½ÃÀ庸°í¼­
»óǰÄÚµå
1817994

¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¸®Æ¬À̿ ¹èÅ͸® ¼¿ ½ÃÀå ¿¹Ãø(-2032³â) : ¹èÅ͸® È­ÇÐ, Â÷·® À¯Çü, ÃßÁø À¯Çü, Æû ÆÑÅÍ, ÃÖÁ¾»ç¿ëÀÚ, Áö¿ªº° ºÐ¼®

Automotive Lithium-ion Battery Cell Market Forecasts to 2032 - Global Analysis By Battery Chemistry, Vehicle Type, Propulsion Type, Form Factor, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¸®Æ¬À̿ ¹èÅ͸® ¼¿ ½ÃÀåÀº 2025³â 1,402¾ï 2,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, 2032³â±îÁö 5,722¾ï 1,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ Áß CAGRÀº 22.25%·Î ¼ºÀåÇÒ Àü¸ÁÀÔ´Ï´Ù.

ÀÚµ¿Â÷¿ë ¸®Æ¬À̿ ¹èÅ͸® ¼¿ ¾÷°è¿¡¼­´Â Á¤È®Çϰí È¿À²ÀûÀÌ°í ¾ÈÀüÇÑ »ý»ê¿¡ ·Îº¿ÀÌ ÇʼöÀûÀÔ´Ï´Ù. ·Îº¿Àº Àü±Ø Áغñ, ÀûÃþ, ÀüÇØ¾× ÁÖÀÔ, ¼¿ ÆÐŰ¡ µîÀÇ Áß¿äÇÑ °øÁ¤À» ¸Å¿ì Á¤È®ÇÏ°Ô ÀÚµ¿È­ÇϹǷΠ¿¡·¯³ª ºÒ¼ø¹°ÀÌ ¹ß»ýÇÒ °¡´É¼ºÀÌ ³·½À´Ï´Ù. ¶ÇÇÑ ÀáÀçÀûÀ¸·Î À§ÇèÇÑ Á¶°Ç¿¡¼­µµ ÀÛµ¿ÇϹǷΠȭÇÐ ¹°Áú·Î ÀÎü¿¡ ´ëÇÑ À§Çèµµ ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ¾ÈÀü»Ó¸¸ ¾Æ´Ï¶ó ·Îº¸Æ½½º´Â 󸮷®°ú Ç¥ÁØÈ­¸¦ ÃËÁøÇÏ¿© ±â¾÷ÀÌ Àü±â À̵¿¼º ¼ö¿ä Áõ°¡¿¡ ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï µµ¿ÍÁÝ´Ï´Ù. ½º¸¶Æ® ¼¾¼­¿Í AIÀÇ ÅëÇÕÀ» ÅëÇØ ·Îº¿ ±â¼úÀº ǰÁú ¸ð´ÏÅ͸µÀ» ´õ¿í Á¤±³ÇÏ°Ô Çϰí, ¿öÅ©Ç÷ο츦 °£¼ÒÈ­Çϰí, ¹èÅ͸® ¼¿ Á¦Á¶¿¡¼­ Çõ½Å°ú ½Å·Ú¼ºÀÇ ¿äÁ¡À¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

±¹Á¦·Îº¿¿¬¸Í(IFR)¿¡ µû¸£¸é ÀÚµ¿Â÷ »ê¾÷Àº ¿©ÀüÈ÷ »ê¾÷¿ë ·Îº¿À» °¡Àå ¸¹ÀÌ µµÀÔÇϰí ÀÖÀ¸¸ç ¼¼°è ·Îº¿ µµÀÔ ´ë¼öÀÇ 30% ÀÌ»óÀ» Â÷ÁöÇϰí ÀÖ½À´Ï´Ù. ¹èÅ͸® ¼¿ Á¶¸³, ¿ëÁ¢ ¹× ÀÚÀç°ü¸®Àº EV »ý»ê¿¡¼­ Áß¿äÇÑ ·Îº¿ ¿ëµµÀÔ´Ï´Ù.

