½ÃÀ庸°í¼­
»óǰÄÚµå
1802935

¼¼°èÀÇ »ê¾÷ ½½·¡±× ¾÷»çÀÌŬ¸µ ½ÃÀå ¿¹Ãø : ±¸¼º¿ä¼Òº°, ÇÁ·Î¼¼½º À¯Çüº°, ¼Ò½ºº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®(-2032³â)

Industrial Slag Upcycling Market Forecasts to 2032 - Global Analysis By Component (Blast Furnace Slag, Steelmaking Slag and Non-Ferrous Slag), Process Type, Source, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é »ê¾÷ ½½·¡±× ¾÷»çÀÌŬ¸µ ¼¼°è ½ÃÀåÀº 2025³â¿¡ 50¾ï 3,000¸¸ ´Þ·¯, ¿¹Ãø ±â°£ µ¿¾È CAGR 7.5%·Î ¼ºÀåÇÏ¿© 2032³â±îÁö´Â 83¾ï 5,000¸¸ ´Þ·¯¿¡ À̸¦ Àü¸ÁÀÔ´Ï´Ù.

Á¦·Ã, Á¦°­ ¹× ±âŸ ¾ß±Ý °øÁ¤¿¡¼­ ¹ß»ýÇÏ´Â ºÎ»ê¹°À» Æó±â¹°·Î ¹ö¸®´Â ´ë½Å À¯¿ëÇÑ 2Â÷ ÀÚ¿øÀ¸·Î ÀüȯÇÏ´Â Áö¼Ó °¡´ÉÇÑ ½ÇõÀ» »ê¾÷ ½½·¡±× ¾÷»çÀÌŬ¸µÀ̶ó°í ÇÕ´Ï´Ù. ½½·¡±×´Â °ú¸³È­, ºÐ¼â, È­ÇÐÀû Ȱ¼ºÈ­¿Í °°Àº °í±Þ Ä¡·á¹ýÀ» »ç¿ëÇÏ¿© ½Ã¸àÆ® ¹× ÄÜÅ©¸®Æ® Á¦Á¶, µµ·Î °Ç¼³, Åä¾ç ¾ÈÁ¤È­, ½ÉÁö¾î Èñ±Í ±Ý¼Ó °ø±Þ¿ø µîÀÇ ¿ëµµ·Î ÀçȰ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ Àü·«Àº Ŭ¸µÄ¿ ¹× ¼®È¸¼®°ú °°Àº ¿¡³ÊÁö Áý¾àÀûÀÎ ¿øÀç·á¸¦ ´ëüÇÏ¿© °ÇÃàÀÚÀçÀÇ ÀÌ»êȭź¼Ò ¹èÃâ·®À» ÁÙÀÌ´Â µ¿½Ã¿¡ ȯ°æ ¿À¿°°ú ¸Å¸³Áö¿¡ ´ëÇÑ ºÎ´ãÀ» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù.

EUROSLAG(À¯·´ ¾ß±Ý ½½·¡±× Çùȸ)¿¡ µû¸£¸é, À¯·´¿¡¼­´Â 2023³â¿¡ ¾à 3,760¸¸ ÅæÀÇ ½½·¡±×°¡ »ý»êµÇ¾î 95% ÀÌ»óÀÌ °Ç¼³, ½Ã¸àÆ® µîÀÇ ¿ëµµ¿¡ »ç¿ëµÇ¾ú½À´Ï´Ù.

