϸ¦ ÃÊ·¡ÇÒ °¡´É¼ºÀÌ Àֱ⠶§¹®¿¡ Àç»ý¿¡³ÊÁö°¡ dzºÎÇÑ Áö¿ª¿¡ µû¶ó¼´Â ä¿ëÀÌ º¸±ÞµÉ ¼öµµ ÀÖ½À´Ï´Ù.
COVID-19 ÆÒµ¥¹ÍÀº ´çÃÊ ¼¼°è °ø±Þ¸ÁÀ» È¥¶õ½ÃÄÑ ¾ËÄ®¸® ¼öÀüÇØ ½ÃÀå ÀüüÀÇ Àåºñ ³³Ç°°ú ÇÁ·ÎÁ§Æ® ½Ç½Ã¸¦ Áö¿¬½ÃÄ×½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹Í ÈÄ ³ì»ö ÀÎÇÁ¶ó¿¡ ÁßÁ¡À» µÐ ºÎÈï °èȹÀº ¼ö¼Ò ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ Àç°³Çß½À´Ï´Ù. °¢±¹ Á¤ºÎ´Â °æ±âÀÚ±ØÃ¥À» ûÁ¤¿¡³ÊÁö·Î µ¹·Á ¼ö¼ÒÀÇ ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ®¿Í Àå±âÀûÀÎ ÀÌ´Ï¼ÅÆ¼ºê¸¦ °¡¼Ó½ÃÄ×½À´Ï´Ù. À§±â´Â ¶ÇÇÑ ¿¡³ÊÁö ȸº¹·ÂÀÇ Çʿ伺À» ºÎ°¢½ÃÄÑ ºÐ»êÇü ¼ö¼Ò ¹ßÀü¿¡ ´ëÇÑ °ü½ÉÀ» ´õ¿í ³ô¿´½À´Ï´Ù. ±× °á°ú ´Ü±âÀûÀÎ ¿µÇâÀº ºÎÁ¤ÀûÀ̾úÁö¸¸ Àå±âÀûÀÎ Àü¸ÁÀº Å©°Ô °³¼±µÇ¾ú½À´Ï´Ù.
¿¹Ãø ±â°£ Áß °íü ¾ËÄ®¸® ¼öÀüÇØÁ¶ ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ Àü¸Á
°íü ¾ËÄ®¸® ¼öÀüÇØÁ¶ ºÎ¹®Àº ºñ¿ë È¿À²¼º, ½ºÄÉÀϾ÷ ¿ëÀ̼º ¹× ¿î¿µ ¾ÈÁ¤¼ºÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ½Ã½ºÅÛÀº ¼øµµ¿Í Àå±â ³»±¸¼ºÀÌ ÇʼöÀûÀÎ »ê¾÷ ±Ô¸ðÀÇ ¼ö¼Ò Á¦Á¶¿¡ ³Î¸® äÅõǾú½À´Ï´Ù. ÀÔÁõµÈ ½ÇÀû ¹× Àúºñ¿ë ¾ËÄ®¸® ¿ë¾×À¸·Î ¼ö¼Ò ¼±Áø±¹¿¡¼µµ ½ÅÈï °æÁ¦ ±¹°¡¿¡¼µµ À¯¸®ÇÑ ¼±ÅÃÀÌ µÇ°í ÀÖ½À´Ï´Ù. Áö¼ÓÀûÀÎ ±â¼ú °³¼±À¸·Î PEM ´ëüǰ¿¡ ´ëÇÑ °æÀï·Âµµ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È 10m3/h ¹Ì¸¸ÀÇ ºÎ¹®ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È 10m3/h ¹Ì¸¸ÀÇ ºÎ¹®Àº ¿¬±¸, Á¶Á¾»ç ¹× ¼Ò±Ô¸ð »ê¾÷ ȯ°æ¿¡¼ ¼ÒÇü ¸ðµâÇü ÀüÇØÁ¶ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ·¯ÇÑ Àú¿ë·® À¯´ÖÀº ¼ö¼Ò ¿ëµµ Å×½ºÆ®, ±³À° ¿ëµµ ¶Ç´Â ºÐ»êÇü ¼Â¾÷¿¡¼ ž籤 ¹ßÀü ½Ã½ºÅÛ°úÀÇ ÅëÇÕ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ÇÕ¸®ÀûÀÎ °¡°Ý, ÃÖ¼ÒÇÑÀÇ °ø°£ ¿ä°Ç, ¿ø°ÝÁö¿¡¼ÀÇ Àü°³¿¡ ÀûÇÕÇϱ⠶§¹®¿¡ ¼ö¼ÒÀÇ Ãʱ⠴ܰ迡¼ÀÇ Àü°³¿¡ ÁßÁ¡À» µÐ ¼±Áø °æÁ¦ ±¹°¡¿Í ½ÅÈï °æÁ¦ ±¹°¡ ¸ðµÎ¿¡¼ ¸Å·ÂÀûÀÎ Á¦Ç°ÀÌ µÇ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â Á¤ºÎÀÇ °·ÂÇÑ ÀÌ´Ï¼ÅÆ¼ºê, ´ë±Ô¸ð ½ÅÀç»ý ¿¡³ÊÁö ¼³ºñ, Áß±¹, ÀϺ», Çѱ¹ µî ±¹°¡¿¡¼ÀÇ »ê¾÷¿ë ¼ö¼Ò ¼Òºñ·® Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. Áö¿ø ±ÔÁ¦ Ʋ°ú °ü¹Î ÆÄÆ®³Ê½ÊÀÌ ±¹³» ¼ö¼Ò »ý»ê ´É·ÂÀ» °¡¼ÓÈÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÀÌ Áö¿ªÀÇ Åº¼Ò ¹èÃâ °¨Ãà ³ë·Â ¹× ´ë±Ô¸ð ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®´Â ¾Æ½Ã¾ÆÅÂÆò¾çÀ» ¼¼°èÀÇ ±×¸° ¼ö¼Ò ÅõÀÚ Çãºê·Î ÀÚ¸®Àâ°í ÀÖ½À´Ï´Ù.
¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ´Â ¿¬¹æ Á¤ºÎÀÇ ÀÚ±Ý Áõ°¡, Żź¼ÒÈ ¸ñÇ¥, ¹Ì±¹°ú ij³ª´ÙÀÇ ´ë±Ô¸ð Ŭ¸° ¼ö¼Ò ÇÁ·ÎÁ§Æ®°¡ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¾÷Àº ÀüÇØÁ¶ Á¦Á¶ ¹× Àü°³¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ÀÎÇ÷¹ÀÌ¼Ç °¨¼Ò¹ý ¹× ±âŸ ûÁ¤ ¿¡³ÊÁö °ü·Ã¹ýÀº Å« Àμ¾Æ¼ºê¸¦ Á¦°øÇÕ´Ï´Ù. ¿î¼ö ¹× »ê¾÷ ºÎ¹®¿¡¼ÀÇ ¼ö¿ä Áõ°¡¿¡ µû¶ó ºÏ¹Ì´Â ±×¸° ¼ö¼Ò ¹ë·ù üÀο¡¼ °æÀï·Â ÀÖ´Â ±â¾÷·Î¼ ±Þ¼ÓÈ÷ ´ëµÎÇϰí ÀÖ½À´Ï´Ù.
According to Stratistics MRC, the Global Alkaline Water Electrolysis Market is accounted for $242.1 billion in 2025 and is expected to reach $887.8billion by 2032 growing at a CAGR of 20.4% during the forecast period. Alkaline Water Electrolysis is a well-established electrochemical process used to produce hydrogen by splitting water into hydrogen and oxygen using an alkaline electrolyte, typically potassium hydroxide (KOH). Operating at relatively low temperatures and pressures, it is favored for its cost-effectiveness, durability, and scalability in industrial applications. This method utilizes two electrodes and a diaphragm to separate gases, making it suitable for large-scale hydrogen generation.
Rising demand for clean hydrogen in power
Rising demand for clean hydrogen in power generation and transportation sectors is significantly driving the alkaline water electrolysis market. As nations strive to decarbonize their energy mix, hydrogen emerges as a key vector for storing renewable energy and fueling fuel cell applications. Alkaline systems offer a cost-effective and reliable solution for mass hydrogen production. Their long-standing presence in the industry further enhances trust, making them a preferred choice for utilities and governments aiming to meet climate goals.
High power requirement
The high power requirement of alkaline water electrolysis systems remains a major challenge, especially in regions with expensive or carbon-intensive electricity. Although the process is proven and stable, its energy consumption rate limits profitability unless paired with low-cost renewable power. Additionally, grid dependency can hinder flexibility and raise operational costs. This constraint has made industries cautious, particularly when comparing with more efficient or advanced electrolysis technologies like Proton Exchange Membrane (PEM) systems or Solid Oxide Electrolyzers.