¾ÈÀü°ú À§Çè °¨¼Ò

¸®Æ¬À̿ ¹èÅ͸® »ý»ê¿¡¼­ ·Îº¿ÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­ÇÏ´Â ÁÖ¿ä ¿äÀÎÀº ÀÛ¾÷ÀÚÀÇ ¾ÈÀü¼ºÀ» ³ôÀ̰í À§ÇèÀ» ÁÙÀÌ´Â °ÍÀÔ´Ï´Ù. ¼¿ÀÇ Á¦Á¶¿¡¼­´Â À¯ÇØÇÑ È­Çй°Áú, °¡¿¬¼º ¹°Áú, °í¾Ð ¹ÐºÀ °øÁ¤ µîÀ» Ãë±ÞÇÒ Çʿ䰡 ÀÖ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ °úÁ¤¿¡ Àΰ£ÀÌ Á÷Á¢ Âü¿©ÇÏ¸é ½É°¢ÇÑ °Ç°­ À§Çè°ú »ç°í À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. È­ÇоàǰÀÇ ÁÖÀÔ, ¿ëÁ¢, °í¿Â ÀÛ¾÷ µîÀÇ À§ÇèÇÑ ÀÛ¾÷À» ·Îº¿ÀÌ ´ëÇàÇÔÀ¸·Î½á ³ëÃâ·®À» ÁÙÀÌ°í º¸´Ù ¾ÈÀüÇÑ Á÷ÀåÀ» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ·Îº¿Àº ÇÇ·Î ¾øÀÌ ÀϰüµÇ°Ô ÀÛ¾÷ÇÔÀ¸·Î½á ¾ÈÀü »ç°í¸¦ ÀÏÀ¸Å³ ¼ö ÀÖ´Â Àΰ£ ½Ç¼ö¸¦ ÃÖ¼ÒÈ­ÇÕ´Ï´Ù. ¾ö°ÝÇÑ ¾ÈÀü ±âÁذú ±ÔÁ¦ ±â´ë¿¡ ºÎÀÀÇÒ ¼ö ÀÖ´Â ·Îº¿Àº ÀÚµ¿Â÷ ¹èÅ͸® Á¦Á¶ ȯ°æ¿¡¼­ Áß¿äÇÑ ¾ÈÀü ÀåÄ¡°¡ µÇ°í ÀÖ½À´Ï´Ù.

°í¾×ÀÇ Ãʱâ ÅõÀÚ

¸®Æ¬À̿ ¹èÅ͸® ¼¿ Á¦Á¶¿¡¼­´Â ·Îº¿ µµÀÔ¿¡ ÇÊ¿äÇÑ °í¾×ÀÇ Ãʱ⠺ñ¿ëÀÌ Å« À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ·Îº¿ ½Ã½ºÅÛÀº Àü¿ë Àåºñ, Á¦¾î ½Ã½ºÅÛ, ¼ÒÇÁÆ®¿þ¾î Ç÷§Æû, °øÀå Àç¼³°è¿¡ ¸¹Àº ºñ¿ëÀÌ ÇÊ¿äÇÕ´Ï´Ù. Áß¼Ò±â¾÷ÀÇ °æ¿ì ÀÌ·¯ÇÑ ºñ¿ëÀº Á¾Á¾ °ü¸®ÇÒ ¼ö ¾øÀ¸¸ç ´ë±â¾÷°ú Áß±Ô¸ð Á¦Á¶¾÷ü °£¿¡ ºÒÆòµîÀ» ÀÏÀ¸Åµ´Ï´Ù. °Ô´Ù°¡ ÀÌ·¯ÇÑ ÅõÀÚÀÇ È¸¼ö¿¡´Â ½Ã°£ÀÌ °É¸®°í, ƯÈ÷ ÀüÁö ¼ö¿ä°¡ ºÒÅõ¸íÇÑ Áö¿ª¿¡¼­´Â ´õ¿í ±×·¸½À´Ï´Ù. ÅëÇÕ, Á÷¿ø ½ºÅ³¾÷, Á¤±âÀûÀÎ ¾÷±×·¹À̵忡 µå´Â ºñ¿ëÀº À繫Àû ºÎ´ãÀ» ´õ¿í Áõ´ë½Ãŵ´Ï´Ù. ±× °á°ú ¸·´ëÇÑ ÀÚ±ÝÀÌ ÇÊ¿äÇϱ⠶§¹®¿¡ ·Îº¿ °øÇÐÀÇ µµÀÔÀÌ Áö¿¬µÇ°í Àå±âÀûÀÎ ÀåÁ¡ÀÌ ÀÖÀ½¿¡µµ ºÒ±¸ÇÏ°í ¸¹Àº ±â¾÷µéÀÌ ÀÚµ¿È­¿¡ ÀÓÇÏ´Â ÀÇ¿åÀ» ¾ø¾Ö°í ÀÖ½À´Ï´Ù.

