½ÃÀ庸°í¼­
»óǰÄÚµå
1798031

½ºÆ÷Ã÷¿ë AI ½ÃÀå ¿¹Ãø(-203³â) : Á¦°ø Á¦Ç°º°, ½ºÆ÷Ã÷ À¯Çüº°, Àü°³ ¸ðµåº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾»ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

AI in Sports Market Forecasts to 2032 - Global Analysis By Offering (Solutions and Services), Sports Type (Team Sports, Individual Sports and Esports), Deployment Mode, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ ÀÇÇϸé, ¼¼°èÀÇ ½ºÆ÷Ã÷¿ë AI ½ÃÀåÀº 2025³â¿¡ 55¾ï 3,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ Áß ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR) 27.39%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 301¾ï 2,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

½ºÆ÷Ã÷¿ë ÀΰøÁö´É(AI)Àº ÷´Ü ¾Ë°í¸®Áò, ¸Ó½Å·¯´×, µ¥ÀÌÅÍ ºÐ¼®À» Àû¿ëÇÏ¿© °æ±â·Â, ÄÚĪ, °ü¸®, ÆÒ°úÀÇ °ü°è µî ´Ù¾çÇÑ Ãø¸éÀ» °­È­ÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. AI ½Ã½ºÅÛÀº ¿þ¾î·¯ºí ±â±â, Ä«¸Þ¶ó, ¼¾¼­¿¡¼­ ¼öÁýµÈ ´ë·®ÀÇ µ¥ÀÌÅ͸¦ ó¸®ÇÏ¿© ¼±¼öÀÇ °æ±â·ÂÀ» ºÐ¼®Çϰí, °á°ú¸¦ ¿¹ÃøÇϰí, Àü·«À» ÃÖÀûÈ­ÇÕ´Ï´Ù. ºÎ»ó ¿¹¹æ, ÀÎÀç ½ºÄ«¿ìÆ®, °³ÀÎ ¸ÂÃãÇü ÈÆ·Ã ÇÁ·Î±×·¥À» Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ, AI´Â ºñµð¿À ¾î½Ã½ºÅÏÆ® ·¹ÆÛ¸®(VAR) µîÀÇ ±â¼úÀ» ÅëÇØ ½ÉÆÇÀÇ Á¤È®¼ºÀ» ³ôÀ̰í, ¹Ìµð¾î¿ë ½ºÆ÷Ã÷ ÄÁÅÙÃ÷ Á¦ÀÛÀ» ÀÚµ¿È­ÇÕ´Ï´Ù.

÷´Ü °ÔÀÓ Àü·« ÃÖÀûÈ­

ÄÚÄ¡³ª ¼±¼ö´Â ÀÌ ±â¼úÀ» ÅëÇØ »ó´ëÀÇ ÆÐÅÏ, °­Á¡, ¾àÁ¡À» Áï°¢ÀûÀ¸·Î Æò°¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. AI ±â¹Ý ÀλçÀÌÆ®´Â °æ±â Áß µ¿Àû Á¶Á¤À» ÅëÇØ Àü¹ÝÀûÀÎ °æ±â·ÂÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ¿¹Ãø ¸ðµ¨¸µÀº ¿¹»óµÇ´Â °æ±â ½Ã³ª¸®¿À¸¦ ½Ã¹Ä·¹À̼ÇÇÏ¿© ÈÆ·Ã ¼¼¼ÇÀ» °­È­ÇÕ´Ï´Ù. ÀÌ ±â¼úÀº µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ÀÇ»ç°áÁ¤À» Áö¿øÇϰí, Á÷°ü¿¡¸¸ ÀÇÁ¸ÇÏ´Â °ÍÀ» ÁÙ¿©ÁÝ´Ï´Ù. ±× °á°ú, ½ºÆ÷Ã÷ Á¶Á÷Àº °æÀï ¿ìÀ§¸¦ È®º¸Çϰí AI ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ÃËÁøÇÒ ¼ö ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¿ì·Á

