½ÃÀ庸°í¼­
»óǰÄÚµå
1813467

Àΰø ±¤ÇÕ¼º Ã˸нÃÀå ¿¹Ãø(-2032³â) : Ã˸ŠÀ¯Çüº°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ¼¼°è ºÐ¼®

Artificial Photosynthesis Catalysts Market Forecasts to 2032 - Global Analysis By Catalyst Type, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ Àΰø ±¤ÇÕ¼º Ã˸нÃÀåÀº 2025³â¿¡ 1¾ï 3,674¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2032³â¿¡´Â 3¾ï 6,152¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¿¹Ãø ±â°£ µ¿¾È CAGRÀº 14.9%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÔ´Ï´Ù

Àΰø ±¤ÇÕ¼º Ã˸Ŵ ÀÚ¿¬ ±¤ÇÕ¼ºÀ» ¸ð¹æÇÏ¿© ž籤, ¹°, ÀÌ»êȭź¼Ò¸¦ ¿¬·á¿Í °¡Ä¡ ÀÖ´Â È­Çй°Áú·Î º¯È¯ÇÕ´Ï´Ù. ±Ý¼Ó Âø¹° ¹× ¹ÝµµÃ¼¸¦ ±âº»À¸·Î ÇÏ´Â ÀÌ·¯ÇÑ Ã˸Ŵ ¿ÂÈ­ÇÑ Á¶°Ç ÇÏ¿¡¼­ È¿À²ÀûÀÎ ±¤ Èí¼ö, ÀüÇÏ ºÐ¸® ¹× Ã˸йÝÀÀÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ±× ÀÀ¿ëÀº Áö¼Ó °¡´ÉÇÑ ¼ö¼Ò Á¦Á¶, ÀÌ»êȭź¼Ò °¨¼Ò, Àç»ý¿¡³ÊÁö ÀúÀåÀ» ¸ñÇ¥·ÎÇÕ´Ï´Ù. Ã˸ÅÀÇ È¿À², ¾ÈÁ¤¼º ¹× È®À强À» Çâ»ó½ÃÅ´À¸·Î½á Àΰø ±¤ÇÕ¼º ±â¼úÀº È­¼® ¿¬·á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÌ°í ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀ̰í È¿À²ÀûÀΠžç-È­ÇÐ ¿¡³ÊÁö º¯È¯ ½Ã½ºÅÛÀ» ÅëÇØ ¼øÈ¯ ź¼Ò °æÁ¦¸¦ Áö¿øÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù.

2024³â¿¡ ¹ßÇàµÈ Science AdvancesÁö¿¡ ÀÇÇϸé, Ni-O-Ag ±¤¿­Ã˸ſ¡ ÀÇÇØ žçÀ¸·ÎºÎÅÍ È­ÇÐ ¿¡³ÊÁö·ÎÀÇ º¯È¯ È¿À²ÀÌ 17% ÀÌ»óÀÇ 103m2ÀÇ Àΰø ±¤ÇÕ¼ºÀÌ °¡´ÉÇÏ°Ô µÈ´Ù°í ÇÕ´Ï´Ù.