¼¼°è °ø±Þ¸Á ´Ù¾çÈ­

¼¼°è °ø±Þ¸Á À籸ÃàÀº ¹èÅ͸® ¼¿ »ý»ê¿¡¼­ ·Îº¿ µµÀÔÀÇ »õ·Î¿î ±âȸ¸¦ ¿­°í ÀÖ½À´Ï´Ù. Á¦Á¶¾÷ü´Â ƯÁ¤ Áö¿ª¿¡ ´ëÇÑ °úµµÇÑ ÀÇÁ¸À» ÇÇÇϱâ À§ÇØ ¿î¿µÀÇ ºÐ»êÀ» ÃßÁøÇϰí ÀÖÀ¸¸ç ·Îº¿Àº ÀÌ·¯ÇÑ ÀüȯÀ» ÃËÁøÇÕ´Ï´Ù. ÀÚµ¿È­µÈ ½Ã½ºÅÛÀº °øÁ¤ÀÇ ±ÕÀϼºÀ» º¸ÀåÇÏ°í ¿©·¯ ±âÁö¿¡¼­ µ¿ÀÏÇÑ Ç°Áú ±âÁØÀ» ½ÇÇöÇÕ´Ï´Ù. ¼÷·Ã ³ëµ¿ÀÚ°¡ ºÎÁ·ÇÑ Áö¿ª¿¡¼­´Â ·Îº¿ °øÇÐÀÌ È¿À²°ú Á¤¹Ðµµ¸¦ À¯ÁöÇÔÀ¸·Î½á °¸À» ¸Þ¿ó´Ï´Ù. À̸¦ ÅëÇØ ±â¾÷Àº ¼º´ÉÀ» Èñ»ýÇÏÁö ¾Ê°í ´Ù¾çÇÑ ½ÃÀå¿¡ »õ·Î¿î ½Ã¼³À» ¼³¸³ ÇÒ ¼ö ÀÖ½À´Ï´Ù. °ø±Þ¸ÁÀÇ Åº·Â¼º°ú À¯¿¬¼ºÀÌ ³ô¾ÆÁö´Â °¡¿îµ¥ ·Îº¸Æ½½º´Â ¼¼°è °æÀï·ÂÀÇ ±â¹ÝÀ¸·Î ÀÛ¿ëÇÏ¿© º¯È­°¡ ½ÉÇÑ ÀÚµ¿Â÷ ¹èÅ͸® ºÐ¾ßÀÇ À§ÇèÀ» ÁÙÀ̸鼭 »ç¾÷ È®´ë¸¦ Áö¿øÇÕ´Ï´Ù.

°æÀï ¾Ð·Â°ú ºñ¿ë ¹®Á¦

·Îº¸Æ½½º Áß½ÉÀÇ ¹èÅ͸® ½ÃÀåÀº °æÀï °ÝÈ­¿Í ºñ¿ë »ó½Â À§Çù¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿È­ÀÇ º¸±Þ¿¡ µû¶ó ±â¾÷Àº µ¶ÀÚÀûÀÎ ¿ìÀ§¸¦ À¯ÁöÇϱⰡ ¾î·Á¿öÁö°í °¡°Ý °æÀïÀ» °­¿äÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¾Ð·ÂÀº ¼öÀͼºÀ» ÀúÇϽÃ۰í ƯÈ÷ ´ë±Ô¸ð ¶óÀ̹ú ±â¾÷¸¸Å­ È¿À²ÀûÀ¸·Î ÀÚµ¿È­ ±Ô¸ð¸¦ È®´ëÇÒ ¼ö ¾ø´Â Áß¼Ò±â¾÷¿¡ À־´Â ½É°¢ÇÕ´Ï´Ù. ½Ã½ºÅÛ À¯Áö º¸¼ö, ¾÷±×·¹ÀÌµå ¹× ¼ÒÇÁÆ®¿þ¾î ¶óÀ̼±½º¿¡ ´ëÇÑ Áö¼ÓÀûÀÎ ºñ¿ëÀº À繫Àû ºÎ´ãÀ» ´õ¿í Áõ°¡½Ãŵ´Ï´Ù. ¼öÀÍÀÌ ÀÌ·¯ÇÑ ºñ¿ë »ó½ÂÀ» µû¶óÀâÁö ¸øÇÏ´Â °æ¿ì, ¸¹Àº ±â¾÷µéÀº ÀÌÀÍ·üÀÇ °¨¼Ò¿Í °æ¿µ À§Çè¿¡ Á÷¸éÇÒ ¼ö ÀÖ½À´Ï´Ù. ±× °á°ú, °Ý·ÄÇÑ °æÀï°ú °íºñ¿ëÀÇ °úÁ¦°¡ ÇÔ²², ¹èÅ͸® ¼¿ ºÐ¾ß¿¡¼­ÀÇ ·Îº¿ °øÇÐ µµÀÔÀÇ À繫Àû Áö¼Ó°¡´É¼ºÀÌ À§Çù¹Þ°Ô µË´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19ÀÇ ¹ß»ýÀº ÀÚµ¿Â÷¿ë ¸®Æ¬À̿ ¹èÅ͸® ¼¿ ºÐ¾ß¿¡¼­ÀÇ ·Îº¿ °øÇÐ µµÀÔ¿¡ ÇöÀúÇÑ ¿µÇâÀ» ¹ÌÄ¡°í, ¼ºÀå ÃËÁø¿äÀΰú µ¿½Ã¿¡ ÁÂÀýÀ» °¡Á®¿Ô½À´Ï´Ù. ±ÔÁ¦¿Í ¼¼°è °ø±Þ¸ÁÀÇ ´ÜÀý·Î ÀÎÇØ Áß¿äÇÑ ·Îº¿ Çϵå¿þ¾î Á¶´ÞÀÌ Áö¿¬µÇ¾î °øÀå ÀÚµ¿È­ °èȹÀÌ Á¤Ã¼µÇ¾ú½À´Ï´Ù. °øÀå Æó¼â¿Í ³ëµ¿·Â ºÎÁ·µµ ´çºÐ°£ ÅõÀÚ¸¦ ÁÙ¿´½À´Ï´Ù. ±×·¯³ª ÆÒµ¥¹ÍÀº »ç¾÷ ¿¬¼Ó¼ºÀ» È®º¸Çϰí ÀÎÀû ÇÇÇØ¸¦ ÃÖ¼ÒÈ­Çϱâ À§ÇÑ ·Îº¿ °øÇÐÀÇ °¡Ä¡¸¦ °­Á¶Çß½À´Ï´Ù. ±× °á°ú, ¸¹Àº ±â¾÷µéÀÌ º¸´Ù °­·ÂÇϰí È¿À²ÀûÀÎ ¿î¿µÀ» ±¸ÃàÇϱâ À§ÇØ ÀÚµ¿È­ Àü·«À» ±Þ°ÝÈ÷ ÁøÇàÇß½À´Ï´Ù. óÀ½¿¡´Â °¨¼ÓÇß´ø ÆÒµ¥¹ÍÀº ±Ã±ØÀûÀ¸·Î ·Îº¿ °øÇÐÀÇ Àå±âÀûÀÎ ¼ö¿ä¸¦ °­È­ÇÏ°í ¹Ì·¡ÀÇ ¹èÅ͸® »ý»êÀÇ ¿äÁö·Î ÀÚ¸®¸¦ Àâ¾Ò½À´Ï´Ù.