±â¹Ð¼ºÀÌ ³ôÀº ¼±¼öÀÇ °æ±â·Â ¹× °Ç°­ µ¥ÀÌÅÍÀÇ ¾Ç¿ëÀ» ¹æÁöÇϱâ À§Çؼ­´Â ¾ö°ÝÇÑ º¸È£°¡ ÇÊ¿äÇÕ´Ï´Ù. À§¹Ý ¹× ¹«´Ü ¾×¼¼½ºÀÇ °á°ú·Î ¼±¼ö, ÆÀ, Á¶Á÷Àº ½Å·Ú¸¦ ÀÒÀ» ¼ö ÀÖ½À´Ï´Ù. º¹ÀâÇÑ µ¥ÀÌÅÍ º¸È£¹ýÀ» ÁؼöÇÏ´Â °ÍÀº ½ÃÇàÀ» ´õ¿í ¾î·Æ°Ô ¸¸µì´Ï´Ù. ÀÌÇØ°ü°èÀÚµéÀº ÀÌ·¯ÇÑ ¿ì·Á ¶§¹®¿¡ AI ¼Ö·ç¼ÇÀÇ Àü¸éÀûÀÎ µµÀÔ¿¡ ¼Ò±ØÀûÀΠŵµ¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ±× °á°ú, ½ÃÀå È®´ë¿Í Çõ½ÅÀÇ µÐÈ­°¡ µÎµå·¯Áö°Ô ³ªÅ¸³ª°í ÀÖ½À´Ï´Ù.

¿þ¾î·¯ºí & IoT ±â±â µµÀÔ È®´ë

¿þ¾î·¯ºí & IoT µð¹ÙÀ̽º´Â ½É¹Ú¼ö, ¿îµ¿ ÆÐÅÏ, ÇǷεµ µî ¹æ´ëÇÑ µ¥ÀÌÅ͸¦ ¼öÁýÇϰí, AI°¡ À̸¦ ºÐ¼®ÇÏ¿© ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» ¾ò´Â´Ù. ÄÚÄ¡³ª Æ®·¹À̳ʴ ÀÌ Á¤º¸¸¦ Ȱ¿ëÇØ ÈÆ·ÃÀ» ÃÖÀûÈ­ÇÏ°í ºÎ»óÀ» ¿¹¹æÇÏ¸ç °æ±â Àü·«À» °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. IoT Áö¿ø ±â±â´Â ÀÎÅÍ·¢Æ¼ºêÇÑ °æÇè°ú ½Ç½Ã°£ Åë°è¸¦ ÅëÇØ ÆÒ°úÀÇ ¼ÒÅëÀ» °­È­Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¿þ¾î·¯ºí°ú AIÀÇ ÅëÇÕÀº °³ÀÎÈ­µÈ Æ®·¹ÀÌ´× ÇÁ·Î±×·¥À» Áö¿øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû ½Ã³ÊÁö È¿°ú·Î ÀÎÇØ AI¸¦ Ȱ¿ëÇÑ ½ºÆ÷Ã÷ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Àü ¼¼°èÀûÀ¸·Î Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

±â¼ú µµÀÔ¿¡ ´ëÇÑ ÀúÇ×

¸¹Àº ½ºÆ÷Ã÷ ¼±¼ö¿Í ½ºÆ÷Ã÷ ´Üü´Â ±âÁ¸ Á¢±Ù ¹æ½Ä¿¡¼­ AI¸¦ Ȱ¿ëÇÑ ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇÏ´Â °ÍÀ» ²¨·ÁÇÕ´Ï´Ù. µ¥ÀÌÅÍÀÇ ÇÁ¶óÀ̹ö½Ã, Á¤È®¼º, ½Å·Ú¼º¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ ½Å·ÚÀÇ ¹®Á¦°¡ ¹ß»ýÇϰí ÀÖ½À´Ï´Ù. ±â¼úÀû ³ëÇÏ¿ìÀÇ ºÎÁ·°ú ¸·´ëÇÑ ºñ¿ëÀ¸·Î ÀÎÇØ äÅÃÀÌ ´õ´õ¿í ¾î·Á¿öÁö°í ÀÖ½À´Ï´Ù. Àü·« ÃÖÀûÈ­, ºÎ»ó ¿¹¹æ, ¼º°ú ºÐ¼®¿¡ AI¸¦ Àû¿ëÇÏ´Â °ÍÀº ÀÌ·¯ÇÑ ÁÖÀúÇÔÀ¸·Î ÀÎÇØ Á¦¾àÀ» ¹Þ°í ÀÖ½À´Ï´Ù. ±× °á°ú, ½ÃÀå ħÅõ¿Í Çõ½ÅÀÌ ´Ê¾îÁö°Ô µË´Ï´Ù.