¼ö¼Ò ¹× CO2 ÀüȯÀ» À§ÇÑ Á¤ºÎ R&D ÀÚ±Ý

¼ö¼Ò ¹× CO2 ÀüȯÀ» À§ÇÑ Á¤ºÎÀÇ R&D ÀÚ±ÝÀº ÁÖ¿ä ½ÃÀå īŻ¸®½ºÆ®ÀÔ´Ï´Ù. ¹Ì±¹ ¿¡³ÊÁöºÎÀÇ H2@Scale ¹× À¯·´ ±×¸°µô°ú °°Àº ÀÌ´Ï¼ÅÆ¼ºê¸¦ ÅëÇÑ ´ë±Ô¸ðÀÇ °øÀû ÅõÀÚ´Â Ãʱ⠴ܰèÀÇ ±â¼ú °³¹ß À§ÇèÀ» ¿ÏÈ­ÇÕ´Ï´Ù. ÀÌ ÀÚ±Ý Áö¿øÀº ½Å±Ô Àü±Ø ÃË¸Å¿Í ºÐÀÚ ÁýÇÕüÀÇ ±âÃÊ ¿¬±¸¸¦ °¡´ÉÇÏ°Ô Çϰí, ½ÇÇè½Ç¿¡¼­ÀÇ ¹ß°ßºÎÅÍ ÆÄÀÏ·µ ½ºÄÉÀÏÀÇ ½ÇÁõ±îÁöÀÇ ±æÀ» °¡¼ÓÈ­ÇÕ´Ï´Ù. ³ôÀº ºñ¿ëÀÇ ¿¬±¸¿¡ º¸Á¶±ÝÀ» ³»´Â °ÍÀ¸·Î Á¤ºÎ´Â ¹Î°£ ±â¾÷ÀÇ ÁøÀÔ À庮À» È¿°úÀûÀ¸·Î ³·Ãß°í ¹ë·ùüÀÎ ÀüüÀÇ Çõ½ÅÀ» ÀÚ±ØÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀçÁ¤ Áö¿øÀº Ãʱ⠱â¼ú °æÁ¦Àû Àå¾Ö¹°À» ±Øº¹Çϰí Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ¼Ö·ç¼ÇÀ» À§ÇÑ Àΰø ±¤ÇÕ¼º ±â¼úÀÇ ¹ßÀü¿¡ ƯȭµÈ °æÀï ±¸µµ¸¦ À°¼ºÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

³·Àº º¯È¯ È¿À²°ú È®À强

¸¹Àº Ã˸Š½Ã½ºÅÛ, ƯÈ÷ ±Í±Ý¼ÓÀ» ÀÌ¿ëÇÏ´Â Ã˸Š½Ã½ºÅÛÀº ºÒÃæºÐÇÑ Å¾籤-¿¬·á º¯È¯(STF) È¿À²·Î °íÅë¹Þ°í ÀÖÀ¸¸ç ±âÁ¸ ¿¡³ÊÁö¿ø°ú °æÀïÇÒ ¼ö ¾ø´Â »óÅ·Π³²¾Æ ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ·¯ÇÑ ½Ã½ºÅÛÀ» ¼Ò±Ô¸ð ½ÇÇè½Ç ȯ°æ¿¡¼­ »ê¾÷ ±Ô¸ðÀÇ ¿î¿µÀ¸·Î ÀÌÇà½Ã۱â À§Çؼ­´Â Ã˸ÅÀÇ ³»±¸¼º, ¹ÝÀÀ±â ¼³°è, ¹°Áú ¼ö¼Û°ú °ü·ÃµÈ ¿£Áö´Ï¾î¸µÀÇ ÁÖ¿ä °úÁ¦°¡ ¹ß»ýÇÕ´Ï´Ù. Àå±â ¾ÈÁ¤¼º°ú °í¼º´ÉÀ» ÀϰüµÇ°Ô ´ë±Ô¸ð·Î ´Þ¼ºÇÒ ¼ö ¾ø´Â °ÍÀº ±â¼ú °æÁ¦ÀûÀ¸·Î Å« À庮ÀÌ µÇ¾î ´ë±Ô¸ð ÅõÀÚÀÇ ¾ïÁ¦¿Í »ó¾÷Àû ½ÇÇö °¡´É¼ºÀÇ ¼±¼ÛÀ¸·Î À̾îÁö±â ¶§¹®¿¡ ½ÃÀå ÀüüÀÇ ¼ºÀå°ú µµÀÔ ½ºÄÉÁÙÀ» ¾ïÁ¦ÇÏ°Ô µË´Ï´Ù.