´ÏÄÌ ¸Á°£ ÄÚ¹ßÆ®(NMC) ºÎ¹®ÀÌ ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë°¡ µÉ Àü¸Á

´ÏÄÌ ¸Á°£ ÄÚ¹ßÆ®(NMC) ºÎ¹®Àº ºñ¿ë, ¾ÈÀü ¹× ¿¡³ÊÁö È¿À²ÀÇ ÃÖÀû ±ÕÇüÀ¸·Î ¿¹Ãø ±â°£ µ¿¾È ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Àü±âÀÚµ¿Â÷ Á¦Á¶¾÷ü¿¡ ³Î¸® ¼±ÅõǴ NMC ¼¿Àº ¾ÈÁ¤¼º°ú Àú·ÅÇÑ °¡°ÝÀ» À¯ÁöÇϸ鼭 ±ä ÁÖÇà °Å¸®¸¦ ½ÇÇöÇÕ´Ï´Ù. »ý»ê¿¡´Â ·Îº¸Æ½½º°¡ ÇʼöÀûÀ̸ç, Àü±ØÀÇ ÄÚÆÃ, ÀûÃþ, ÀüÇØ¾×ÀÇ ÃæÀü µî ÀϰüµÈ ǰÁúÀ» È®º¸Çϱâ À§ÇØ Áß¿äÇÑ °øÁ¤À» Á¤È®ÇÏ°Ô ½Ç½ÃÇÒ ¼ö ÀÖ½À´Ï´Ù. ´Ù¾çÇÑ EV Ä«Å×°í¸®¿¡¼­ NMC È­ÇÐÀÇ ÀûÀÀ¼ºÀ¸·Î NMC´Â ´ë±Ô¸ð Á¦Á¶¿¡ °¡Àå ÀûÇÕÇÑ ¿É¼ÇÀÌ µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ±¤¹üÀ§ÇÑ ½Å·Ú¼ºÀ¸·Î NMC´Â ·Îº¿ ¹èÅ͸® Á¦Á¶ÀÇ Áö¹èÀûÀÎ ºÎ¹®ÀÌ µÇ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV) ºÐ¾ßÀÇ CAGRÀÌ °¡Àå ³ô¾ÆÁú Àü¸Á

