½ÃÀ庸°í¼­
»óǰÄÚµå
1822333

¼¼°èÀÇ °øÀå µðÁöÅÐÈ­¿Í ÀÚµ¿È­ ½ÃÀå ¿¹Ãø(-2032³â) : ÄÄÆ÷³ÍÆ®º°, ±â¼úº°, ¿ëµµº°, Áö¿ªº° ¼¼°è ºÐ¼®

Factory Digitalization and Automation Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software and Services), Technology, Application and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ °øÀå µðÁöÅÐÈ­¿Í ÀÚµ¿È­ ½ÃÀåÀº 2025³â¿¡ 2¾ï 3,734¸¸ ´Þ·¯¸¦ Â÷ÁöÇÏ¸ç ¿¹Ãø ±â°£ Áß CAGRÀº 7.6%·Î ¼ºÀåÇϸç, 2032³â¿¡´Â 3¾ï 9,633¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

°øÀåÀÇ µðÁöÅÐÈ­¿Í ÀÚµ¿È­´Â AI, IoT, ·Îº¿°øÇÐ, Ŭ¶ó¿ìµå Ç÷§Æû µîÀÇ ±â¼úÀ» »ý»ê ¿öÅ©Ç÷ο쿡 Á¢¸ñÇÏ¿© Á¦Á¶¾÷À» À籸¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÅëÇÕÀ» ÅëÇØ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ, ¿¹ÃøÀû À¯Áöº¸¼ö, µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ÀÇ»ç°áÁ¤ÀÌ °¡´ÉÇØÁ® È¿À²¼º, »ý»ê·®, Á¦Ç° ½Å·Ú¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÚµ¿È­¸¦ ÅëÇØ ¿î¿µ ºñ¿ë°ú ÀÎÀû ¿À·ù¸¦ ÁÙÀ̰í Á÷Àå ¾ÈÀü¼ºÀ» Çâ»ó½Ãŵ´Ï´Ù. µðÁöÅÐ Æ®À©, ½º¸¶Æ® ¼¾¼­, »óÈ£ ¿¬°áµÈ ±â°è¿Í °°Àº ±â¼úÀº »ý»ê ¶óÀÎ °£ÀÇ ¿øÈ°ÇÑ ¼ÒÅëÀ» °¡´ÉÇÏ°Ô Çϰí, Á¦Á¶¾÷ü°¡ ½ÃÀåÀÇ º¯È­¿¡ ºü¸£°Ô ´ëÀÀÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

CHIPS and Science Act¿¡ µû¸£¸é ¹Ì±¹ Á¦Á¶¾÷°ú ¹ÝµµÃ¼ »ý»êÀ» µÇ»ì¸®±â À§ÇØ ¾à 530¾ï ´Þ·¯°¡ Ã¥Á¤µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ Çö´ë½Ä °øÀå¿¡¼­´Â ´ë±Ô¸ð ÀÚµ¿È­°¡ ÇÊ¿äÇϸç, ·Îº¿ °øÇÐ ¹× µðÁöÅÐ ÆÑÅ丮 ±â¼ú¿¡ Å« ºñÁî´Ï½º ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù.

¾÷¹« È¿À²È­¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡

´õ ³ôÀº ¾÷¹« È¿À²À» Ãß±¸ÇÏ´Â °ÍÀº °øÀåÀÇ ÀÚµ¿È­¿Í µðÁöÅÐÈ­¸¦ ÃËÁøÇÏ´Â Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù. ±â¾÷Àº »ý»ê ¿öÅ©Ç÷ο츦 °³¼±Çϰí, »ý»ê Áֱ⸦ ´ÜÃàÇϰí, Àüü »ý»ê·®À» ´Ã·Á ¼ºÀåÇÏ´Â ½ÃÀå ¼ö¿ä¸¦ ÃæÁ·½ÃŰ´Â °ÍÀ» ¸ñÇ¥·Î Çϰí ÀÖ½À´Ï´Ù. AI, ·Îº¿ °øÇÐ, IoT ÀåÄ¡¿Í °°Àº ±â¼úÀº Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ, ¿¹Ãø ¼­ºñ½º, ÃÖÀûÈ­µÈ ÇÁ·Î¼¼½º¸¦ °¡´ÉÇÏ°Ô Çϰí, ´Ù¿îŸÀÓ°ú ¿À·ù¸¦ ÁÙÀÔ´Ï´Ù. µðÁöÅÐ ½Ã½ºÅÛÀº °íǰÁú »ý»êÀ» À¯ÁöÇϸ鼭 ÀÚ¿ø ¼Òºñ¸¦ ÃÖ¼ÒÈ­ÇÏ°í ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. °æÀï ȯ°æÀº Á¦Á¶¾÷üµéÀÌ ÀüÅëÀûÀÎ Á¢±Ù ¹æ½Ä¿¡¼­ ½º¸¶Æ® ±â¼ú Áß½ÉÀÇ ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇϵµ·Ï ¾Ð¹ÚÇϰí ÀÖ½À´Ï´Ù. È¿À²¼ºÀ» ³ôÀÌ´Â °ÍÀº ºñ¿ëÀ» Àý°¨ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¼öÀͼº, ¿î¿µ ½Å·Ú¼º, °í°´ ¸¸Á·µµ¸¦ Çâ»ó½Ã۱⠶§¹®¿¡ ÀÚµ¿È­´Â Çö´ë °øÀåÀÇ Àü·«ÀûÀÎ Çʼö ¿ä¼Ò·Î ÀÚ¸® Àâ¾Ò½À´Ï´Ù.