Äڷγª19ÀÇ ¿µÇâ

Äڷγª19 »çÅ´ ½ºÆ÷Ã÷¿ë AI ½ÃÀå¿¡ Å« È¥¶õÀ» °¡Á®¿Ô°í, ÈÆ·Ã, À̺¥Æ®, ÆÒ Âü¿©¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. Äڷγª19ÀÇ È®»êÀ¸·Î ÀÎÇØ ½ºÆ÷Ã÷ À̺¥Æ®°¡ Áß´ÜµÇ°í ½ºÆ÷Ã÷ Ȱµ¿ÀÌ ÁÙ¾îµé¸é¼­ ¶óÀÌºê ºÐ¼®°ú ÆÛÆ÷¸Õ½º ¸ð´ÏÅ͸µ¿¡ AI µµÀÔÀÌ ´Ê¾îÁö°í ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ À§±â´Â ¿ø°Ý ÄÚĪ, °¡»ó ½ºÆ÷Ã÷ ½Ã¹Ä·¹À̼Ç, AI¸¦ Ȱ¿ëÇÑ ÆÒ°úÀÇ ±³·ù µµ±¸¿¡ ´ëÇÑ ¼ö¿ä¸¦ °¡¼ÓÈ­Çß½À´Ï´Ù. ÆÀ°ú Á¶Á÷Àº ÇѰ迡 ÀûÀÀÇϱâ À§ÇØ ¿¹Ãø ºÐ¼®, ºÎ»ó ¿¹¹æ, µðÁöÅÐ Âü¿©¿¡ AI¸¦ Ȱ¿ëÇϰí ÀÖ½À´Ï´Ù. ÆÒµ¥¹ÍÀº °á±¹ »ê¾÷ÀÇ ¿ì¼±¼øÀ§¸¦ ¹Ù²Ù°í, ½ºÆ÷Ã÷ °ü¸® ¹× ÆÒ °æÇèÀ» À§ÇÑ AI ¿ëµµÀÇ Çõ½ÅÀ» ÃËÁøÇß½À´Ï´Ù.

ÆÀ ½ºÆ÷Ã÷ ºÎ¹®ÀÌ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÆÀ ½ºÆ÷Ã÷ ºÎ¹®Àº ÆÀ ¼º°ú, Àü·«, ¼±¼ö ¹ß±¼À» °­È­Çϱâ À§ÇÑ °í±Þ ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä¸¦ ÃËÁøÇÏ¿© ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI°¡ žÀçµÈ µµ±¸´Â ÄÚÄ¡³ª ºÐ¼®°¡µéÀÌ ½Ç½Ã°£À¸·Î ¼±¼öµéÀÇ ¿òÁ÷ÀÓ, ÇǷεµ, Àü¼ú ÆÐÅÏÀ» ÃßÀûÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ ÆÀÀº ÈÆ·Ã, ºÎ»ó ¿¹¹æ, °æ±â Áß Á¶Á¤¿¡ ´ëÇØ µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. Ã౸, ³ó±¸, Å©¸®Äϰú °°Àº ½ºÆ÷Ã÷ÀÇ Àαâ´Â °æÀï¿¡¼­ À̱â±â À§ÇØ AI ±â¹Ý ¼Ö·ç¼Ç¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÕ´Ï´Ù. ÆÀÀÌ È¿À²¼º°ú ¼º°ø·ü Çâ»óÀ» Ãß±¸ÇÔ¿¡ µû¶ó, ÀÌ ºÐ¾ß¿¡¼­ÀÇ AI µµÀÔÀº °è¼ÓÇØ¼­ ½ÃÀå ¼ºÀåÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù.