±×¸° ¼ö¼Ò¿Í ÇÕ¼º ¿¬·á Á¦Á¶

»ê¾÷ºÎ¹®°ú ¿î¼ÛºÎ¹®ÀÌ Å»Åº¼ÒÈ­ ¼Ö·ç¼ÇÀ» ¿ä±¸ÇÏ´Â °¡¿îµ¥, Àΰø ±¤ÇÕ¼ºÀº ž籤, ¹°, CO2·ÎºÎÅÍ Åº¼Ò Á߸³ ¿¬·á¸¦ Á÷Á¢ Á¦Á¶ÇÏ´Â ±æÀ» Á¦°øÇÕ´Ï´Ù. ÀÌ ±â¼úÀº Áö¼Ó °¡´ÉÇÑ ¼øÈ¯ ź¼Ò °æÁ¦ÀÇ Ãʼ®À̵Ǿî ÀüÀÚ ¿¬·á¿Í ³ì»ö ¾Ï¸ð´Ï¾ÆÀÇ »ý»êÀ» °¡´ÉÇϰÔÇÕ´Ï´Ù. ¶ÇÇÑ ´ë±Ô¸ð ¿¡³ÊÁö ÀúÀå ¸ÞÄ¿´ÏÁòÀ» Á¦°øÇÏ¿© ž籤 ¹× dz·Â°ú °°Àº Àç»ý¿¡³ÊÁö¿øÀÇ °£Ç漺À» ÇØ°áÇÕ´Ï´Ù. µû¶ó¼­ AP Ã˸Ŵ ¼¼°è Żź¼ÒÈ­ ¹× ¿¡³ÊÁö ¾Èº¸ ¸ñÇ¥¸¦ ´Þ¼ºÇϱâ À§ÇÑ Áß¿äÇÑ Àο¡ÀÌºí·¯·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

ÇÕ¼º ¿¬·á¿¡ ´ëÇÑ ºÒÅõ¸íÇÑ ±ÔÁ¦ ÇÁ·¹ÀÓ ¿öÅ©

Àü±â¿¬·á(e-fuels)ÀÇ º¸ÆíÀûÀ¸·Î ¹Þ¾Æµé¿©Áø Á¤ÀÇ, Áö¼Ó°¡´É¼º ±âÁØ, ÀÎÁõ ¸ÞÄ¿´ÏÁòÀÌ ¾ø±â ¶§¹®¿¡ ÅõÀÚ°¡ ¸ðÈ£ÇØÁý´Ï´Ù. Á¤Ä¡Àû ¿ì¼±¼øÀ§ÀÇ ÀáÀçÀû º¯È­´Â º¸Á¶±Ý ±¸Á¶¿Í ź¼Ò °¡°Ý ¼³Á¤À» °©Àڱ⠺¯°æÇÏ¿© Àå±â ÇÁ·ÎÁ§Æ®ÀÇ °æÁ¦¼ºÀ» ¼Õ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦ÀÇ ¿¹Ãø ºÒ°¡´É¼ºÀº ´ë±Ô¸ð ½ÇÁõ Ç÷£Æ®¿¡ ´ëÇÑ ÀÚ±Ý ±â¿©¸¦ Á¤´çÈ­Çϱâ À§ÇØ ¾ÈÁ¤ÀûÀÎ Àå±â Á¤Ã¥ ½Ã±×³ÎÀ» ÇÊ¿ä·Î ÇÏ´Â ¿¡³ÊÁö ÃøÁ¤ ¹× ÅõÀÚÀÚÀÇ ÀÚº» Áý¾àÀû Çå½ÅÀ» ÀúÇØÇÕ´Ï´Ù. ÇÕ¼º ¿¬·áÀÇ °¡Ä¡¸¦ ÀÎÁ¤ÇÏ´Â ¸íÈ®Çϰí ÀϰüµÈ ±ÔÁ¦°¡ ¾øÀ¸¸é ½ÃÀå ¼ºÀåÀÌ ÇöÀúÇÏ°Ô ¹æÇعÞÀ» ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ :

COVID-19 ÆÒµ¥¹ÍÀº óÀ½¿¡´Â Àΰø ±¤ÇÕ¼º Ã˸нÃÀåÀ» È¥¶õ½º·´°Ô Çϰí, Áß¿äÇÑ ¿øÀç·á °ø±Þ¸ÁÀÇ Áö¿¬À» ÀÏÀ¸Å°°í, ¿¬±¸¼Ò Æó¼â·Î ÀÎÇÑ ¿¬±¸ Áß´ÜÀ» ÃÊ·¡Çß½À´Ï´Ù. Á¤ºÎÀÇ ÀÚ±ÝÀº ÀϽÃÀûÀ¸·Î ´ç¸éÀÇ °Ç°­ À§±â·Î µ¹ÀÌÄÑÁ³°í, ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ ´ëÇÑ »õ·Î¿î º¸Á¶±ÝÀÇ ½ÂÀÎÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº ź·ÂÀûÀ̰í Áö¼Ó °¡´ÉÇÑ ¿¡³ÊÁö ½Ã½ºÅÛÀÇ Çʿ伺À» °­Á¶ÇÏ´Â Ã˸Š¿ªÇÒÀ»Çß½À´Ï´Ù. ÆÒµ¥¹Í Èı⿡´Â ±×¸° ºÎÈï¿¡ ´ëÇÑ ¼¼°èÀûÀÎ ³ë·ÂÀÌ °¡¼ÓÈ­µÇ°í, º¸´Ù ±¤¹üÀ§ÇÑ °æ±â ÀÚ±ØÃ¥ÀÇ ÀÏȯÀ¸·Î Àΰø ±¤ÇÕ¼ºÀ» Æ÷ÇÔÇÑ Ã»Á¤ ¿¡³ÊÁö ±â¼ú¿¡ ´ëÇÑ Á¤Ã¥ Áö¿øÀÌ »õ·Ó°í ½ÉÁö¾î °­È­µÇ°Ô µÇ¾ú½À´Ï´Ù.

¿¹Ãø±â°£ µ¿¾È ¼ö¼Ò(H2) Á¦Á¶ºÐ¾ß°¡ ÃÖ´ë°¡ µÉ Àü¸Á

¼ö¼Ò(H2) Á¦Á¶ ºÎ¹®Àº Żź¼ÒÈ­ÀÇ ¿äÀÎÀ¸·Î ±×¸° ¼ö¼Ò¿¡ ´ëÇÑ ¾ÐµµÀûÀÎ ¼¼°è Á¤Ã¥Àû °ü½É°ú ÅõÀÚ Áõ°¡·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. »ý¹°ÇÐÀû ¶Ç´Â È­ÇÐÀû ȯ¿ø °æ·Î¿Í´Â ´Þ¸®, ¼öºÐÇØ¸¦ ÅëÇÑ H2 Á¦Á¶¸¦ À§ÇÑ Àΰø ±¤ÇÕ¼ºÀº ž籤À» ÀÌ¿ëÇÑ Á÷Á¢ÀûÀÎ ´ÜÀÏ ´Ü°è °øÁ¤À» Á¦°øÇÏ¿© ±× ¸Å·ÂÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ ºÎ¹®ÀÇ ÀÌÁ¡Àº Á¤È­, ¾Ï¸ð´Ï¾Æ »ý»ê, »ê¾÷¿ë Á¦·Îź¼Ò ¿¬·á ¹× ¿¬·áÀüÁö Àü±âÀÚµ¿Â÷¿¡ÀÇ Àû¿ë °¡´É¼ºÀ¸·Î ÀÎÇÑ °ÍÀ̸ç, AP ½Ã½ºÅÛ¿¡ °¡Àå Á÷Á¢ÀûÀÌ°í »ó¾÷ÀûÀÎ ÀÇ¹Ì ÀÖ´Â Ãâ·ÂÀÌ µÇ¾ú½À´Ï´Ù.