³ôÀº Ãʱâ ÅõÀÚ ºñ¿ë

°øÀåÀÇ µðÁöÅÐÈ­ ¹× ÀÚµ¿È­¸¦ À§ÇÑ ³ôÀº Ãʱ⠺ñ¿ëÀº ½ÃÀå È®´ë¿¡ ½É°¢ÇÑ À庮ÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÷´Ü ·Îº¿°øÇÐ, AI ¼Ö·ç¼Ç, IoT Áö¿ø ÀåÄ¡, ÅëÇÕ ¼ÒÇÁÆ®¿þ¾î µµÀÔ¿¡´Â ¸¹Àº ÀÚº»ÀÌ ÇÊ¿äÇϸç, Áß¼Ò±Ô¸ðÀÇ Á¦Á¶¾÷ü´Â µµÀÔÀÌ ¾î·Æ½À´Ï´Ù. ½Ã½ºÅÛ ¼³Ä¡, Á÷¿ø ±³À°, Áö¼ÓÀûÀÎ Á¤ºñ¿Í °ü·ÃµÈ ºñ¿ëÀº ÀçÁ¤Àû ºÎ´ãÀ» Áõ°¡½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ ÀçÁ¤Àû ¹®Á¦´Â ƯÈ÷ °æ¿µ ÀÚ¿øÀÌ ÇÑÁ¤µÈ Áö¿ª¿¡¼­´Â ½º¸¶Æ® Á¦Á¶ ¼Ö·ç¼ÇÀÇ µµÀÔÀ» Áö¿¬½ÃŰ°Å³ª Á¦ÇÑÇÒ ¼ö ÀÖ½À´Ï´Ù. Àå±âÀûÀÎ ÀÌÀÍ¿¡´Â »ý»ê¼º°ú ¿î¿µ È¿À²¼ºÀÌ Çâ»óµÇÁö¸¸, ¸¹Àº Ãʱâ ÁöÃâÀº ¿©ÀüÈ÷ Áß¿äÇÑ Á¦¾àÀ¸·Î ÀÛ¿ëÇϰí ÀÖÀ¸¸ç, ¸¹Àº ±â¾÷ÀÌ ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡ °ÉÃÄ µðÁöÅÐÈ­ ¹× ÀÚµ¿È­ °øÀå ¼Ö·ç¼ÇÀ» ºü¸£°Ô µµÀÔÇÏÁö ¸øÇϰí ÀÖ½À´Ï´Ù.

½º¸¶Æ® Á¦Á¶ ±â¼ú µµÀÔ

½º¸¶Æ® Á¦Á¶ ±â¼úÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °øÀå µðÁöÅÐÈ­ ¹× ÀÚµ¿È­ ½ÃÀå¿¡ Å« ±âȸ°¡ âÃâµÇ°í ÀÖ½À´Ï´Ù. AI, ·Îº¿ °øÇÐ, IoT ¼¾¼­, µðÁöÅÐ Æ®À© ±â¼ú µîÀÇ ÅøÀ» ÅëÇØ Á¦Á¶¾÷ü´Â ÀÛ¾÷À» °£¼ÒÈ­Çϰí Á¦Ç° ǰÁúÀ» °³¼±ÇÏ¸ç ¿î¿µ ºñ¿ëÀ» Àý°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü ½Ã½ºÅÛ¿¡ ÅõÀÚÇÔÀ¸·Î½á ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ¿¹ÃøÀû À¯Áöº¸¼ö, µ¥ÀÌÅÍ¿¡ ±â¹ÝÇÑ ÀÇ»ç°áÁ¤ÀÌ °¡´ÉÇØÁ® È¿À²¼º°ú ½ÃÀå °æÀï·ÂÀ» ¸ðµÎ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. Àδõ½ºÆ®¸® 4.0ÀÇ Ãß¼¼´Â À¯¿¬Çϰí È®Àå °¡´ÉÇÑ ÀÚµ¿È­ ¼Ö·ç¼ÇÀÇ »ç¿ëÀ» Àå·ÁÇϰí ÀÖ½À´Ï´Ù. ½º¸¶Æ® Á¦Á¶ ±â¼úÀ» µµÀÔÇÔÀ¸·Î½á °øÀåÀº º¯È­ÇÏ´Â ½ÃÀå ¼ö¿ä¿¡ ºü¸£°Ô ÀûÀÀÇϰí, ÀÚ¿ø ³¶ºñ¸¦ ÁÙÀ̰í, »ý»ê¼ºÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â µðÁöÅÐ ¹× ÀÚµ¿È­ °øÀå ½Ã½ºÅÛÀ» Ȱ¿ëÇÏ´Â ±â¾÷¿¡°Ô À¯¸Á ¼ºÀå ¼ö´ÜÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù.