°Ç¼³ ¾÷°è ¼ö¿ä

»ê¾÷ ½½·¡±× ¾÷»çÀÌŬ¸µ ¼ö¿ä¸¦ ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ƯÈ÷ ½ÅÈï±¹¿¡¼­ °ÇÃà »ê¾÷ÀÇ È®´ëÀÔ´Ï´Ù. °í·Î ¼ö¼â ½½·¡±×(GGBFS)¿Í °°Àº ½½·¡±×·Î ¸¸µé¾îÁø Á¦Ç°Àº ÄÜÅ©¸®Æ®ÀÇ Áö¼Ó°¡´É¼º, °­µµ ¹× ³»±¸¼ºÀ» Çâ»ó½Ã۱âÀ§ÇÑ Ãß°¡ ½Ã¸àÆ® ¿ø·á·Î ÀÚÁÖ »ç¿ëµË´Ï´Ù. ½½·¡±×´Â Ŭ¸µÄ¿ ¹× ±âŸ ¿¡³ÊÁö ´Ù¼Òºñ¿ë ¿ø·á¸¦ ´ëüÇÒ ¼ö Àִ ȯ°æÀûÀ¸·Î À¯ÀÍÇÑ ¿É¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, °íÃþ ±¸Á¶¹°, µµ·Î, ±³·®, µµ½Ã ÀÎÇÁ¶ó¿¡¼­ÀÇ ÀÌ¿ëÀÌ Áõ°¡ÇÑ °á°ú, ½ÃÀåÀº ´õ¿í ±Þ¼ºÀåÇϰí ÀÖ½À´Ï´Ù.

±â¼ú°ú °¡°ø¿¡ °É¸®´Â Ãʱ⠺ñ¿ëÀÇ ³ôÀÌ

Ãֽбâ¼ú°ú ó¸® ½Ã¼³ÀÇ Ãʱ⠺ñ¿ëÀÌ ³ôÀº °ÍÀº »ê¾÷ ½½·¡±× ¾÷»çÀÌŬ¸µ »ç¾÷À» Á¦ÇÑÇÏ´Â ÁÖ¿ä ¿äÀÎ Áß ÇϳªÀÔ´Ï´Ù. °ú¸³È­, ºÐ¼â, È­ÇÐÀû Ȱ¼ºÈ­, ±Ý¼Ó ȸ¼ö µîÀº Ư¼ö Àåºñ¿Í ³ôÀº ¿¡³ÊÁö ¼Òºñ°¡ ÇÊ¿äÇÑ °øÁ¤ÀÇ ÀϺÎÀÔ´Ï´Ù. °Ô´Ù°¡ ÀÌ·¯ÇÑ ÀÎÇÁ¶ó¸¦ ¼³Ä¡ÇÏ´Â ºñ¿ëÀº º¸Åë Áß¼Ò±â¾÷°ú Àú°³¹ß±¹¿¡ À־´Â ¹ý¿ÜÀ̸ç, ÀÌ´Â º¸±ÞÀ» Á¦ÇÑÇϰí ÀÖ½À´Ï´Ù. Àå±âÀûÀÎ ÀÌÁ¡ÀÌ Å©´Ù°í´Â ÇØµµ, ¸·´ëÇÑ Ãʱ⠺ñ¿ëÀº ƯÈ÷ »ê¾÷ ¿¹»êÀÌ ¾ö°ÝÇÑ Áö¿ª¿¡¼­´Â ¾ïÁ¦¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù.

±â¼ú Çõ½Å°ú °í°¡Ä¡ ¿ëµµ

°¡°ø¿¡ À־ÀÇ ±â¼ú °³¹ßÀº Á¾·¡ÀÇ ½Ã¸àÆ®³ª °ÇÃà ¿ëµµ ÀÌ¿ÜÀÇ »õ·Î¿î ¼öÀÔ¿øÀ» ¸¸µé¾î ³»°í ÀÖ½À´Ï´Ù. ½½·¡±×´Â ÇöÀç À¯¸® Á¦Á¶, ¼¼¶ó¹Í, ºñ·á, Åä¾ç °³·®Àç, ½ÉÁö¾î Çõ½ÅÀûÀÎ ±â¼ú·Î ź¼Ò Æ÷ÂøÀç¿Í °°Àº °í±Þ ¿ëµµ¿¡µµ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÈñÅä·ù, ƼŸ´½, ¹Ù³ªµã µîÀÇ ±ÍÁßÇÑ ±Ý¼ÓÀ» ½½·¡±×¿¡¼­ ȸ¼öÇÏ´Â ±â¼úÀº °¡Ä¡°¡ ³ôÀº 2Â÷ ½ÃÀåÀ» âÃâÇϰí ÀÖ½À´Ï´Ù. ¿¬±¸ °³¹ßºñ°¡ Áö¼ÓÀûÀ¸·Î Áõ°¡ÇÔ¿¡ µû¶ó ½½·¡±×ÀÇ ¾÷»çÀÌŬ¸µÀº Æó±â¹° °ü¸® Àü¼ú¿¡¼­ À¯¸®ÇÑ »ê¾÷ ÀÚ¿ø ±â¾÷À¸·Î ÁøÈ­Çϰí ÀÖ½À´Ï´Ù.

