시장보고서
상품코드
1477497

세계의 사이버 나이프 시장 : 산업 규모, 점유율, 동향, 기회, 예측, 용도별, 최종 용도별, 지역별, 경쟁별(2019-2029년)

CyberKnife Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Application, By End-use, By Region and Competition, 2019-2029F

발행일: | 리서치사: TechSci Research | 페이지 정보: 영문 182 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계 사이버 나이프 시장은 2023년에 4억 4,824만 달러로 평가되었고 2029년까지 복합 연간 성장률(CAGR) 17.28%를 나타낼 전망이며 예측 기간에는 눈부신 성장이 예측되고 있습니다.

세계 사이버 나이프 시장은 Accuray Incorporated가 개발한 획기적인 의료 기술인 사이버 나이프 시스템을 중심으로 전개되고 있습니다. 이 시스템은 고급 로봇 공학, 실시간 영상 처리, 정확한 방사선 조사를 통합하고 종양과 병리학을 비교할 수 없는 정확도로 치료합니다. 전통적인 수술을 대체하는 비침습적인 치료법을 제공하는 사이버 나이프 시스템은 절개하지 않고 전신 종양과 병변을 치료합니다. 고도로 조종 가능한 로봇 암을 이용하여 건강한 조직을 온존하면서 밀리미터 이하의 정밀도로 여러 각도에서 고선량의 방사선을 조사했습니다. 실시간 영상 처리를 통해 종양의 위치를 추적하고 치료 중 환자의 움직임에도 대응하면서 방사선의 조사를 조정합니다. 이 시장은 과제가 되고 있는 부위에서도 폭넓은 암의 치료에 유효한 등 여러 요인에 의해 성장을 이루고 있습니다.

시장 개요
예측 기간 2025-2029년
2023년 시장 규모 4억 4,824만 달러
2029년 시장 규모 11억 6,886만 달러
복합 연간 성장률(CAGR)(2024년-2029년) 17.28%
급성장 부문
최대 시장 북미

비침습적인 치료로 환자의 회복 시간이 단축되고 삶의 질이 향상됩니다. 지속적인 R&D 노력으로 사이버 나이프 기술은 끊임없이 개선되고 응용 범위가 넓어지고 있습니다. 사이버 나이프 기술의 보급이 진행됨에 따라, 그 정밀도, 환자에게의 상냥함, 효율성에 의해 암 치료에 혁명을 가져오고 있습니다. 높은 조달 비용과 유지 보수 비용, 전문적인 건강 관리 전문가 교육의 필요성과 같은 과제에도 불구하고 세계 사이버 나이프 시장은 전진하고 있습니다. 사이버 나이프는 환자의 행복과 치료 정밀도를 우선시하는 고급 암 치료 옵션에 대한 수요 증가에 대응하고 있습니다.

주요 시장 성장 촉진요인

정확도와 정확도

비침습적 치료

이미징과 로보틱스의 진보

암 유병률 증가

주요 시장 과제

고액의 초기 비용

유지 보수 및 운영 비용

주요 시장 동향

개인화 치료

집학적 치료와의 통합

부문별 인사이트

용도별 인사이트

지역별 인사이트

목차

제1장 개요

제2장 조사 방법

제3장 주요 요약

제4장 고객의 목소리

제5장 사이버 나이프 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 용도별(종양, 암, 혈관 기형, 기타)
    • 최종 용도별(병원, 외래 시설, 연구,제조)
    • 지역별(북미, 유럽, 아시아태평양, 남미, 중동 및 아프리카)
    • 기업별(2023년)
  • 제품 시장 맵
    • 용도별
    • 최종 용도별
    • 지역별

제6장 북미 사이버 나이프 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 용도별
    • 최종 용도별
    • 국가별
  • 북미: 국가별 분석
    • 미국
    • 캐나다
    • 멕시코

제7장 유럽 사이버 나이프 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 용도별
    • 최종 용도별
    • 국가별
  • 유럽: 국가별 분석
    • 독일
    • 프랑스
    • 영국
    • 이탈리아
    • 스페인

제8장 아시아태평양 사이버 나이프 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 용도별
    • 최종 용도별
    • 국가별
  • 아시아태평양: 국가별 분석
    • 중국
    • 일본
    • 인도
    • 한국
    • 호주

제9장 남미 사이버 나이프 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 용도별
    • 최종 용도별
    • 국가별
  • 남미 : 국가별 분석
    • 브라질
    • 아르헨티나
    • 콜롬비아

제10장 중동 및 아프리카 사이버 나이프 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 용도별
    • 최종 용도별
    • 국가별
  • 중동 및 아프리카: 국가별 분석
    • 아랍에미리트(UAE)
    • 사우디아라비아
    • 남아프리카

제11장 시장 역학

  • 성장 촉진요인
  • 과제

제12장 시장 동향과 발전

  • 합병과 인수
  • 제품 개발
  • 최근 동향

제13장 Porter's Five Forces 분석

제14장 PESTEL 분석

제15장 경쟁 구도

  • Accuray Incorporated
  • Varian Medical Systems Inc.
  • Koninklijke Philips NV
  • Hitachi, Ltd.
  • Mevion Medical Systems
  • Mitsubishi Heavy Industries, Ltd.
  • RaySearch Laboratories
  • Siemens Healthineers AG
  • ViewRay, Inc.