±ÔÁ¦ ¹× ÄÄÇöóÀ̾𽺠°úÁ¦

±ÔÁ¦ ¹× ÄÄÇöóÀ̾𽺠¹®Á¦´Â °øÀåÀÇ µðÁöÅÐÈ­ ¹× ÀÚµ¿È­ µµÀÔ¿¡ ½É°¢ÇÑ À§ÇùÀÌ µÇ°í ÀÖ½À´Ï´Ù. ·Îº¿°øÇÐ, µðÁöÅÐ Ç÷§Æû, µ¥ÀÌÅÍ °Å¹ö³Í½º¿¡ ´ëÇÑ ±âÁØÀÌ ±¹°¡¸¶´Ù ´Ù¸£±â ¶§¹®¿¡ ¼¼°è ÁøÃâÀÌ º¹ÀâÇØÁö°í ºñ¿ëÀÌ Áõ°¡ÇÕ´Ï´Ù. ¶ÇÇÑ Á¦Á¶¾÷ü´Â ¾ÈÀü, ³ëµ¿, ȯ°æ °ü·Ã ±ÔÁ¤À» ÁؼöÇØ¾ß Çϸç, ÀÚµ¿È­ ±â¼úÀ» µµÀÔÇÒ ¶§ ¶Ç ´Ù¸¥ °úÁ¦°¡ ¹ß»ýÇÕ´Ï´Ù. ÁؼöÇÏÁö ¾ÊÀ» °æ¿ì, ¹úÄ¢, »ý»ê Áß´Ü, dz¹® ÇÇÇØ µîÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ²÷ÀÓ¾øÀÌ ÁøÈ­ÇÏ´Â ±ÔÁ¦, ƯÈ÷ µ¥ÀÌÅÍ º¸¾È ¹× ÇÁ¶óÀ̹ö½Ã °ü·Ã ±ÔÁ¦´Â Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µ°ú ÀûÀÀÀ» ¿ä±¸ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ºÒÈ®½Ç¼ºÀº ±â¾÷ÀÌ »õ·Î¿î µðÁöÅÐ ½Ã½ºÅÛ¿¡ ´ëÇÑ ÅõÀÚ³ª ±âÁ¸ ÀÚµ¿È­ ¿î¿µÀÇ È®ÀåÀ» ÁÖÀúÇÏ°Ô ¸¸µé°í, ½ÃÀå ¼ºÀåÀ» Á¦ÇÑÇϸç, Àü ¼¼°è¿¡¼­ µðÁöÅÐÈ­µÈ °øÀå ¼Ö·ç¼ÇÀÇ ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ» Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19ÀÇ ¹ß»ýÀº °øÀå µðÁöÅÐÈ­ ¹× ÀÚµ¿È­ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. °¡µ¿ Áß´Ü, ³ëµ¿·Â ºÎÁ·, °ø±Þ¸Á È¥¶õÀ¸·Î ÀÎÇØ Á¦Á¶¾÷üµéÀº ÀÚµ¿È­ ¹× µðÁöÅÐÈ­ ½Ã½ºÅÛÀ» ´õ »¡¸® µµÀÔÇØ¾ß ÇÒ Çʿ伺ÀÌ ´ëµÎµÇ¾ú½À´Ï´Ù. ·Îº¿ °øÇÐ, IoT ÀåÄ¡, ¿ø°Ý ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ÀÇÁ¸µµ°¡ ³ô¾ÆÁü¿¡ µû¶ó °øÀåÀº ÃÖ¼ÒÇÑÀÇ ÀηÂÀ¸·Î »ý»ê¼ºÀ» À¯ÁöÇϸ鼭 °øÀåÀ» ¿î¿µÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÆÒµ¥¹ÍÀº ¿¹±âÄ¡ ¸øÇÑ È¥¶õ¿¡µµ ÀÛµ¿ÇÒ ¼ö Àִ ź·Â¼º, ÀûÀÀ¼º, »óÈ£¿¬°á¼ºÀ» °®Ãá Á¦Á¶ ½Ã½ºÅÛÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ±× °á°ú, ½º¸¶Æ® ÆÑÅ丮 ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ ±ÞÁõÇÏ¿© ¿¹Áöº¸Àü, ½Ç½Ã°£ ¼º´É ÃßÀû, ¾÷¹« È¿À²¼º °³¼±ÀÌ ÃËÁøµÇ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ÀΰøÁö´É(AI) ºÎ¹®ÀÌ °¡Àå Å« ºñÁßÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÀΰøÁö´É(AI) ºÎ¹®Àº Çö´ë Á¦Á¶¾÷¿¡ ±¤¹üÀ§ÇÏ°Ô Àû¿ëµÇ¾î ¿¹Ãø ±â°£ Áß °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. AI´Â ¿¹Áöº¸Àü, ½Ç½Ã°£ ¸ð´ÏÅ͸µ, ÀÚµ¿È­ ÇÁ·Î¼¼½º, µ¥ÀÌÅͺ£À̽º ÀÇ»ç°áÁ¤À» Áö¿øÇÏ¿© È¿À²¼ºÀ» ³ôÀÌ°í »ý»ê Áß´ÜÀ» ÃÖ¼ÒÈ­ÇÕ´Ï´Ù. AI ±â¹Ý ºÐ¼®À» ÅëÇØ Á¦Á¶¾÷ü´Â ÇÁ·Î¼¼½ºÀÇ ºñÈ¿À²¼ºÀ» ÆÄ¾ÇÇϰí, Á¦Ç°ÀÇ Àϰü¼ºÀ» °³¼±Çϸç, ÀÚ¿ø »ç¿ëÀ» ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. IoT, Ŭ¶ó¿ìµå Ç÷§Æû, ·Îº¿ °øÇÐ µî ´Ù¸¥ ±â¼ú°ú °áÇÕÇÏ¿© AI´Â ½º¸¶Æ® ÆÑÅ丮ÀÇ ´É·ÂÀ» ÁõÆø½Ãŵ´Ï´Ù. »ý»ê °èȹ, ǰÁú º¸Áõ, °ø±Þ¸Á ÃÖÀûÈ­ µî ±× Àû¿ë ¹üÀ§°¡ °¡Àå ³Ð¾î »ê¾÷ ¿î¿µÀÇ µðÁöÅÐ ÀüȯÀÇ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ÇÏ´Â ¼Ö·ç¼ÇÀÌ µÇ¾ú½À´Ï´Ù.