ģȯ°æ ´ëü ¼ÒÀç¿ÍÀÇ °æÀï

»ê¾÷ ¹× °Ç¼³ ºÐ¾ß¿¡¼­ ÀαⰡ ³ô¾ÆÁö°í Àִ ģȯ°æ ¼ÒÀç´Â ½½·¡±×¸¸ÀÌ ¾Æ´Õ´Ï´Ù. ÇöóÀÌ ¾Ö½¬, ½Ç¸®Ä« Èâ, Àç»ý °ñÀç, Áö¿ÀÆú¸®¸Ó ½Ã¸àÆ® µî ÃÖ÷´Ü Àç·á µî Àúź¼Ò ´ëü Àç·áÀÇ º¸±ÞÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡, ÀÌ·¯ÇÑ Àç·áµéÀÌ ½½·¡±× ±â¹Ý ´ëü Àç·áº¸´Ù ´õ Àú·ÅÇÑ °¡°ÝÀ¸·Î ¾ò±â ½¬¿öÁö°Å³ª, ¹ý Á¦µµÀÇ Æ²¿¡ ÀÇÇØ º¸´Ù ÀûÀýÈ÷ Áö¿øµÇ¸é ½ÃÀåÀÇ ¼ºÀå ±Ëµµ°¡ À§Çù¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19ÀÇ ´ëÀ¯ÇàÀº »ê¾÷ ½½·¡±× ¾÷»çÀÌŬ¸µ ½ÃÀå¿¡ ´Ù¾çÇÑ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. óÀ½¿¡´Â Àá±Ý, ³ëµ¿·Â ºÎÁ·, °ø±Þ¸Á È¥¶õÀ¸·Î ÀÎÇØ ¿î¿µÀÌ Áß´ÜµÇ¾î ½½·¡±× ¼öÁý ¹× °¡°ø Ȱµ¿ÀÌ °¨¼ÒÇß½À´Ï´Ù. ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®ÀÇ Áö¿¬°ú °Ç¼³ °¨¼ÓÀÇ °á°ú, ½½·¡±× ±â¹ÝÀÇ Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ °¨¼ÒÇϰí, ö°­ »ý»êÀÇ °¨¼Ò¿¡ ÀÇÇØ ½½·¡±×°ø±Þµµ Á¦¾àÀ» ¹Þ¾Ò½À´Ï´Ù. ±×·¯³ª »ê¾÷°è°¡ ºÎÈï±â¿¡ ÇÕ¸®ÀûÀÎ °¡°ÝÀ¸·Î ȯ°æ ģȭÀûÀÎ Àç·á¸¦ ã´Â °¡¿îµ¥, À¯Çà¿¡ ÀÇÇØ Áö¼Ó°¡´É¼º, ±×¸° ºôµù, ¼øÈ¯Çü °æÁ¦ÀÇ ½Çõ¿¡ ´ëÇÑ ¼¼°èÀûÀÎ ÀÎ½Ä Áõ°¡, ½½·¡±×ÀÇ ¾÷»çÀÌŬ¸µÀÇ ±âȸ°¡ ´Ù½Ã ¿­·È½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È °ú¸³ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