ÆÒ Âü¿© ºÎ¹®Àº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °³ÀÎÈ­µÈ ÄÁÅÙÃ÷, ½Ç½Ã°£ Åë°è, ÀÎÅÍ·¢Æ¼ºê ±â´ÉÀ» ÅëÇÑ ½ÃûÀÚ °æÇè °­È­·Î ÀÎÇØ ÆÒ Âü¿© ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI°¡ žÀçµÈ ÅøÀº ÆÒµéÀÇ ÃëÇâ°ú ÇൿÀ» ºÐ¼®ÇÏ¿© Ÿ°ÙÆÃµÈ ÃßõÀ» Á¦°øÇÔÀ¸·Î½á ½ÃûÀÚÀÇ ¸¸Á·µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù. ¼Ò¼È ¹Ìµð¾î¿ÍÀÇ ÅëÇÕ°ú AI¸¦ Ȱ¿ëÇÑ Ãªº¿Àº ÆÀ°ú ¼­Æ÷ÅÍÁî °£ÀÇ ¿¬°áÀ» °­È­ÇÕ´Ï´Ù. ¿¹Ãø ºÐ¼®Àº ½ºÆ÷Ã÷ Á¶Á÷ÀÌ ÆÒµéÀÇ Ãæ¼ºµµ¸¦ ³ôÀ̱â À§ÇØ ¸ÂÃãÇü Ä·ÆäÀÎÀ» ¼³°èÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

NFL, NBA, MLB, MLS¿Í °°Àº ¿¤¸®Æ® ¸®±×°¡ °æ±â·Â ºÐ¼®, ºÎ»ó ¹æÁö µµ±¸, ÆÒ Âü¿© ½Ã½ºÅÛ¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ °­·ÂÇÑ ÀÎÇÁ¶ó, ¹Ì±¹°ú ij³ª´ÙÀÇ ½ÉÃþÀûÀÎ AI ¿¬±¸ ±â¹Ý, Á¶±â µµÀÔ ¹®È­·Î ÀÎÇØ ¸Ó½Å·¯´×, ÄÄÇ»ÅÍ ºñÀü, ¿¹Ãø ºÐ¼®, ¼±¼ö ¸ð´ÏÅ͸µ, ¹æ¼Û ÀÚµ¿È­, °¡»ó °üÀü ±â´É, ½Ç½Ã°£ ½ºÄÉÁÙ¸µ ÃÖÀûÈ­¸¦ À§ÇØ ¸Ó½Å·¯´×, ÄÄÇ»ÅÍ ºñÀü, ¿¹Ãø ºÐ¼®ÀÌ µµÀԵǰí ÀÖ½À´Ï´Ù. »õ·Î¿î °³¹ß·Î´Â ¶óÀ̺ê ÇØ¼³, ÀÚµ¿ ÇÏÀ̶óÀÌÆ®, ÆÒµé¿¡°Ô °³ÀÎÈ­µÇ°í ¿ªµ¿ÀûÀÎ ÄÁÅÙÃ÷¸¦ Á¦°øÇϱâ À§ÇÑ AI »ý¼ºÇü AI°¡ ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Àú·ÅÇÑ ¿þ¾î·¯ºí ¼¾¼­, ÄÄÇ»ÅÍ ºñÀü ºÐ¼®, e-½ºÆ÷Ã÷, Å©¸®ÄÏ, Ã౸, ¿îµ¿ ÈÆ·ÃÀ» À§ÇÑ Çâ»óµÈ AI ¹æ¼ÛÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇöÁö ½ºÅ¸Æ®¾÷°ú ¼¼°è ÇÏÀÌÅ×Å© ±â¾÷µéÀº ¼ÒÇÁÆ®¿þ¾î ¹× Çϵå¿þ¾î ¼Ö·ç¼ÇÀ» Á¶Á¤Çϱâ À§ÇØ ¿¬±¸ °³¹ß ¼¾Å͸¦ ¼³¸³Çϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä µ¿ÇâÀ¸·Î´Â Á¤ºÎ Áö¿ø ÅõÀÚ, e½ºÆ÷Ã÷ÀÇ ÅëÇÕ, °¡»ó ÆÒ Ç÷§Æû, ÈÆ·Ã ¹× ¹æ¼Û¿¡¼­ ¸ôÀÔÇü °æÇèÀ» À§ÇÑ »ý¼ºÇü AI µîÀÌ ÀÖ½À´Ï´Ù. Áß±¹, ÀϺ», Àεµ, Çѱ¹, µ¿³²¾Æ½Ã¾Æ ±¹°¡ µî ½ÅÈï °æÁ¦±Ç¿¡¼­´Â ½º¸¶Æ®Æù°ú ÀÎÅͳÝÀÌ º¸±ÞµÇ¸é¼­ ½ºÆ÷Ã÷¿¡ AI µµÀÔÀÌ ºü¸£°Ô ÁøÇàµÇ°í ÀÖ½À´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ Á¦°ø

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´¿¡°Ô´Â ´ÙÀ½°ú °°Àº ¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¿É¼Ç Áß Çϳª¸¦ Á¦°øÇÕ´Ï´Ù.