¿¹Ãø ±â°£ Áß ÀüÀÚ ¹× ¹ÝµµÃ¼ ºÐ¾ß°¡ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ Áß ÀüÀÚ ¹× ¹ÝµµÃ¼ ºÐ¾ß°¡ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áö¼ÓÀûÀÎ ±â¼ú Çõ½Å, Á¤¹Ð ºÎǰ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, »ý»ê °¡¼ÓÈ­¿¡ ´ëÇÑ ¿ä±¸´Â Á¦Á¶¾÷üµéÀÌ Ã·´Ü ÀÚµ¿È­ ¹× µðÁöÅÐ ¼Ö·ç¼ÇÀ» äÅÃÇϵµ·Ï À¯µµÇϰí ÀÖ½À´Ï´Ù. AI, ·Îº¿°øÇÐ, IoT¸¦ Æ÷ÇÔÇÑ ½º¸¶Æ® ÆÑÅ丮 ±â¼úÀº °øÁ¤ È¿À²À» ³ôÀ̰í, ºÒ·®Ç°À» ÁÙÀ̸ç, Á¦Ç° ǰÁúÀ» Çâ»ó½Ãŵ´Ï´Ù. ÀÌ ºÐ¾ß´Â ¼ÒÇüÈ­, °í¼º´ÉÈ­, ºü¸¥ Çõ½ÅÀÌ °­Á¶µÇ°í, ½Ç½Ã°£ ¸ð´ÏÅ͸µ°ú ¿¹Áöº¸ÀüÀÇ Çʿ伺ÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀüÀÚ ¹× ¹ÝµµÃ¼ Á¦Á¶¾÷ü´Â Àδõ½ºÆ®¸® 4.0 ¼Ö·ç¼Ç¿¡ ÅõÀÚÇÔÀ¸·Î½á °æÀï·Â, ¾÷¹« À¯¿¬¼º, º¯È­ÇÏ´Â ½ÃÀå ¿ä±¸»çÇ׿¡ ´ëÇÑ ´ëÀÀ·ÂÀ» °­È­Çϰí Áö¼ÓÀûÀÎ µðÁöÅÐ Çõ½Å°ú ¼ºÀåÀ» Áö¿øÇÒ ¼ö ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