¿¹Ãø ±â°£ µ¿¾È °ú¸³ ºÎ¹®ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. °í·Î ¼ö¼â ½½·¡±×(GGBFS)¶ó°í ºÒ¸®´Â ¹ÌºÐ¸»¿¡ ºÐ¼âµÈ ¼ö¼â ½½·¡±×¸¦ Á¦Á¶Çϱâ À§ÇØ, ¿ëÀ¶ ½½·¡±×¸¦ ¹° ¶Ç´Â °ø±â·Î ºü¸£°Ô ³Ã°¢½Ãŵ´Ï´Ù. GGBFS´Â ÄÜÅ©¸®Æ®ÀÇ °­µµ, ³»±¸¼º, Áö¼Ó°¡´É¼ºÀ» Çâ»ó½ÃŰ¸é¼­ ±âÁ¸ÀÇ Å¬¸µÄ¿¿¡ ºñÇØ CO2 ¹èÃâ·®À» ´ëÆø »è°¨ÇÏ´Â Ãß°¡ÀûÀÎ ½Ã¸àÆ® ¿ø·á·Î¼­ °Ç¼³ ºÐ¾ß¿¡¼­ ³ôÀº Æò°¡¸¦ ¹Þ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °ú¸³È­´Â ½Ã¸àÆ® ¹× ÄÜÅ©¸®Æ® Á¦Á¶¿¡ ³Î¸® »ç¿ëµÇ¸ç °æÁ¦ÀûÀÌ°í °æÁ¦ÀûÀ¸·Î ½ÇÇö °¡´ÉÇÑ ½½·¡±×ÀÇ ¾÷»çÀÌŬ¸µ ±â¼úÀÔ´Ï´Ù.