±¤Àü±âÈ­ÇÐ(PEC) ¼¿ ºÐ¾ß´Â ¿¹Ãø±â°£ Áß °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ±¤Àü±âÈ­ÇÐ(PEC) ¼¿ ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¼ºÀåÀÇ °¡¼ÓÀº ¹ÝµµÃ¼-Àü±Ø Ã˸аè¸éÀÇ È¿À²°ú ³»±¸¼º Çâ»ó¿¡ ÃÊÁ¡À» ¸ÂÃá ÁýÁßÀûÀÎ ¿¬±¸°³¹ß ¶§¹®ÀÔ´Ï´Ù. PEC ½Ã½ºÅÛÀº ž籤 ¹ßÀü-ÀüÇØÁ¶(PV-E) ½Ã½ºÅÛ¿¡ ºñÇØ º¸´Ù °£´ÜÇϰí ÅëÇÕµÈ ¾ÆÅ°ÅØÃ³¸¦ Á¦°øÇÒ ¼ö ÀÖÀ¸¸ç, Àå±âÀûÀ¸·Î ¼ö¼Ò Á¦Á¶ÀÇ ÆòÁØÈ­ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. »õ·Î¿î ±¤ Èí¼ö Àç·á¿Í ±¤ºÎ½ÄÀ» ¿ÏÈ­½ÃŰ´Â º¸È£ ÄÚÆÃÀÇ Áøº¸´Â ÀÌ·¯ÇÑ Æ¯È÷ À¯¸ÁÇÑ ±â¼úÀû Á¢±Ù¹ý¿¡¼­ Çõ½Å°ú ÅõÀÚ¸¦ ÃËÁøÇÏ´Â Áß¿äÇÑ ¿äÀÎÀÔ´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ºÏ¹Ì°¡ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ¸®´õ½ÊÀº ¹Ì±¹ ¿¡³ÊÁöºÎ¿Í ±× ±¹¸³¿¬±¸¼Ò µî Ã˸ÅÀÇ ¹ß°ßÀ̳ª µð¹ÙÀ̽º °øÇÐÀÇ ÃÖÀü¼±¿¡ ¼­ ÀÖ´Â ±â°üÀ¸·ÎºÎÅÍ ¿¬¹æ Á¤ºÎ ¹× ¹Î°£ÀÇ ¿¬±¸°³¹ß ÀÚ±ÝÀÌ À±ÅÃÇÏ°Ô Á¦°øµÇ°í ÀÖ´Ù°í ÀüÁ¦°¡ µÇ°í ÀÖ½À´Ï´Ù. °Ô´Ù°¡ ÀÏ·ù Çмú ¹× ¿¬±¸ ±â°ü°ú ±â¼ú°è ½ÅÈï±â¾÷ÀÇ Á¸Àç°¡ Ȱ±âÂù Çõ½Å »ýŰ踦 Ű¿ì°í ÀÖ½À´Ï´Ù. ƯÈ÷ ¹Ì±¹°ú ij³ª´Ù¿¡¼­´Â ÁöÁö Á¤Ã¥°ú ¼ö¼Ò Àü·«ÀÇ Á¶±â µµÀÔÀ¸·Î Àΰø ±¤ÇÕ¼º ±â¼úÀÇ Ãʱ⠻ó¾÷ °³¹ß¿¡ ÀûÇÕÇÑ È¯°æÀÌ °®Ãß¾îÁö°í ÀÖ½À´Ï´Ù.

°¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³»´Â Áö¿ª :

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ ±Þ¼ºÀåÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ´Â °ÍÀº ¼ö¼Ò°æÁ¦¿¡ ´ëÇÑ Á¤ºÎÀÇ ´ë±Ô¸ð ÅõÀÚÀ̸ç, ƯÈ÷ ÀϺ», Çѱ¹, Áß±¹Àº Àå·¡ÀÇ ¿¡³ÊÁö Á¤¼¼¿¡ À־ÀÇ ¸®´õ½ÊÀ» ¸ñÇ¥·Î ÇÏ´Â ±¹°¡ ¼ö¼Ò Àü·«À» ³»°É°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ÀÏ·ºÆ®·Î´Ð½º ¹× ¹ÝµµÃ¼ÀÇ °­·ÂÇÑ Á¦Á¶°ÅÁ¡À» °¡Áö°í ÀÖÀ¸¸ç, ±¤Àü±âÈ­ÇÐ ½Ã½ºÅÛÀ» À§ÇÑ Áß¿äÇÑ ºÎǰÀ» »ý»êÇÏ´Â Àü·«Àû ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ ´ë±â ¿À¿°¿¡ ´ëÇÑ ´ëÀÀ°ú Àα¸ Áõ°¡¿¡ µû¸¥ ¿¡³ÊÁö ¾Èº¸ÀÇ Çʿ伺ÀÌ Àΰø ±¤ÇÕ¼º°ú °°Àº Çõ½ÅÀûÀΠûÁ¤ ¿¡³ÊÁö ±â¼úÀÇ Àû±ØÀûÀΠä¿ëÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù.