¿¹Ãø ±â°£ µ¿¾È ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV) ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. BEV´Â ´ë¿ë·® ¹èÅ͸® ÆÑ¿¡ ÀÇÁ¸Çϱ⠶§¹®¿¡ Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ´ë·® »ý»êÀ» Áö¿øÇϱâ À§Çؼ­´Â ·Îº¿ °øÇÐÀÌ ÇʼöÀûÀÔ´Ï´Ù. ÀÚµ¿È­´Â BEV ¹èÅ͸® ½Ã½ºÅÛ¿¡ Áß¿äÇÑ ÄÚÆÃ, ½ºÅÂÅ·, ÃæÀü ¹× Á¶¸³ °øÁ¤ÀÇ È¿À²¼ºÀ» Áö¿øÇÕ´Ï´Ù. °¢±¹ Á¤ºÎ°¡ Àμ¾Æ¼ºê¸¦ Á¦°øÇÏ°í ¹è±â°¡½º ±ÔÁ¦°¡ °­È­µÇ´Â °¡¿îµ¥ BEV ¼ö¿ä´Â ¼¼°èÀûÀ¸·Î ±ÞÁõÇϰí ÀÖ½À´Ï´Ù. ·Îº¸Æ½½º´Â Á¦Á¶¾÷ü°¡ ǰÁú°ú ¾ÈÀü¼ºÀ» º¸ÀåÇϸ鼭 ½Å¼ÓÇÏ°Ô ±Ô¸ð¸¦ È®ÀåÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. ÀÌ °­ÇÑ ±â¼¼·Î BEV´Â ½ÃÀå È®´ëÀÇ ÃÖÀü¼±¿¡ ÀÚ¸®Àâ°í ÀÖÀ¸¸ç °¡Àå ºü¸¥ ¼ºÀå·üÀ» ±â·ÏÇϰí ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº EV Á¦Á¶ ¹× ¹èÅ͸® ±â¼ú Çõ½ÅÀÇ °­·ÂÇÑ Á¸Àç·Î ÀÎÇØ ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Çѱ¹, ÀϺ» µîÀÇ ±¹°¡µéÀÌ ¼¼°è °ø±Þ¸Á°ú »ý»ê ´É·ÂÀ» Áö¹èÇϰí ÀÖÀ¸¸ç, ½Ã¼³ Àüü¿¡¼­ ÀÚµ¿È­ µµÀÔÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. À¯¸®ÇÑ Á¤ºÎ Á¤Ã¥, ÀçÁ¤Àû Àμ¾Æ¼ºê, È®¸³µÈ »ê¾÷ ±â¹ÝÀÌ ÀÌ Áö¿ªÀÇ ¸®´õ½ÊÀ» ´õ¿í °­È­Çϰí ÀÖ½À´Ï´Ù. ·Îº¿ °øÇÐÀº ¹èÅ͸® »ý»êÀÇ È¿À²¼º, ´ë·® È®À强 ¹× ¾ÈÀü¼ºÀ» ´Þ¼ºÇϱâ À§ÇØ ¸¹ÀÌ È°¿ëµÇ°í ÀÖ½À´Ï´Ù. ¼¼°èÀÇ Åé ¹èÅ͸® Á¦Á¶¾÷ü°¡ ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡ º»»ç¸¦ µÎ°í Àֱ⠶§¹®¿¡ ¾Æ½Ã¾ÆÅÂÆò¾çÀº °è¼Ó ½ÃÀåÀÇ ¼ºÀå°ú ±â¼ú Çõ½ÅÀ» °ßÀÎÇØ, ·Îº¿ ÀÏüÇü ¹èÅ͸® ¼¿ Á¦Á¶ÀÇ ¼¼°èÀûÀÎ ÁÖ¿ä °ÅÁ¡À¸·Î¼­ÀÇ ÁöÀ§¸¦ È®°íÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È À¯·´ÀÌ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ÀÌ´Â °­·ÂÇÑ Á¤ºÎ ±ÔÁ¦¿Í EV º¸±Þ·üÀÇ »ó½Â¿¡ ÀÇÇØ Áö¿øµË´Ï´Ù. À¯·´¿¬ÇÕ(EU)ÀÇ ÀÌ»êȭź¼Ò ¹èÃâ·® °¨¼Ò¿¡ ´ëÇÑ Áַ°ú Áö¼Ó°¡´ÉÇÑ ¿î¼Û¿¡ ´ëÇÑ Çå½ÅÀº ¹èÅ͸® Á¦Á¶¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ¸¦ µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. À¯·´ÀÇ »õ·Î¿î ±â°¡ÆÑÅ丮¿¡¼­´Â ·Îº¸Æ½½º°¡ Áß¿äÇÑ ¿ªÇÒÀ» Çϰí ÀÖÀ¸¸ç, Á¤È®ÇÏ°í ´ë·®À̸ç ȯ°æ ģȭÀûÀÎ »ý»êÀ» ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. µ¶ÀÏ, ÇÁ¶û½º, ºÏÀ¯·´°ú °°Àº ±¹°¡µéÀº ±¹³» °ø±Þ¸ÁÀ» °­È­Çϱâ À§ÇØ ÀÚµ¿È­¸¦ µµÀÔÇÏ´Â ÃÖÀü¼±¿¡ ÀÖ½À´Ï´Ù. ¾ö°ÝÇÑ Á¤Ã¥ Ʋ°ú °ßÁ¶ÇÑ ÀÚµ¿Â÷ »ê¾÷¿¡ ÈûÀÔ¾î À¯·´Àº Áö¼ÓÀûÀ¸·Î ÃÖ°íÀÇ CAGRÀ» ´Þ¼ºÇÏ°í °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ª ½ÃÀåÀ¸·Î ÀÚ¸®¸¦ Àâ°í ÀÖ½À´Ï´Ù.