÷´ÜÀç·á ¹× º¹ÇÕÀç·á ºÐ¾ß´Â ¿¹Ãø±â°£ Áß °¡Àå ³ôÀº CAGRÀÌ ¿¹»ó

¿¹Ãø±â°£ µ¿¾È ÷´ÜÀç·á ¹× º¹ÇÕÀç·á ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À¯¸®, ¼¼¶ó¹Í, Áö¿ÀÆú¸®¸Ó, ÀÏ·ºÆ®·Î´Ð½º, ÀÚµ¿Â÷, Ç×°ø¿ìÁÖ»ê¾÷¿ë ½ÅÇü º¹ÇÕÀç·á µî °í°¡Ä¡ÀÇ ¿ëµµ·Î ½½·¡±× À¯·¡ÀÇ Àç·áÀÇ ÀÌ¿ëÀÌ È®´ëµÇ°í ÀÖ´Â °ÍÀÌ ÀÌ ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ¿ëµµ´Â Àç·á ¼º´É Çâ»ó°ú ´õºÒ¾î Áö¼Ó°¡´É¼º, ³»±¸¼º, °æ·®È­ ¸ñÇ¥¸¦ »ê¾÷°è Àüü¿¡¼­ ÃßÁøÇϰí ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ¿¬±¸°³¹ßÅõÀÚ Áõ°¡¿Í ±âÁ¸ Àç·á¸¦ ´ëüÇÏ´Â °í¼º´ÉÀ¸·Î ģȯ°æ ´ëüÀç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁü¿¡ µû¶ó ÷´ÜÀç·á ¹× º¹ÇÕÀç·á ºÐ¾ß´Â ½½·¡±× ¾÷»çÀÌŬ¸µ Áß ±Þ¼ÓÈ÷ ¼ºÀåÇϰí ÀÖ´Â ºÐ¾ß°¡ µÇ°í ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ°í, ÀÌ´Â ÁÖ·Î ±¤¹üÀ§ÇÑ Ã¶°­ Á¦Á¶°ÅÁ¡, ±Þ¼ÓÇÑ »ê¾÷È­, ģȯ°æ °ÇÃàÀÚÀç¿¡ ´ëÇÑ ¿Õ¼ºÇÑ ¿ä±¸¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ö°­ ¹× ¾ß±Ý»ê¾÷ÀÇ Á¦Ç°º°·Î Áß±¹, Àεµ, ÀϺ», Çѱ¹°ú °°Àº ±¹°¡µéÀº ¹æ´ëÇÑ ¾çÀÇ ½½·¡±×¸¦ »ý»êÇϰí ÀÖÀ¸¸ç, ¾÷»çÀÌŬ¸µ ±âȸ°¡ ¸¹ÀÌ ¿­¸®°í ÀÖ½À´Ï´Ù. ÀÎÇÁ¶óÀÇ ±Þ¼ÓÇÑ ¼ºÀå, µµ½ÃÈ­ ¹× ¼øÈ¯ °æÁ¦ ¿øÄ¢À» Àå·ÁÇÏ´Â Á¤ºÎ ÇÁ·Î±×·¥À» ÅëÇØ ½½·¡±× ±â¹Ý Á¦Ç°µµ ½Ã¸àÆ®, ÄÜÅ©¸®Æ® ¹× µµ·Î °Ç¼³¿¡ ÅëÇյ˴ϴÙ. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ºñ¿ë ¿ìÀ§, Áö¿ø Á¤Ã¥ ¹× ´ë±Ô¸ð ÃÖÁ¾ »ç¿ëÀÚ ±â¹ÝÀ» ÅëÇØ ½½·¡±× ÀçȰ¿ë ¹× ºÎ°¡°¡Ä¡È­¿¡¼­ ¼¼°è ½ÃÀåÀ» ¼±µµÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. À̴ ȯ°æ ģȭÀûÀÎ °ÇÃ๰¿¡ ´ëÇÑ ÁÖ¸ñÀÌ ³ô¾ÆÁö°í, º¸´Ù ¾ö°ÝÇÑ È¯°æ¹ý, ¼øÈ¯Çü °æÁ¦ ¿øÄ¢ÀÇ ÀÌ¿ë È®´ë°¡ ¿äÀÎÀÔ´Ï´Ù. Żź¼ÒÈ­¿Í ±×¸° ºôµù¿¡ ´ëÇÑ ³ë·ÂÀÇ ÀÏȯÀ¸·Î ¹Ì±¹°ú ij³ª´Ù´Â ÀÎÇÁ¶ó ÇÁ·ÎÁ§Æ®¿¡ ½½·¡±× ±â¹Ý Á¦Ç°À» Àû±ØÀûÀ¸·Î µµÀÔÇϰí ÀÖ½À´Ï´Ù. ½ÅÀç»ý¿¡³ÊÁö¿Í Áö¼Ó°¡´ÉÇÑ µµ½Ã°³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í ½½·¡±× ó¸® ±â¼úÀÇ Áøº¸´Â ȯ°æ¼ö¸®, Áö¿ÀÆú¸®¸Ó, º¹ÇÕÀç·á µî °í°¡Ä¡ ¿ëµµ ¼ö¿ä¸¦ ²ø¾î¿Ã¸®°í ÀÖ½À´Ï´Ù. À¯¸®ÇÑ Á¤ºÎ ±ÔÁ¦¿Í Àúź¼Ò ½Ã¸àÆ® ÄÜÅ©¸®Æ® ´ëü¿¡ ´ëÇÑ Å« ¿òÁ÷ÀÓÀ¸·Î ºÏ¹Ì°¡ °¡Àå ¼ºÀå·üÀÌ ³ôÀº Áö¿ªÀÌ µÇ¾ú½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå ÃßÁ¤, ¿¹Ãø ¹× CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÀÔ¾÷ÀÚÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ »ê¾÷ ½½·¡±× ¾÷»çÀÌŬ¸µ ½ÃÀå : ±¸¼º¿ä¼Òº°

  • °í·Î ½½·¡±×(BFS)
  • Á¦°­ ½½·¡±×
    • »ê¼Ò Àü·Î(BOF)
    • Àü±â ¾ÆÅ©·Î(EAF)
  • ºñö ½½·¡±×
    • ±¸¸®
    • ´ÏÄÌ
    • ¾Æ¿¬