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º :

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ã߰衤¿¹Ãø¡¤CAGR(ÁÖ : Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ Àΰø ±¤ÇÕ¼º Ã˸нÃÀå : Ã˸ŠÀ¯Çüº°

  • ºÐÀÚ Ã˸Å(±ÕÁú°è)
    • ±Ý¼Ó º¹ÇÕÁ¦
    • À¯±â Ã˸Å/À¯±â°è Ã˸Å
  • ºñ±ÕÁú°è Ã˸Å
    • ±Ý¼Ó »êÈ­¹° Ã˸Å
    • ºñ»êÈ­¹° ¹ÝµµÃ¼ Ã˸Å
    • ±Ý¼Ó-À¯±â °ñ°Ýü(MOF)
    • ź¼Ò°è Ã˸Å
    • º¸Á¶ Ã˸Š¹× Àç·á
  • »ý¹°ÇÐÀû Ã˸Å(¹ÙÀÌ¿À-ÇÏÀ̺긮µå ½Ã½ºÅÛ)

Á¦6Àå ¼¼°èÀÇ Àΰø ±¤ÇÕ¼º Ã˸нÃÀå : ±â¼úº°

  • ±¤Àü±âÈ­ÇÐ(PEC) ÀüÁö
  • ±¤Ã˸Å(PC) ½Ã½ºÅÛ(ÇöŹ¾× ±â¹Ý)
  • ÇÏÀ̺긮µå ¹× ÅëÇÕ ½Ã½ºÅÛ
  • ±âŸ ±â¼ú

Á¦7Àå ¼¼°èÀÇ Àΰø ±¤ÇÕ¼º Ã˸нÃÀå : ¿ëµµº°

  • ¼ö¼Ò(H2) »ý»ê
  • ź¼Ò ±â¹Ý ¿¬·á
    • źȭ¼ö¼Ò
    • ¾ËÄÚ¿Ã
    • ÇÕ¼º°¡½º(CO+H2)
  • È­ÇÐ ¹× ¿ø·á

Á¦8Àå ¼¼°èÀÇ Àΰø ±¤ÇÕ¼º Ã˸нÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ¿¡³ÊÁö(¿¬·á »ý»ê ±â¾÷)
  • È­ÇÐ ¹× ¼®À¯È­ÇÐ
  • ¿¬±¸ °³¹ß ±â°ü
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦9Àå ¼¼°èÀÇ Àΰø ±¤ÇÕ¼º Ã˸нÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦11Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • A-LEAF
  • BASF SE
  • Evonik Industries
  • ENGIE
  • Fujifilm
  • JX Advanced Metals Corporation
  • Mitsubishi Chemical Group
  • NTT Corporation
  • Panasonic Corporation
  • Siemens Energy
  • SunHydrogen
  • Sunfire GmbH
  • Toshiba Corporation
  • Toyota Central R&D Labs., Inc.
  • Twelve
KTH 25.09.26

According to Stratistics MRC, the Global Artificial Photosynthesis Catalysts Market is accounted for $136.74 million in 2025 and is expected to reach $361.52 million by 2032 growing at a CAGR of 14.9% during the forecast period. Artificial photosynthesis catalysts mimic natural photosynthesis to convert sunlight, water, and carbon dioxide into fuels or valuable chemicals. These catalysts, often based on metal complexes or semiconductors, enable efficient light absorption, charge separation, and catalytic reactions under mild conditions. Applications target sustainable hydrogen production, carbon dioxide reduction, and renewable energy storage. By advancing catalyst efficiency, stability, and scalability, artificial photosynthesis technologies aim to reduce reliance on fossil fuels, lower greenhouse gas emissions, and support a circular carbon economy through efficient solar-to-chemical energy conversion systems.

According to Science Advances journal, published in 2024, a Ni-O-Ag photothermal catalyst enables 103-m2 artificial photosynthesis with greater than 17% solar-to-chemical energy conversion efficiency.

Market Dynamics:

Driver:

Government R&D funding for hydrogen and CO2 conversion

Government R&D funding for hydrogen and CO2 conversion is a primary market catalyst. Substantial public investments from initiatives like the U.S. Department of Energy's H2@Scale and the European Green Deal are de-risking early-stage technology development. This funding enables foundational research into novel electrocatalysts and molecular assemblies, accelerating the path from laboratory discovery to pilot-scale demonstrations. By subsidizing high-cost research, governments are effectively lowering the barrier to entry for private entities and stimulating innovation across the value chain. This financial support is crucial for overcoming initial techno-economic hurdles and fostering a competitive landscape dedicated to advancing artificial photosynthesis technologies for sustainable energy solutions.