¿¹Ãø ±â°£ Áß ºÏ¹Ì´Â ÷´Ü »ê¾÷ ÀÎÇÁ¶ó, Àδõ½ºÆ®¸® 4.0 ±â¼úÀÇ ±¤¹üÀ§ÇÑ È°¿ë, ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ ÁýÁßÀ¸·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â ÀÚµ¿Â÷, ÀüÀÚ, Ç×°ø¿ìÁÖ µîÀÇ ºÐ¾ß¿¡¼­ AI, IoT, ·Îº¿, Ŭ¶ó¿ìµå ¼Ö·ç¼ÇÀÌ ³Î¸® µµÀԵǰí ÀÖ½À´Ï´Ù. °­·ÂÇÑ R&D ÅõÀÚ¿Í µðÁöÅÐ Çõ½ÅÀ» ÃËÁøÇÏ´Â Á¤ºÎÀÇ Àû±ØÀûÀÎ ³ë·Â. ºÏ¹Ì Á¦Á¶¾÷üµéÀº ¾÷¹« È¿À²¼º, ¿¹Áöº¸Àü, ½Ç½Ã°£ °øÁ¤ ¸ð´ÏÅ͸µ¿¡ ÁßÁ¡À» µÎ°í µðÁöÅÐ ¼Ö·ç¼ÇÀ» ÇÙ½É »ý»ê Ȱµ¿¿¡ ÅëÇÕÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû ¼º¼÷µµ, Çõ½Å¿¡ ´ëÇÑ °ü½É, Á¤Ã¥Àû Áö¿øÀÇ Á¶ÇÕÀ¸·Î ºÏ¹Ì´Â Àü ¼¼°è¿¡¼­ µðÁöÅÐ ¹× ÀÚµ¿È­ °øÀå ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ» ÃËÁøÇÏ´Â °¡Àå Áß¿äÇÑ Áö¿ªÀÌ µÇ¾ú½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ Áß ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±Þ¼ÓÇÑ »ê¾÷ È®Àå, Àδõ½ºÆ®¸® 4.0 ±â¼ú äÅà Áõ°¡, ½º¸¶Æ® ÆÑÅ丮 ¼Ö·ç¼Ç¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. Áß±¹, Àεµ, ÀϺ» µî ÁÖ¿ä ±¹°¡¿¡¼­´Â AI, IoT, ·Îº¸Æ½½º, Ŭ¶ó¿ìµå ±â¼ú µµÀÔÀÌ ÁøÇàµÇ°í ÀÖÀ¸¸ç, È¿À²¼º Çâ»ó°ú »ý»ê ºñ¿ë Àý°¨À» À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÚµ¿Â÷, ÀüÀÚ, Á¦¾à »ê¾÷ Àü¹ÝÀÇ È°¹ßÇÑ ¼ö¿ä°¡ ¼ºÀåÀ» ´õ¿í °¡¼ÓÈ­ÇÒ °ÍÀÔ´Ï´Ù. µðÁöÅÐ ÀüȯÀ» ÃßÁøÇÏ´Â Á¤ºÎ Á¤Ã¥Àº À¯¿¬Çϰí Áö¼Ó°¡´ÉÇÑ Á¦Á¶ ¹æ½Ä¿¡ ´ëÇÑ °­Á¶¿Í ÇÔ²² ÀÚµ¿È­ µµÀÔÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀεéÀ» Á¾ÇÕÇÏ¸é ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¼¼°è °øÀåÀÇ µðÁöÅÐÈ­ ¹× ÀÚµ¿È­ Àü¸Á¿¡¼­ °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ªÀÔ´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ Á¾ÇÕ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3»ç)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(ÃÖ´ë 3»ç)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¶ó ´Ù¸§)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¿ªÀû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç ¾îÇÁ·ÎÄ¡
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç ÀÚ·á
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porters Five Force ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ¹ÙÀ̾îÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ °øÀå µðÁöÅÐÈ­¿Í ÀÚµ¿È­ ½ÃÀå : ÄÄÆ÷³ÍÆ®º°