¹«·á ¸ÂÃãÇü ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø ¹× CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¸®Æ¬À̿ ¹èÅ͸® ¼¿ ½ÃÀå : ¹èÅ͸® È­Çк°

  • Àλêö ¸®Æ¬(LFP)
  • ´ÏÄÌ ¸Á°£ ÄÚ¹ßÆ®(NMC)
  • ´ÏÄÌ ÄÚ¹ßÆ® ¾Ë·ç¹Ì´½ »êÈ­¹°(NCA)
  • ƼŸ³×ÀÌÆ® ¸®Æ¬(LTO)

Á¦6Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¸®Æ¬À̿ ¹èÅ͸® ¼¿ ½ÃÀå : Â÷·® À¯Çüº°

  • ½Â¿ëÂ÷
  • »ó¿ëÂ÷
  • ÀÌ·ûÂ÷ ¹× »ï·ûÂ÷

Á¦7Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¸®Æ¬À̿ ¹èÅ͸® ¼¿ ½ÃÀå : ÃßÁø À¯Çüº°

  • ¹èÅ͸® Àü±âÀÚµ¿Â÷(BEV)
  • Ç÷¯±×ÀÎ ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(PHEV)
  • ÇÏÀ̺긮µå Àü±âÀÚµ¿Â÷(HEV)

Á¦8Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¸®Æ¬À̿ ¹èÅ͸® ¼¿ ½ÃÀå : Æû ÆÑÅͺ°

  • ¿øÅëÇü ¼¿
  • ÇÁ¸®Áî¸Åƽ ¼¿
  • ÆÄ¿ìÄ¡ ¼¿

Á¦9Àå ¼¼°è ÀÚµ¿Â÷¿ë ¸®Æ¬À̿ ¹èÅ͸® ¼¿ ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • OEM(¿À¸®Áö³Î ±â±â Á¦Á¶ ȸ»ç)
  • ¾ÖÇÁÅ͸¶ÄÏ ¹× ¼­ºñ½º Á¦°ø¾÷ü

Á¦10Àå ¼¼°èÀÇ ÀÚµ¿Â÷¿ë ¸®Æ¬À̿ ¹èÅ͸® ¼¿ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦11Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦12Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • CATL(Contemporary Amperex Technology Co. Limited)
  • LG Energy Solution
  • Panasonic Corporation
  • Samsung SDI
  • BYD Company Ltd.
  • Tesla
  • SVOLT Energy Technology
  • Gotion High-Tech Co., Ltd
  • CALB Group
  • EVE Energy Co., Ltd
  • Sunwoda Electronic Co., Ltd.
  • Farasis Energy(GanZhou) Co.,Ltd
  • EnerSys Inc.
  • Amara Raja Batteries
  • Tata AutoComp Gotion
JHS 25.10.01

According to Stratistics MRC, the Global Automotive Lithium-ion Battery Cell Market is accounted for $140.22 billion in 2025 and is expected to reach $572.21 billion by 2032 growing at a CAGR of 22.25% during the forecast period. In the automotive lithium-ion battery cell industry, robotics has become essential for accurate, efficient, and safe production. Robots automate critical processes such as electrode preparation, layering, electrolyte injection, and cell packaging with exceptional precision, lowering the chances of errors or impurities. They also operate in potentially dangerous conditions, reducing human health risks from chemicals. Beyond safety, robotics boosts throughput and standardization, helping companies address the rising demand for electric mobility. With the integration of smart sensors and AI, robotic technologies further refine quality monitoring and streamline workflows, establishing themselves as a cornerstone of innovation and reliability in battery cell manufacturing.

According to the International Federation of Robotics (IFR), the automotive industry remains the largest adopter of industrial robots, accounting for over 30% of total robot installations globally. Battery cell assembly, welding, and material handling are key robotic applications in EV production.

Market Dynamics:

Driver:

Safety and risk reduction

A major factor accelerating robotics adoption in lithium-ion battery production is improved worker safety and risk reduction. Manufacturing cells often requires dealing with harmful chemicals, flammable substances, and high-pressure sealing processes. Direct human participation in such steps can pose severe health and accident risks. Robots take over dangerous tasks like chemical injection, welding, and high-temperature operations, lowering exposure and ensuring a safer workplace. By operating consistently without fatigue, robots also minimize human mistakes that may cause safety incidents. Their ability to meet strict safety standards and regulatory expectations has made robotics a critical safeguard in the automotive battery manufacturing environment.