Expansion in renewable energy integration
The expansion in renewable energy integration offers a robust opportunity for alkaline water electrolysis adoption. As wind and solar capacity scales globally, surplus renewable electricity can be efficiently utilized for green hydrogen production through alkaline systems. Their compatibility with off-grid or hybrid power sources enhances their attractiveness for remote or decentralized applications. This convergence of renewables and electrolysis helps mitigate curtailment, improves energy storage, and supports national hydrogen strategies, especially in markets transitioning toward net-zero targets.
Fluctuating renewable energy supply
Fluctuating renewable energy supply poses a key threat to the performance and economics of alkaline water electrolysis systems. Unlike PEM electrolyzers, alkaline systems lack the dynamic response capability required to efficiently handle intermittent power. This limits their ability to run optimally with variable solar or wind inputs. Inconsistent electricity input may also affect component life and hydrogen purity, potentially increasing maintenance costs and reducing operational efficiency, thereby discouraging adoption in certain renewable-rich regions.
The COVID-19 pandemic initially disrupted global supply chains, delaying equipment deliveries and project implementations across the alkaline water electrolysis market. However, post-pandemic recovery plans emphasizing green infrastructure led to renewed investments in hydrogen technology. Governments channeled stimulus packages toward clean energy, accelerating hydrogen pilot projects and long-term initiatives. The crisis also highlighted the need for energy resilience, further pushing interest in decentralized hydrogen generation. Consequently, while short-term impacts were negative, the long-term outlook improved substantially.
The solid alkaline water electrolyzers segment is expected to be the largest during the forecast period
The solid alkaline water electrolyzers segment is expected to account for the largest market share during the forecast period propelled by, its cost-efficiency, ease of scale-up, and operational stability. These systems are widely adopted in industrial-scale hydrogen production where purity and long-term durability are essential. Their proven track record and low-cost alkaline solution make them a favorable choice in both developed and emerging hydrogen economies. Continued technological refinements are also enhancing their competitiveness against PEM alternatives.
The less than 10 m3/h segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the less than 10 m3/h segment is predicted to witness the highest growth rate influenced by, increasing demand for compact and modular electrolyzers in research, pilot, and small-scale industrial settings. These low-capacity units are ideal for testing hydrogen applications, educational use, or integrating with solar PV systems in decentralized setups. Their affordability, minimal space requirement, and suitability for remote deployments make them attractive in both developed and emerging economies focusing on early-stage hydrogen deployment.
During the forecast period, the Asia Pacific region is expected to hold the largest market share, fuelled by strong government initiatives, massive renewable energy installations, and rising industrial hydrogen consumption in countries like China, Japan, and South Korea. Supportive regulatory frameworks and public-private partnerships are accelerating domestic hydrogen production capacities. Moreover, the region's commitment to reducing carbon emissions, coupled with large-scale infrastructure projects, is positioning Asia Pacific as a global hub for green hydrogen investments.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by increased federal funding, decarbonization goals, and major clean hydrogen projects across the U.S. and Canada. Key players are investing in electrolyzer manufacturing and deployment, while the Inflation Reduction Act and other clean energy legislation offer significant incentives. With growing demand from the transportation and industrial sectors, North America is rapidly emerging as a competitive player in the green hydrogen value chain.
Key players in the market
Some of the key players in Alkaline Water Electrolysis Market include Nel Hydrogen, Asahi Kasei, Green Hydrogen.dk, ShaanXi HuaQin, Next Hydrogen Corp., Hydrogenics, Thyssenkrupp, Teledyne Energy Systems, Inc., McPhy Energy S.A., Siemens Energy AG, ITM Power PLC, Plug Power Inc., John Cockerill Group, Enapter AG, Bloom Energy Corp., Proton Motor Power Systems PLC, Fusion Fuel Green PLC and Ohmium International.
In July 2025, Asahi Kasei announced the supply of its Aqualyzer(TM) C3, a 1 MW containerized alkaline water electrolyzer, to the Central Finland Mobility Foundation. The unit is expected to begin hydrogen production operations in early 2026 to support local green mobility projects.
In June 2025, Nel Hydrogen introduced its newest alkaline electrolyzer model featuring improved energy efficiency and increased hydrogen production capacity. The updated stack design reduces operating costs while extending equipment lifetime. Nel collaborated with major green hydrogen project developers in Europe to pilot the technology in utility-scale applications, aiming to support rapid decarbonization.
In March 2025, ITM Power entered into an agreement with Deutsche Bahn AG to supply hydrogen production systems supporting Germany's sustainable rail transportation network. The collaboration aims to replace diesel trains with hydrogen-powered alternatives, enhancing clean mobility infrastructure across the country.