Restraint:

Low conversion efficiency and scalability

Many catalyst systems, particularly those utilizing precious metals, suffer from inadequate solar-to-fuel (STF) efficiency rates that remain non-competitive with incumbent energy sources. Moreover, transitioning these systems from small-scale laboratory environments to industrial-scale operations introduces profound engineering challenges related to catalyst durability, reactor design, and mass transport. The inability to consistently achieve long-term stability and high performance at scale creates a major techno-economic barrier, deterring large-scale investment and postponing commercial viability, thus restraining overall market growth and adoption timelines.

Opportunity:

Green hydrogen and synthetic fuel production

As hard-to-abate industrial and transportation sectors seek decarbonization solutions, artificial photosynthesis offers a pathway to produce carbon-neutral fuels directly from sunlight, water, and CO2. This technology can serve as a cornerstone for a sustainable circular carbon economy, enabling the production of e-fuels and green ammonia. Furthermore, it provides a mechanism for large-scale energy storage, addressing the intermittency of renewable sources like solar and wind. This position AP catalysts as a critical enabler for achieving deep decarbonization and energy security goals globally.

Threat:

Uncertain regulatory frameworks for synthetic fuels

The absence of universally accepted definitions, sustainability criteria, and certification mechanisms for electrofuels (e-fuels) creates investment ambiguity. Potential shifts in political priorities can abruptly alter subsidy structures or carbon pricing, undermining long-term project economics. This regulatory unpredictability discourages capital-intensive commitments from energy majors and investors who require stable, long-term policy signals to justify funding large-scale demonstration plants. Without clear and consistent regulations that recognize the value of synthetic fuels, market growth could be significantly hampered.

Covid-19 Impact:

The COVID-19 pandemic initially disrupted the artificial photosynthesis catalysts market, causing supply chain delays for critical raw materials and halting laboratory research due to lockdowns. Government funding was temporarily redirected towards immediate healthcare crises, slowing down new grant approvals for energy projects. However, the pandemic also acted as a catalyst, underscoring the need for resilient and sustainable energy systems. In its latter stages, it accelerated the global commitment to a green recovery, leading to renewed and even enhanced policy support for clean energy technologies, including artificial photosynthesis, as part of broader economic stimulus packages.

The hydrogen (H2) production segment is expected to be the largest during the forecast period

The hydrogen (H2) production segment is expected to account for the largest market share during the forecast period due to the overwhelming global policy focus and increasing investment in green hydrogen as a cornerstone of decarbonization. Unlike biological or chemical reduction pathways, artificial photosynthesis for H2 production via water splitting offers a direct, single-step process using sunlight, enhancing its appeal. The segment's dominance is driven by its application potential in refining, ammonia production, and as a zero-carbon fuel for industries and fuel cell electric vehicles, making it the most immediate and commercially relevant output for AP systems.

The photoelectrochemical (PEC) cells segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the photoelectrochemical (PEC) cells segment is predicted to witness the highest growth rate. This accelerated growth is attributed to intensive R&D focused on improving the efficiency and durability of semiconductor-electrocatalyst interfaces. PEC systems offer a potentially simpler and more integrated architecture compared to coupled photovoltaic-electrolyzer (PV-E) systems, which could lead to lower levelized costs for hydrogen production in the long term. Advances in novel light-absorbing materials and protective coatings that mitigate photocorrosion are key factors driving innovation and investment in this particularly promising technological approach.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share. This leadership is predicated on robust federal and private R&D funding from institutions like the U.S. Department of Energy and its National Laboratories, which are at the forefront of catalyst discovery and device engineering. Furthermore, a strong presence of leading academic research institutions and technology startups fosters a vibrant innovation ecosystem. Supportive policies and early adoption of hydrogen strategies, particularly in the U.S. and Canada, create a conducive environment for the initial commercial deployment of artificial photosynthesis technologies.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. This rapid growth is fueled by massive governmental investments in hydrogen economies, notably from Japan, South Korea, and China, all of which have national hydrogen strategies aiming for leadership in the future energy landscape. The region's strong manufacturing base for electronics and semiconductors provides a strategic advantage in producing critical components for photoelectrochemical systems. Additionally, the pressing need to address air pollution and ensure energy security for its large population drives aggressive adoption of innovative clean energy technologies like artificial photosynthesis.