Á¦6Àå ¼¼°èÀÇ »ê¾÷ ½½·¡±× ¾÷»çÀÌŬ¸µ ½ÃÀå : ÇÁ·Î¼¼½º À¯Çüº°

  • °ú¸³È­
  • Àڱ⠺и®
  • È­ÇÐÀû ¾ÈÁ¤È­
  • ¿­Ã³¸®
  • AI ±â¹Ý ºÐ·ù ¹× °¡Ä¡ Æò°¡

Á¦7Àå ¼¼°èÀÇ °ø¾÷ ½½·¡±× ¾÷»çÀÌŬ¸µ ½ÃÀå : ¼Ò½ºº°

  • ½Ã¸àÆ® ·ÎÅ͸® ų¸¥
  • ¼öÁ÷ °¡¸¶
  • Á¦°­·Î

Á¦8Àå ¼¼°èÀÇ »ê¾÷ ½½·¡±× ¾÷»çÀÌŬ¸µ ½ÃÀå : ¿ëµµº°

  • ½Ã¸àÆ® ¹× ÄÜÅ©¸®Æ® ÷°¡Á¦
  • µµ·Î º£À̽º ¹× ¾Æ½ºÆÈÆ®
  • ºñ·á¿Í Åä¾ç °³·®Á¦
  • ¼¼¶ó¹Í°ú ³»È­¹°
  • ¾ß±Ý ȸ¼ö
  • ź¼Ò Æ÷Áý ¹× Àú·ù(CCS) ÃËÁøÁ¦

Á¦9Àå ¼¼°èÀÇ »ê¾÷ ½½·¡±× ¾÷»çÀÌŬ¸µ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • °Ç¼³ ¹× ÀÎÇÁ¶ó
  • ³ó¾÷
  • ±¤¾÷°ú ±Ý¼ÓÇÐ
  • ȯ°æ º¹±¸
  • ÷´Ü Àç·á ¹× º¹ÇÕÀç·á

Á¦10Àå ¼¼°èÀÇ »ê¾÷ ½½·¡±× ¾÷»çÀÌŬ¸µ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Andritz AG
  • Phoenix Services Inc
  • FLSmidth & Co. A/S
  • Nippon Steel
  • Harsco Environmental
  • Stein Inc.
  • Tata Steel
  • Befesa SA
  • Metso Outotec Corporation
  • TMS International
  • Cronimet Mining AG
  • Posco
  • JFE Steel
  • Tenova SpA
  • KHD Humboldt Wedag International AG
  • Primetals Technologies Limited
SHW 25.09.09

According to Stratistics MRC, the Global Industrial Slag Upcycling Market is accounted for $5.03 billion in 2025 and is expected to reach $8.35 billion by 2032 growing at a CAGR of 7.5% during the forecast period. The sustainable practice of turning by-products from smelting, steelmaking and other metallurgical processes into useful secondary resources as opposed to throwing them away as waste is known as industrial slag upcycling. Slag can be recycled into uses including the manufacturing of cement and concrete, road building, soil stabilization, and even as a source of rare metals by using sophisticated treatment methods like granulation, grinding, and chemical activation. This strategy replaces energy-intensive raw materials like clinker and limestone, which lowers the carbon footprint of building materials while also minimizing environmental contamination and the strain on landfills.

According to EUROSLAG (the European association for metallurgical slag), Europe produced ~37.6 Mt of slag in 2023 and more than 95% was used in applications like construction, cement, etc.

Market Dynamics:

Driver:

Demand in the construction industry

One of the main factors driving demand for industrial slag upcycling is the expanding building industry, especially in emerging nations. Products made from slag, such as ground granulated blast furnace slag (GGBFS), are frequently utilized as additional cementitious ingredients to improve the sustainability, strength, and durability of concrete. Slag provides an environmentally beneficial alternative to clinker and other energy-intensive raw materials, as the building sector is under pressure to lessen its carbon footprint. Additionally, the market is growing even faster as a result of its rising use in high-rise structures, roadways, bridges, and urban infrastructure.

Restraint:

High initial expenses for technology and processing

The high initial cost of modern technology and processing facilities is one of the main factors limiting the industrial slag upcycling business. Granulation, grinding, chemical activation, and metal recovery are some of the processes that require specialized equipment and high energy consumption. Furthermore, the cost of setting up such infrastructure is typically prohibitive for smaller businesses and underdeveloped nations, which restricts its widespread adoption. Even while the long-term advantages are substantial, the hefty initial expenses serve as a disincentive, especially in areas with tight industrial budgets.

Opportunity:

Innovation in technology and high-value uses

Technological developments in processing are creating new sources of income outside of the conventional applications for cement and building. Slag can now be used in glassmaking, ceramics, fertilizers, soil conditioners, and even more sophisticated uses like carbon capture materials owing to innovative techniques. In addition, technologies that recover valuable metals from slag, including rare earths, titanium, and vanadium, generate high-value secondary markets. As research and development expenditures persist, slag upcycling is evolving from a waste management tactic to a lucrative industrial resource enterprise.