  • ±â¾÷ ¼Ò°³
    • Ãß°¡ ½ÃÀå ÁøÃâ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤ ¹× ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ÅëÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼­·Ð
  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå PorterÀÇ Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ½ºÆ÷Ã÷¿ë AI ½ÃÀå : Á¦°ø Á¦Ç°º°

  • ¼­·Ð
  • ¼Ö·ç¼Ç
  • ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ ½ºÆ÷Ã÷¿ë AI ½ÃÀå : ½ºÆ÷Ã÷ À¯Çüº°

  • ¼­·Ð
  • ÆÀ ½ºÆ÷Ã÷
  • °³ÀÎ °æ±â
  • e½ºÆ÷Ã÷

Á¦7Àå ¼¼°èÀÇ ½ºÆ÷Ã÷¿ë AI ½ÃÀå : Àü°³ ¸ðµåº°

  • ¼­·Ð
  • On-Premise
  • Ŭ¶ó¿ìµå ±â¹Ý

Á¦8Àå ¼¼°èÀÇ ½ºÆ÷Ã÷¿ë AI ½ÃÀå : ±â¼úº°

  • ¼­·Ð
  • »ý¼ºÇü AI
  • ¸Ó½Å·¯´×
  • ÄÄÇ»ÅÍ ºñÀü
  • ÀÚ¿¬¾ð¾îó¸®
  • ±âŸ

Á¦9Àå ¼¼°èÀÇ ½ºÆ÷Ã÷¿ë AI ½ÃÀå : ¿ëµµº°

  • ¼­·Ð
  • Âü¿© ±â¾÷ ÆÛÆ÷¸Õ½º ÃÖÀûÈ­
  • ºÎ»ó ¿¹¹æ ¹× ȸº¹
  • °ÔÀÓ Àü·« ¹× ½ºÄ«¿ìÆÃ
  • ÆÒ Âü¿© ¹× ÆÛ½º³Î¶óÀÌÁ¦À̼Ç
  • ½ºÆ÷Ã÷ º£ÆÃ ¹× ÆÇŸÁö ÀλçÀÌÆ®
  • ±âŸ

Á¦10Àå ¼¼°èÀÇ ½ºÆ÷Ã÷¿ë AI ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ¼­·Ð
  • ÇÁ·Î ÆÀ°ú Ŭ·´
  • ½ºÆ÷Ã÷ ¾ÆÄ«µ¥¹Ì
  • ¹æ¼Û±¹ ¹× ¹Ìµð¾î
  • ±â¼ú Á¦°ø¾÷ü
  • º£ÆÃ ¹× ÆÇŸÁö Ç÷§Æû
  • ±âŸ

Á¦11Àå ¼¼°èÀÇ ½ºÆ÷Ã÷¿ë AI ½ÃÀå : Áö¿ªº°

  • ¼­·Ð
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä °³¹ß

  • °è¾à/ÆÄÆ®³Ê½Ê/Çù¾÷/ÇÕÀÛÅõÀÚ(JV)
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • IBM Corporation
  • SAP SE
  • SAS Institute Inc.
  • Sportradar AG
  • Catapult Group International Ltd.
  • Microsoft Corporation
  • Oracle Corporation
  • Stats Perform
  • TruMedia Networks
  • Hudl
  • Genius Sports Group
  • Synergy Sports Technology
  • PlaySight Interactive
  • Sportlogiq
  • Zone7 Ltd.
  • Pixellot Ltd.
  • Veo Technologies ApS
  • Clutch Technologies
LSH 25.09.02

According to Stratistics MRC, the Global AI in Sports Market is accounted for $5.53 billion in 2025 and is expected to reach $30.12 billion by 2032 growing at a CAGR of 27.39% during the forecast period. Artificial Intelligence (AI) in sports refers to the application of advanced algorithms, machine learning, and data analytics to enhance various aspects of athletic performance, coaching, management, and fan engagement. AI systems process large volumes of data from wearable devices, cameras, and sensors to analyze player performance, predict outcomes, and optimize strategies. It aids in injury prevention, talent scouting, and personalized training programs. Additionally, AI enhances officiating accuracy through technologies like video assistant referees (VAR) and automates sports content creation for media.