Restraint:

High initial investment

The significant upfront cost of robotics deployment serves as a major barrier in lithium-ion battery cell manufacturing. Robotic systems demand heavy spending on specialized equipment, control systems, software platforms, and plant redesign. For smaller firms, such expenses are often unmanageable, creating inequality between large corporations and mid-scale manufacturers. Moreover, achieving payback on these investments is a lengthy process, especially in regions where battery demand remains uncertain. The expense of integration, staff upskilling, and regular upgrades further increases the financial load. Consequently, the steep capital requirement slows robotics adoption, discouraging many companies from committing to automation despite its long-term advantages.

Opportunity:

Global supply chain diversification

The restructuring of global supply chains is opening new opportunities for robotics adoption in battery cell production. Manufacturers are increasingly decentralizing operations to avoid overdependence on specific regions, and robotics facilitates this transition. Automated systems ensure process uniformity, enabling identical quality standards across multiple sites. In regions where skilled labor is scarce, robotics fills the gap by maintaining efficiency and accuracy. This allows companies to establish new facilities in diverse markets without sacrificing performance. As supply chains grow more resilient and flexible, robotics serves as a foundation for global competitiveness, supporting expansion while reducing risk in the fast-changing automotive battery sector.

Threat:

Competitive pressure and cost challenges

The robotics-driven battery market faces threats from growing competition and rising costs. With widespread automation adoption, it becomes difficult for firms to maintain unique advantages, pushing them to compete on price. Such pressure reduces profitability, particularly for smaller companies that cannot scale automation as effectively as larger rivals. Ongoing expenses for system maintenance, upgrades, and software licenses further add to financial burdens. If revenues fail to keep pace with these rising costs, many firms may face reduced margins or even operational risks. Consequently, intense competition combined with high-cost challenges threatens the financial sustainability of robotics adoption in the battery cell sector.

Covid-19 Impact:

The outbreak of COVID-19 had a notable impact on robotics adoption in the automotive lithium-ion battery sector, bringing setbacks as well as growth drivers. Restrictions and global supply chain breakdowns caused delays in procuring vital robotic hardware, slowing factory automation plans. Plant closures and workforce shortages also reduced near-term investments. Yet, the pandemic emphasized the value of robotics for ensuring business continuity and minimizing human exposure. As a result, many companies fast-tracked automation strategies to build more resilient and efficient operations. Despite initial slowdowns, the pandemic ultimately strengthened the long-term demand for robotics, establishing it as a cornerstone of future battery production.

The nickel manganese cobalt (NMC) segment is expected to be the largest during the forecast period

The nickel manganese cobalt (NMC) segment is expected to account for the largest market share during the forecast period due to their optimal balance of cost, safety, and energy efficiency. Widely chosen by electric vehicle manufacturers, NMC cells provide long driving ranges while maintaining stability and affordability. Robotics is essential in their production, offering precision in processes such as electrode coating, layering, and electrolyte filling, which are critical to ensuring consistent quality. The adaptability of NMC chemistry across different EV categories makes it the most favored choice for large-scale manufacturing. This widespread reliance establishes NMC as the dominant segment in robotic battery production.

The battery electric vehicles (BEVs) segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the battery electric vehicles (BEVs) segment is predicted to witness the highest growth rate, fueled by the rising global push for clean mobility. Since BEVs depend on large-capacity battery packs, robotics becomes essential for handling high-volume production with accuracy and reliability. Automation supports the efficiency of coating, stacking, filling, and assembling processes critical for BEV battery systems. With governments offering incentives and tightening emission standards, BEV demand continues to surge worldwide. Robotics allows manufacturers to scale quickly while ensuring quality and safety. This strong momentum places BEVs at the forefront of market expansion, recording the fastest growth rate.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to its strong presence in EV manufacturing and battery innovation. Nations like China, South Korea, and Japan dominate global supply chains and production capacity, accelerating automation adoption across facilities. Favorable government policies, financial incentives, and established industrial bases further strengthen the region's leadership. Robotics is heavily utilized to achieve efficiency, high-volume scalability, and safety in battery production. With top global battery makers headquartered here, Asia-Pacific continues to drive market growth and innovation, firmly positioning itself as the dominant hub for robotics-integrated battery cell manufacturing worldwide.

Region with highest CAGR:

Over the forecast period, the Europe region is anticipated to exhibit the highest CAGR, supported by strong government regulations and rising EV penetration. The European Union's focus on reducing carbon emissions and its commitment to sustainable transportation has driven large-scale investments in battery manufacturing. Robotics plays a crucial role in new European gigafactories, ensuring precise, high-volume, and eco-friendly production. Countries such as Germany, France, and the Nordic region are at the forefront of deploying automation to strengthen domestic supply chains. Backed by strict policy frameworks and robust automotive industries, Europe continues to achieve the highest CAGR, establishing itself as the most rapidly expanding regional market.