Threat:

Competition from green alternative materials

Slag is not the only environmentally friendly material that is becoming more popular in the industrial and construction sectors. The promotion of low-carbon alternatives such as fly ash, silica fume, recycled aggregates, and cutting-edge materials like geopolymer cement is growing. Moreover, the market's growth trajectory could be threatened if these materials outcompete slag-based alternatives if they become more affordable, accessible, or better supported by legislative frameworks.

Covid-19 Impact:

The COVID-19 pandemic had a mixed effect on the industrial slag upcycling market. At first, lockdowns, labor shortages, and supply chain disruptions caused operations to be disrupted, which in turn decreased slag collection and processing activities. The demand for slag-based materials decreased as a result of infrastructure project delays and construction slowdowns, and the supply of slag was also constrained by decreased steel production. However, as industries looked for affordable, environmentally friendly materials during the recovery phase, the pandemic increased global awareness of sustainability, green building, and circular economy practices, which reopened opportunities for slag upcycling.

The granulation segment is expected to be the largest during the forecast period

The granulation segment is expected to account for the largest market share during the forecast period. In order to create granulated slag, which is subsequently ground into a fine powder known as Ground Granulated Blast Furnace Slag (GGBFS), molten slag is rapidly cooled using either water or air. As an additional cementitious material that improves concrete's strength, durability, and sustainability while drastically lowering CO2 emissions when compared to conventional clinker, GGBFS is highly prized in the construction sector. Moreover, granulation is the most popular and economically feasible slag upcycling technique in the world due to its extensive use in the manufacturing of cement and concrete, as well as its affordability and environmental advantages.

The advanced materials & composites segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the advanced materials & composites segment is predicted to witness the highest growth rate. The growing use of materials derived from slag in high-value applications like glass, ceramics, geopolymers, and novel composites for the electronics, automotive, and aerospace industries is what is driving this growth. These cutting-edge uses promote sustainability, durability, and lightweighting objectives across industries in addition to improving material performance. Additionally, the advanced materials & composites segment is quickly becoming the fastest-growing area within slag upcycling due to increased R&D investments and the growing demand for high-performance, environmentally friendly substitutes for conventional materials.

Region with largest share:

During the forecast period, the Asia-Pacific region is expected to hold the largest market share, principally propelled by its extensive steel manufacturing base, swift industrialization, and robust need for environmentally friendly building materials. As byproducts of their steel and metallurgical industries, nations like China, India, Japan, and South Korea produce enormous amounts of slag, which opens up a plethora of upcycling opportunities. Slag-based products are also being incorporated into cement, concrete, and road construction due to the rapid growth of infrastructure, urbanization, and government programs encouraging circular economy principles. Furthermore, the Asia-Pacific region leads the world market in slag recycling and value-adding due to its cost advantages, supportive policies, and sizable end-user base.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, driven by a greater focus on environmentally friendly building, more stringent environmental laws, and the growing use of circular economy principles. As part of decarbonization and green building efforts, the US and Canada are aggressively incorporating slag-based products into infrastructure projects. Growing investments in renewable energy and sustainable urban development, along with technological advancements in slag processing, are driving up demand for high-value applications like environmental remediation, geopolymers, and composites. With favorable government regulations and a significant move toward low-carbon cement and concrete substitutes, North America is the region with the fastest rate of growth.

Key players in the market

Some of the key players in Industrial Slag Upcycling Market include Andritz AG, Phoenix Services Inc, FLSmidth & Co. A/S, Nippon Steel, Harsco Environmental, Stein Inc., Tata Steel, Befesa S.A., Metso Outotec Corporation, TMS International, Cronimet Mining AG, Posco, JFE Steel, Tenova S.p.A., KHD Humboldt Wedag International AG and Primetals Technologies Limited.

Key Developments:

In April 2025, Phoenix Service Partners is pleased to announce the successful closing of a $150 million asset-based lending (ABL) facility that includes an additional $100 million accordion feature. This strategic financing initiative was closed concurrently with Phoenix's $100 million equity partnership agreement, further strengthening the company's financial foundation and growth trajectory.