  • Çϵå¿þ¾î
    • »ê¾÷¿ë ¼¾¼­
    • ÄÁÆ®·Ñ·¯
    • ÈÞ¸Õ ¸Ó½Å ÀÎÅÍÆäÀ̽º(HMI)
    • »ê¾÷¿ë ·Îº¿
    • ¸Ó½Å ºñÀü ½Ã½ºÅÛ
  • ¼ÒÇÁÆ®¿þ¾î
    • Á¦Á¶ ½ÇÇà ½Ã½ºÅÛ(MES)
    • °¨½ÃÁ¦¾î ¹× µ¥ÀÌÅÍ ¼öÁý(SCADA)
    • Ç÷£Æ® ÀÚ»ê°ü¸®
    • µðÁöÅÐ Æ®À© Ç÷§Æû
  • ¼­ºñ½º
    • ½Ã½ºÅÛ ÅëÇÕ
    • ÄÁ¼³ÆÃ°ú Æ®·¹ÀÌ´×
    • Á¤ºñ¿Í Áö¿ø

Á¦6Àå ¼¼°èÀÇ °øÀå µðÁöÅÐÈ­¿Í ÀÚµ¿È­ ½ÃÀå : ±â¼úº°

  • ÀΰøÁö´É(AI)
  • »ç¹°ÀÎÅͳÝ(IoT)
  • Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ
  • ¿§Áö ÄÄÇ»ÆÃ
  • »ê¾÷ ½Ã½ºÅÛ¿ë »çÀ̹ö º¸¾È
  • 5GÁ¢¼Ó
  • µðÁöÅÐ Æ®À©
  • Áõ°­Çö½Ç(AR)°ú °¡»óÇö½Ç(VR)
  • ÷´Ü ºÐ¼®°ú ºòµ¥ÀÌÅÍ

Á¦7Àå ¼¼°èÀÇ °øÀå µðÁöÅÐÈ­¿Í ÀÚµ¿È­ ½ÃÀå : ¿ëµµº°

  • ÀÚµ¿Â÷
  • ÀÏ·ºÆ®·Î´Ð½º¡¤¹ÝµµÃ¼
  • ÀǾàǰ
  • ½Äǰ ¹× À½·á
  • Ç×°ø¿ìÁÖ¡¤¹æÀ§
  • È­ÇÐÁ¦Ç°
  • ¿¡³ÊÁö¡¤À¯Æ¿¸®Æ¼
  • ¼ÒºñÀç
  • ±Ý¼Ó¡¤±¤¾÷
  • ¼¶À¯
  • ¹°·ù¡¤Ã¢°í

Á¦8Àå ¼¼°èÀÇ °øÀå µðÁöÅÐÈ­¿Í ÀÚµ¿È­ ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, Á¶ÀÎÆ® º¥Ã³
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦10Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • ABB
  • Siemens
  • Honeywell International
  • Rockwell Automation
  • Emerson Electric
  • Mitsubishi Electric
  • Schneider Electric
  • Yokogawa Electric
  • FANUC
  • Omron
  • AVEVA
  • General Electric(GE)
  • Dassault Systemes
  • Bosch
  • SAP
KSA 25.10.01

According to Stratistics MRC, the Global Factory Digitalization and Automation Market is accounted for $237.34 million in 2025 and is expected to reach $396.33 million by 2032 growing at a CAGR of 7.6% during the forecast period. The digitalization and automation of factories are reshaping manufacturing by embedding technologies like AI, IoT, robotics, and cloud platforms into production workflows. This integration allows for continuous monitoring, predictive upkeep, and data-informed decisions, boosting efficiency, output, and product reliability. Automation lowers operational expenses and human errors while promoting workplace safety. Technologies such as digital twins, smart sensors, and interconnected machinery enable smooth communication across production lines, helping manufacturers adapt swiftly to market changes.

According to the CHIPS and Science Act, nearly $53 billion was appropriated to revive U.S. manufacturing and semiconductor production. These modern fabs require extensive automation, creating significant opportunities for robotics and digital factory technologies.

Market Dynamics:

Driver:

Rising demand for operational efficiency

The pursuit of higher operational efficiency is a key factor driving factory automation and digitalization. Businesses aim to improve production workflows, shorten manufacturing cycles, and increase overall output to fulfill growing market demands. Technologies like AI, robotics, and IoT devices allow continuous monitoring, predictive servicing, and optimized processes, reducing downtime and errors. Digital systems help minimize resource consumption and cut operational expenses while maintaining high-quality output. The competitive global landscape forces manufacturers to shift from conventional approaches toward smart, technology-driven solutions. Enhancing efficiency not only lowers costs but also improves profitability, operational reliability, and customer satisfaction, making automation a strategic necessity for modern factories.