Market Dynamics:

Driver:

Advanced game strategy optimization

Coaches and players can evaluate opponents' patterns, strengths, and weaknesses instantly through this technology. AI-driven insights allow for dynamic adjustments during games, improving overall performance. Predictive modeling enhances training sessions by simulating possible game scenarios. This technology supports data-backed decision-making, reducing reliance on intuition alone. As a result, sports organizations gain a competitive edge, driving greater adoption of AI solutions.

Restraint:

Data privacy and security concerns

Strict protection is necessary to guard against misuse of sensitive athlete performance and health data. Players, teams, and organisations may lose trust as a result of violations or illegal access. Complying with intricate data protection laws makes implementation more difficult. Stakeholders are reluctant to fully embrace AI solutions because of these worries. As a result, there are notable slowdowns in market expansion and innovation.

Opportunity:

Growing adoption of wearable & IoT devices

The wearable & IoT devices collect vast amounts of data, including heart rate, movement patterns, and fatigue levels, which AI analyzes for actionable insights. Coaches and trainers use this information to optimize training, prevent injuries, and improve game strategies. IoT-enabled equipment enhances fan engagement through interactive experiences and live statistics. The integration of AI with wearables also supports personalized training programs. This technological synergy boosts demand for AI-driven sports solutions worldwide.

Threat:

Resistance to technology adoption

A lot of sportsmen and sports organisations are reluctant to switch from conventional approaches to AI-powered solutions. Trust problems arise from worries about data privacy, accuracy, and dependability. Lack of technical know-how and exorbitant expenses deter adoption even further. The application of AI for strategy optimisation, injury prevention, and performance analysis is constrained by this hesitancy. Consequently, market penetration and innovation are delayed.

Covid-19 Impact:

The Covid-19 pandemic significantly disrupted the AI in sports market, impacting training, events, and fan engagement. Lockdowns and restrictions led to event cancellations and reduced sports activities, slowing AI adoption in live analytics and performance monitoring. However, the crisis accelerated demand for remote coaching, virtual sports simulations, and AI-driven fan interaction tools. Teams and organizations increasingly used AI for predictive analytics, injury prevention, and digital engagement to adapt to restrictions. The pandemic ultimately reshaped industry priorities, fostering innovation in AI applications for sports management and fan experience.

The team sports segment is expected to be the largest during the forecast period

The team sports segment is expected to account for the largest market share during the forecast period by driving demand for advanced analytics to enhance team performance, strategy, and player development. AI-powered tools help coaches and analysts track real-time player movements, fatigue levels, and tactical patterns. These technologies enable teams to make data-driven decisions for training, injury prevention, and in-game adjustments. The popularity of sports like football, basketball, and cricket fuels investment in AI-based solutions to gain a competitive edge. As teams seek improved efficiency and success rates, AI adoption in this segment continues to accelerate market growth.

The fan engagement segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the fan engagement segment is predicted to witness the highest growth rate due to enhanced audience experiences through personalized content, real-time statistics, and interactive features. AI-powered tools analyze fan preferences and behavior to deliver targeted recommendations, boosting viewer satisfaction. Social media integration and AI-driven chat bots foster stronger connections between teams and supporters. Predictive analytics help sports organizations design tailored campaigns to increase fan loyalty.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share is driven by elite leagues like the NFL, NBA, MLB and MLS investing heavily in performance analytics, injury prevention tools, and fan engagement systems. The region's strong infrastructure, deep research base in AI from the U.S. and Canada, and early adoption culture enable deployment of machine learning, computer vision, and predictive analytics for player monitoring, broadcast automation, virtual spectator features, and real-time scheduling optimisation. Emergent developments include generative AI for live commentary, automated highlights, and dynamic fan personalised content delivery.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR is led by affordable wearable sensors, computer vision analytics, and enhanced AI broadcasting for esports, cricket, soccer and athletic training. Local start-ups and global tech firms are setting up R&D centers to tailor software and hardware solutions. Key trends include government-backed investments, esports integration, virtual fan platforms, and generative AI for immersive experiences in training and broadcasting. The regions emerging economies such as China, Japan, India, South Korea and Southeast Asian countries are rapidly adopting AI in sports through increased smartphone and internet penetration.