Key players in the market

Some of the key players in Automotive Lithium-ion Battery Cell Market include CATL (Contemporary Amperex Technology Co. Limited), LG Energy Solution, Panasonic Corporation, Samsung SDI, BYD Company Ltd., Tesla, SVOLT Energy Technology, Gotion High-Tech Co., Ltd, CALB Group, EVE Energy Co., Ltd, Sunwoda Electronic Co., Ltd., Farasis Energy (GanZhou) Co.,Ltd, EnerSys Inc., Amara Raja Batteries and Tata AutoComp Gotion.

Key Developments:

In July 2025, Panasonic and FC Barcelona have signed a sponsorship agreement whereby the Japanese multinational will become the new Heating Ventilation Air Conditioning Provider for Espai Barca for four seasons up to 30 June 2028. This association adds another strategic partner for Espai Barca, ensuring the highest possible energy efficiency, with precision technology and a high level of interior air quality in the new installations, with a view to providing the highest possible comfort for every member and fan visiting the Spotify Camp Nou.

In March 2025, LG Energy Solution announced that it has signed an agreement with PGE, Poland's largest energy sector company, to supply 981MWh of grid-scale ESS batteries between 2026 and 2027. Both companies will collaborate to establish a battery energy storage facility in zarnowiec, Poland. PGE plans to commence the project's commercial operation in 2027.

In June 2023, Contemporary Amperex Technology Co., Ltd. (CATL) signed a strategic cooperation framework agreement with the Shenzhen Municipal People's Government. The two parties will carry out all-round cooperation in the fields of battery swapping of new energy vehicles, electric vessels, new energy storage system, green industrial parks, financial services and trade.

Battery Chemistrys Covered:

  • Lithium Iron Phosphate (LFP)
  • Nickel Manganese Cobalt (NMC)
  • Nickel Cobalt Aluminum Oxide (NCA)
  • Lithium Titanate (LTO)

Vehicle Types Covered:

  • Passenger Cars
  • Commercial Vehicles
  • Two-Wheelers & Three-Wheelers

Propulsion Types Covered:

  • Battery Electric Vehicles (BEVs)
  • Plug-in Hybrid Electric Vehicles (PHEVs)
  • Hybrid Electric Vehicles (HEVs)

Form Factors Covered:

  • Cylindrical Cells
  • Prismatic Cells
  • Pouch Cells

End Users Covered:

  • OEMs (Original Equipment Manufacturers)
  • Aftermarket/Service Providers

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Automotive Lithium-ion Battery Cell Market, By Battery Chemistry

  • 5.1 Introduction
  • 5.2 Lithium Iron Phosphate (LFP)
  • 5.3 Nickel Manganese Cobalt (NMC)
  • 5.4 Nickel Cobalt Aluminum Oxide (NCA)
  • 5.5 Lithium Titanate (LTO)

6 Global Automotive Lithium-ion Battery Cell Market, By Vehicle Type

  • 6.1 Introduction
  • 6.2 Passenger Cars
  • 6.3 Commercial Vehicles
  • 6.4 Two-Wheelers & Three-Wheelers

7 Global Automotive Lithium-ion Battery Cell Market, By Propulsion Type

  • 7.1 Introduction
  • 7.2 Battery Electric Vehicles (BEVs)
  • 7.3 Plug-in Hybrid Electric Vehicles (PHEVs)
  • 7.4 Hybrid Electric Vehicles (HEVs)

8 Global Automotive Lithium-ion Battery Cell Market, By Form Factor

  • 8.1 Introduction
  • 8.2 Cylindrical Cells
  • 8.3 Prismatic Cells
  • 8.4 Pouch Cells

9 Global Automotive Lithium-ion Battery Cell Market, By End User

  • 9.1 Introduction
  • 9.2 OEMs (Original Equipment Manufacturers)
  • 9.3 Aftermarket/Service Providers

10 Global Automotive Lithium-ion Battery Cell Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 CATL (Contemporary Amperex Technology Co. Limited)
  • 12.2 LG Energy Solution
  • 12.3 Panasonic Corporation
  • 12.4 Samsung SDI
  • 12.5 BYD Company Ltd.
  • 12.6 Tesla
  • 12.7 SVOLT Energy Technology
  • 12.8 Gotion High-Tech Co., Ltd
  • 12.9 CALB Group
  • 12.10 EVE Energy Co., Ltd
  • 12.11 Sunwoda Electronic Co., Ltd.
  • 12.12 Farasis Energy (GanZhou) Co.,Ltd
  • 12.13 EnerSys Inc.
  • 12.14 Amara Raja Batteries
  • 12.15 Tata AutoComp Gotion
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