Restraint:

High initial investment costs

High upfront costs for factory digitalization and automation are a critical barrier to market expansion. Deploying advanced robotics, AI solutions, IoT-enabled devices, and integrated software requires significant capital, making adoption difficult for small and mid-sized manufacturers. Costs related to system installation, workforce training, and ongoing maintenance add to the financial load. These financial challenges can slow down or restrict the implementation of smart manufacturing solutions, especially in regions with limited resources. Although long-term gains include improved productivity and operational efficiency, the substantial initial expenditure remains a key restraint, preventing many companies from rapidly embracing digital and automated factory solutions across diverse industrial sectors.

Opportunity:

Adoption of smart manufacturing technologies

Increasing adoption of smart manufacturing technologies creates substantial opportunities in the factory digitalization and automation market. Tools like AI, robotics, IoT sensors, and digital twin technologies allow manufacturers to streamline operations, enhance product quality, and cut operational expenses. Investing in these advanced systems enables real-time monitoring, predictive upkeep, and data-informed decision-making, boosting both efficiency and market competitiveness. The Industry 4.0 trend encourages the use of flexible, scalable automated solutions. By deploying smart manufacturing technologies, factories can quickly adjust to shifting market demands, reduce resource waste, and optimize productivity. This creates promising growth avenues for companies leveraging digital and automated factory systems.

Threat:

Regulatory and compliance challenges

Regulatory and compliance issues are significant threats to the adoption of factory digitalization and automation. Varying standards across countries for robotics, digital platforms, and data governance complicate global deployment and increase costs. Manufacturers must also adhere to safety, labor, and environmental regulations, creating additional challenges when implementing automation technologies. Failure to comply can result in penalties, production interruptions, and reputational harm. Constantly evolving regulations, especially regarding data security and privacy, demand ongoing monitoring and adaptation. Such uncertainties may deter companies from investing in new digital systems or expanding existing automated operations, restricting market growth and slowing the broader adoption of digitalized factory solutions worldwide.

Covid-19 Impact:

The COVID-19 outbreak significantly influenced the factory digitalization and automation market. Lockdowns, workforce shortages, and disrupted supply chains compelled manufacturers to adopt automated and digital systems more rapidly. Increased reliance on robotics, IoT devices and remote monitoring enabled factories to operate with minimal human involvement while maintaining productivity. The pandemic underscored the importance of resilient, adaptable, and interconnected manufacturing systems capable of functioning during unforeseen disruptions. Consequently, investments in smart factory technologies surged, facilitating predictive maintenance, real-time performance tracking, and improved operational efficiency.

The artificial intelligence (AI) segment is expected to be the largest during the forecast period

The artificial intelligence (AI) segment is expected to account for the largest market share during the forecast period due to its broad range of applications in modern manufacturing. AI supports predictive maintenance, real-time monitoring, automated processes, and data-driven decision-making, boosting efficiency and minimizing production interruptions. By using AI-based analytics, manufacturers can identify process inefficiencies, improve product consistency, and optimize the use of resources. When combined with other technologies like IoT, cloud platforms, and robotics, AI amplifies the capabilities of smart factories. Its applicability across production planning, quality assurance, and supply chain optimization makes it the most widely implemented solution, serving as a central component in the ongoing digital transformation of industrial operations.

The electronics & semiconductors segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the electronics & semiconductors segment is predicted to witness the highest growth rate. Continuous technological innovation, rising demand for precision components, and the requirement for accelerated production have encouraged manufacturers to adopt advanced automation and digital solutions. Smart factory technologies, including AI, robotics, and IoT, enhance process efficiency, reduce defects, and improve product quality. The sector's emphasis on miniaturization, high performance, and rapid innovation drives the need for real-time monitoring and predictive maintenance. By investing in Industry 4.0 solutions, electronics and semiconductor manufacturers enhance competitiveness, operational flexibility, and responsiveness to changing market requirements, supporting sustained digital transformation and growth.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, owing to its advanced industrial infrastructure, extensive use of Industry 4.0 technologies, and concentration of leading market players. The region has witnessed widespread deployment of AI, IoT, robotics, and cloud solutions across sectors such as automotive, electronics, and aerospace. Strong R&D investment along with supportive government initiatives encouraging digital transformation. Manufacturers in North America emphasize operational efficiency, predictive maintenance, and real-time process monitoring, integrating digital solutions into core production activities. This combination of technological maturity, innovation focus, and policy support positions North America as the foremost region driving the adoption of digital and automated factory solutions globally.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by swift industrial expansion, rising adoption of Industry 4.0 technologies, and substantial investment in smart factory solutions. Key economies like China, India, and Japan are increasingly implementing AI, IoT, robotics, and cloud technologies to enhance efficiency and lower production costs. Strong demand across automotive, electronics, and pharmaceutical industries further accelerates growth. Government policies promoting digital transformation, along with the emphasis on flexible and sustainable manufacturing practices, encourage automation adoption. Collectively, these factors make Asia-Pacific the fastest-growing region in the global factory digitalization and automation landscape.