Key players in the market

Some of the key players in AI in Sports Market include IBM Corporation, SAP SE, SAS Institute Inc., Sportradar AG, Catapult Group International Ltd., Microsoft Corporation, Oracle Corporation, Stats Perform, TruMedia Networks, Hudl, Genius Sports Group, Synergy Sports Technology, PlaySight Interactive, Sportlogiq, Zone7 Ltd., Pixellot Ltd., Veo Technologies ApS and Clutch Technologies.

Key Developments:

In March 2025, IBM Consulting partnered with Scuderia Ferrari to relaunch their app as an AI driven fan platform, using watsonx to transform high-speed race data into immersive, personalized experiences for ~400 million fans. This also enhanced internal workflow efficiency.

In April 2025, SAS expanded its partnership with the Orlando Magic (NBA), integrating SAS Viya's advanced analytics to enhance personalized fan engagement, optimize ticket forecasting, and enable dynamic pricing strategies. Revealed at SAS Innovate 2025, the collaboration also introduced immersive AI-powered experiences, aiming to boost attendance, revenue, and fan satisfaction.

In February 2024, SAP formally unveiled AI-powered enhancements to its SAP Sports One platform in collaboration with German football clubs Hertha BSC and FC Bayern. These integrations use generative AI (LLMs) to automatically summarize scouting reports, compare players, and support multilingual workflows, streamlining talent recruitment during transfer windows

Offerings Covered:

  • Solutions
  • Services

Sports Types Covered:

  • Team Sports
  • Individual Sports
  • Esports

Deployment Modes Covered:

  • On-Premises
  • Cloud-Based

Technologies Covered:

  • Generative AI
  • Machine Learning
  • Computer Vision
  • Natural Language Processing
  • Other Technologies

Applications Covered:

  • Player Performance Optimization
  • Injury Prevention & Recovery
  • Game Strategy & Scouting
  • Fan Engagement & Personalization
  • Sports Betting & Fantasy Insights
  • Other Applications

End Users Covered:

  • Professional Teams & Clubs
  • Sports Academies
  • Broadcasters & Media
  • Technology Providers
  • Betting & Fantasy Platforms
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global AI in Sports Market, By Offering

  • 5.1 Introduction
  • 5.2 Solutions
  • 5.3 Services

6 Global AI in Sports Market, By Sports Type

  • 6.1 Introduction
  • 6.2 Team Sports
  • 6.3 Individual Sports
  • 6.4 Esports

7 Global AI in Sports Market, By Deployment Mode

  • 7.1 Introduction
  • 7.2 On-Premises
  • 7.3 Cloud-Based

8 Global AI in Sports Market, By Technology

  • 8.1 Introduction
  • 8.2 Generative AI
  • 8.3 Machine Learning
  • 8.4 Computer Vision
  • 8.5 Natural Language Processing
  • 8.6 Other Technologies

9 Global AI in Sports Market, By Application

  • 9.1 Introduction
  • 9.2 Player Performance Optimization
  • 9.3 Injury Prevention & Recovery
  • 9.4 Game Strategy & Scouting
  • 9.5 Fan Engagement & Personalization
  • 9.6 Sports Betting & Fantasy Insights
  • 9.7 Other Applications

10 Global AI in Sports Market, By End User

  • 10.1 Introduction
  • 10.2 Professional Teams & Clubs
  • 10.3 Sports Academies
  • 10.4 Broadcasters & Media
  • 10.5 Technology Providers
  • 10.6 Betting & Fantasy Platforms
  • 10.7 Other End Users

11 Global AI in Sports Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 IBM Corporation
  • 13.2 SAP SE
  • 13.3 SAS Institute Inc.
  • 13.4 Sportradar AG
  • 13.5 Catapult Group International Ltd.
  • 13.6 Microsoft Corporation
  • 13.7 Oracle Corporation
  • 13.8 Stats Perform
  • 13.9 TruMedia Networks
  • 13.10 Hudl
  • 13.11 Genius Sports Group
  • 13.12 Synergy Sports Technology
  • 13.13 PlaySight Interactive
  • 13.14 Sportlogiq
  • 13.15 Zone7 Ltd.
  • 13.16 Pixellot Ltd.
  • 13.17 Veo Technologies ApS
  • 13.18 Clutch Technologies
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