Key players in the market

Some of the key players in Artificial Photosynthesis Catalysts Market include A-LEAF, BASF SE, Evonik Industries, ENGIE, Fujifilm, JX Advanced Metals Corporation, Mitsubishi Chemical Group, NTT Corporation, Panasonic Corporation, Siemens Energy, SunHydrogen, Sunfire GmbH, Toshiba Corporation, Toyota Central R&D Labs., Inc., and Twelve.

Key Developments:

In November 2024, BASF announced plans to build a first-of-its-kind plant in Ludwigshafen to produce catalysts using its X3D(R) shaping technology. This initiative aims to enhance catalyst performance and efficiency, supporting green transformation projects, including artificial photosynthesis applications.

In October 2024, Mitsubishi Chemical Group Corporation's KAITEKI Report emphasized the company's efforts in utilizing catalytic technology for artificial photosynthesis. The report outlines the development of various inorganic materials contributing to a sustainable society through CO2 and methane separation and recovery processes.

In February 2022, JX Advanced Metals joined the Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem) Phase 2 activities. The company is developing photocatalysts for artificial photosynthesis, focusing on hydrogen generation and CO2 reduction. They are conducting joint research with Shinshu University and contributing high purity metals like tantalum and titanium for catalyst development.

Product Types Covered:

  • Molecular Catalysts (Homogeneous)
  • Heterogeneous Catalysts
  • Biological Catalysts (Bio-Hybrid Systems)

Technologies Covered:

  • Photoelectrochemical (PEC) Cells
  • Photocatalytic (PC) Systems (Suspension-based)
  • Hybrid & Integrated Systems
  • Other Technologies

Applications Covered:

  • Hydrogen (H2) Production
  • Carbon-Based Fuels
  • Chemicals and Feedstocks

End Users Covered:

  • Energy (Fuel Production Companies)
  • Chemicals and Petrochemicals
  • Research and Development Institutions
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Artificial Photosynthesis Catalysts Market, By Catalyst Type

  • 5.1 Introduction
  • 5.2 Molecular Catalysts (Homogeneous)
    • 5.2.1 Metal Complexes
    • 5.2.2 Organic Catalysts / Organocatalysts
  • 5.3 Heterogeneous Catalysts
    • 5.3.1 Metal Oxide Catalysts
    • 5.3.2 Non-Oxide Semiconductor Catalysts
    • 5.3.3 Metal-Organic Frameworks (MOFs)
    • 5.3.4 Carbon-Based Catalysts
    • 5.3.5 Co-catalysts and Co-catalyst Materials
  • 5.4 Biological Catalysts (Bio-Hybrid Systems)

6 Global Artificial Photosynthesis Catalysts Market, By Technology

  • 6.1 Introduction
  • 6.2 Photoelectrochemical (PEC) Cells
  • 6.3 Photocatalytic (PC) Systems (Suspension-based)
  • 6.4 Hybrid & Integrated Systems
  • 6.5 Other Technologies

7 Global Artificial Photosynthesis Catalysts Market, By Application

  • 7.1 Introduction
  • 7.2 Hydrogen (H2) Production
  • 7.3 Carbon-Based Fuels
    • 7.3.1 Hydrocarbons
    • 7.3.2 Alcohols
    • 7.3.3 Syngas (CO + H2)
  • 7.4 Chemicals and Feedstocks

8 Global Artificial Photosynthesis Catalysts Market, By End User

  • 8.1 Introduction
  • 8.2 Energy (Fuel Production Companies)
  • 8.3 Chemicals and Petrochemicals
  • 8.4 Research and Development Institutions
  • 8.5 Other End Users

9 Global Artificial Photosynthesis Catalysts Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 A-LEAF
  • 11.2 BASF SE
  • 11.3 Evonik Industries
  • 11.4 ENGIE
  • 11.5 Fujifilm
  • 11.6 JX Advanced Metals Corporation
  • 11.7 Mitsubishi Chemical Group
  • 11.8 NTT Corporation
  • 11.9 Panasonic Corporation
  • 11.10 Siemens Energy
  • 11.11 SunHydrogen
  • 11.12 Sunfire GmbH
  • 11.13 Toshiba Corporation
  • 11.14 Toyota Central R&D Labs., Inc.
  • 11.15 Twelve
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