Key players in the market

Some of the key players in Factory Digitalization and Automation Market include ABB, Siemens, Honeywell International, Rockwell Automation, Emerson Electric, Mitsubishi Electric, Schneider Electric, Yokogawa Electric, FANUC, Omron, AVEVA, General Electric (GE), Dassault Systemes, Bosch and SAP.

Key Developments:

In September 2025, ABB and Codelco have announced their latest collaboration to optimise the Chilean state-owned copper mining company's maintenance program. With Chile currently the world's largest copper producer, this latest long-term service agreement (LTSA) encompasses maintenance, remote diagnostics and skills training to enhance the performance of its gearless mill drive (GMD) systems.

In June 2025, Siemens Energy and New Zealand-based EnPot Ltd inked an agreement to cooperate at an official ceremony with New Zealand's Prime Minister Christopher Luxon in Shanghai today. The deal signals the companies' joint drive to accelerate the decarbonisation of China's energy-intensive primary aluminium industry.

In April 2025, Honeywell has signed a new 10-year global distribution agreement with Milestone Systems, a provider of video management systems (VMS). This agreement marks a significant expansion of a partnership that began with Honeywell's LenelS2 brand in 2017, when Honeywell first became a distributor for Milestone in North America, growing into a global distributor role by 2020.

Components Covered:

  • Hardware
  • Software
  • Service

Technologies Covered:

  • Artificial Intelligence (AI)
  • Internet of Things (IoT)
  • Cloud Computing
  • Edge Computing
  • Cybersecurity for Industrial Systems
  • 5G Connectivity
  • Digital Twin
  • Augmented Reality (AR) & Virtual Reality (VR)
  • Advanced Analytics & Big Data

Applications Covered:

  • Automotive
  • Electronics & Semiconductors
  • Pharmaceuticals
  • Food & Beverage
  • Aerospace & Defense
  • Chemicals
  • Energy & Utilities
  • Consumer Goods
  • Metals & Mining
  • Textiles
  • Logistics & Warehousing

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Factory Digitalization and Automation Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
    • 5.2.1 Industrial Sensors
    • 5.2.2 Controllers
    • 5.2.3 Human-Machine Interface (HMI)
    • 5.2.4 Industrial Robots
    • 5.2.5 Machine Vision Systems
  • 5.3 Software
    • 5.3.1 Manufacturing Execution Systems (MES)
    • 5.3.2 Supervisory Control and Data Acquisition (SCADA)
    • 5.3.3 Plant Asset Management
    • 5.3.4 Digital Twin Platforms
  • 5.4 Service
    • 5.4.1 System Integration
    • 5.4.2 Consulting & Training
    • 5.4.3 Maintenance & Support

6 Global Factory Digitalization and Automation Market, By Technology

  • 6.1 Introduction
  • 6.2 Artificial Intelligence (AI)
  • 6.3 Internet of Things (IoT)
  • 6.4 Cloud Computing
  • 6.5 Edge Computing
  • 6.6 Cybersecurity for Industrial Systems
  • 6.7 5G Connectivity
  • 6.8 Digital Twin
  • 6.9 Augmented Reality (AR) & Virtual Reality (VR)
  • 6.10 Advanced Analytics & Big Data

7 Global Factory Digitalization and Automation Market, By Application

  • 7.1 Introduction
  • 7.2 Automotive
  • 7.3 Electronics & Semiconductors
  • 7.4 Pharmaceuticals
  • 7.5 Food & Beverage
  • 7.6 Aerospace & Defense
  • 7.7 Chemicals
  • 7.8 Energy & Utilities
  • 7.9 Consumer Goods
  • 7.10 Metals & Mining
  • 7.11 Textiles
  • 7.12 Logistics & Warehousing

8 Global Factory Digitalization and Automation Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 ABB
  • 10.2 Siemens
  • 10.3 Honeywell International
  • 10.4 Rockwell Automation
  • 10.5 Emerson Electric
  • 10.6 Mitsubishi Electric
  • 10.7 Schneider Electric
  • 10.8 Yokogawa Electric
  • 10.9 FANUC
  • 10.10 Omron
  • 10.11 AVEVA
  • 10.12 General Electric (GE)
  • 10.13 Dassault Systemes
  • 10.14 Bosch
  • 10.15 SAP
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