In October 2024, Harsco Environmental announced that it has signed a 10-year services contract with Nucor Steel Kingman in Arizona, a leading manufacturer of steel and steel products. This contract is a testament to our commitment to safety and sustainability, and we are proud to be a technology partner providing Nucor with economically viable solutions for the treatment and reuse of their production co-products.

In October 2024, Tata Steel has signed a contract with an Italy-headquartered metals technology multinational to deliver a state-of-the-art electric arc furnace (EAF) as part of its green steelmaking drive in the UK. The Indian steel major's pact last week with Tenova for its Port Talbot site in Wales, the UK's largest steelworks, has been described as a significant milestone on the road to reducing carbon emissions by 90 per cent a year once it is commissioned from the end of 2027.

Components Covered:

  • Blast Furnace Slag (BFS)
  • Steelmaking Slag
  • Non-Ferrous Slag

Process Types Covered:

  • Granulation
  • Magnetic Separation
  • Chemical Stabilization
  • Thermal Treatment
  • AI-Driven Sorting & Valorization

Sources Covered:

  • Cement Rotary Kilns
  • Vertical Shaft Kilns
  • Steelmaking Furnaces

Applications Covered:

  • Cement & Concrete Additives
  • Road Base & Asphalt
  • Fertilizers & Soil Amendments
  • Ceramics & Refractories
  • Metallurgical Recovery
  • Carbon Capture & Storage (CCS) Enhancers

End Users Covered:

  • Construction & Infrastructure
  • Agriculture
  • Mining & Metallurgy
  • Environmental Remediation
  • Advanced Materials & Composites

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Industrial Slag Upcycling Market, By Component

  • 5.1 Introduction
  • 5.2 Blast Furnace Slag (BFS)
  • 5.3 Steelmaking Slag
    • 5.3.1 Basic Oxygen Furnace (BOF)
    • 5.3.2 Electric Arc Furnace (EAF)
  • 5.4 Non-Ferrous Slag
    • 5.4.1 Copper
    • 5.4.2 Nickel
    • 5.4.3 Zinc

6 Global Industrial Slag Upcycling Market, By Process Type

  • 6.1 Introduction
  • 6.2 Granulation
  • 6.3 Magnetic Separation
  • 6.4 Chemical Stabilization
  • 6.5 Thermal Treatment
  • 6.6 AI-Driven Sorting & Valorization

7 Global Industrial Slag Upcycling Market, By Source

  • 7.1 Introduction
  • 7.2 Cement Rotary Kilns
  • 7.3 Vertical Shaft Kilns
  • 7.4 Steelmaking Furnaces

8 Global Industrial Slag Upcycling Market, By Application

  • 8.1 Introduction
  • 8.2 Cement & Concrete Additives
  • 8.3 Road Base & Asphalt
  • 8.4 Fertilizers & Soil Amendments
  • 8.5 Ceramics & Refractories
  • 8.6 Metallurgical Recovery
  • 8.7 Carbon Capture & Storage (CCS) Enhancers

9 Global Industrial Slag Upcycling Market, By End User

  • 9.1 Introduction
  • 9.2 Construction & Infrastructure
  • 9.3 Agriculture
  • 9.4 Mining & Metallurgy
  • 9.5 Environmental Remediation
  • 9.6 Advanced Materials & Composites

10 Global Industrial Slag Upcycling Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Andritz AG
  • 12.2 Phoenix Services Inc
  • 12.3 FLSmidth & Co. A/S
  • 12.4 Nippon Steel
  • 12.5 Harsco Environmental
  • 12.6 Stein Inc.
  • 12.7 Tata Steel
  • 12.8 Befesa S.A.
  • 12.9 Metso Outotec Corporation
  • 12.10 TMS International
  • 12.11 Cronimet Mining AG
  • 12.12 Posco
  • 12.13 JFE Steel
  • 12.14 Tenova S.p.A.
  • 12.15 KHD Humboldt Wedag International AG
  • 12.16 Primetals Technologies Limited
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