제16장 전략적 제안

제17장 리서치사&면책사항

BJH 24.05.21

Global CyberKnife Market was valued at USD 448.24 million in 2023 and is anticipated to project impressive growth in the forecast period with a CAGR of 17.28% through 2029. The global CyberKnife market revolves around the CyberKnife System, a revolutionary medical technology developed by Accuray Incorporated. This system integrates advanced robotics, real-time imaging, and precise radiation delivery to treat tumors and medical conditions with unparalleled accuracy. Offering a non-invasive alternative to traditional surgery, the CyberKnife System treats tumors and lesions across the body without incisions. Utilizing a highly maneuverable robotic arm, the system delivers high doses of radiation from multiple angles with sub-millimeter precision, sparing healthy tissues. Real-time imaging tracks tumor position and adjusts radiation delivery, even accommodating patient movement during treatment. The market is witnessing growth due to several factors, including the system's effectiveness in treating a wide range of cancers, even in challenging locations.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 448.24 Million
Market Size 2029USD 1168.86 Million
CAGR 2024-202917.28%
Fastest Growing SegmentCancer
Largest MarketNorth America

The non-invasive nature of treatment reduces patient recovery time and enhances quality of life. Ongoing research and development efforts continuously refine the technology and broaden its applications. As CyberKnife technology adoption rises, it revolutionizes cancer treatment with its precision, patient-friendliness, and efficiency. Despite challenges such as high procurement and maintenance costs and the need for specialized healthcare professional training, the global CyberKnife market is advancing. It meets the increasing demand for advanced cancer treatment options prioritizing patient well-being and treatment accuracy.

Key Market Drivers

Precision and Accuracy

Precision and accuracy are fundamental attributes driving the global CyberKnife market. The CyberKnife system's exceptional precision refers to its ability to precisely target and deliver high doses of radiation to specific areas within the body. This is achieved through its advanced robotic arm and real-time imaging capabilities, allowing for sub-millimeter accuracy in tumor or lesion treatment. In the medical field, precision is essential to ensure that the radiation is concentrated solely on the intended target, minimizing damage to surrounding healthy tissues and critical structures. The CyberKnife's capability to adjust treatment in real time, even accounting for patient movement during the procedure, enhances its accuracy, resulting in optimal treatment outcomes. Precision and accuracy offer significant advantages to both patients and healthcare providers. Patients experience reduced side effects, shorter recovery times, and improved quality of life due to minimized damage to healthy tissues. Healthcare providers can confidently treat complex cases, including tumors in challenging or delicate locations, while minimizing the risks associated with conventional surgical interventions. These attributes make the CyberKnife system a preferred option for patients and medical professionals seeking effective treatment with minimal invasiveness. As demand grows for medical technologies that prioritize precision and accuracy, the global CyberKnife market continues to expand, playing a pivotal role in transforming the landscape of cancer treatment and other medical conditions.

Non-Invasive Treatment

Non-invasive treatment is a pivotal aspect driving the global CyberKnife market. The term non-invasive refers to medical procedures that do not require surgical incisions or direct penetration of the body. In the context of the CyberKnife system, non-invasive treatment holds great significance as it offers a groundbreaking alternative to traditional surgical interventions. The CyberKnife system utilizes advanced robotics and real-time imaging to deliver highly precise and focused doses of radiation to targeted areas within the body. This approach eliminates the need for incisions or invasive procedures, making it a patient-friendly treatment option. Patients experience minimal discomfort, reduced recovery times, and a lower risk of complications compared to conventional surgeries. The non-invasive nature of CyberKnife treatment extends its applicability to various medical conditions, including tumors, lesions, and neurological disorders. It provides a treatment avenue for patients who may not be suitable candidates for surgery due to health factors or complex medical situations. As patient preferences shift toward minimally invasive treatment options that prioritize their comfort and well-being, the non-invasive nature of the CyberKnife system becomes a significant driver in the global market. The appeal of effective treatment with minimal disruption to daily life fuels the adoption of CyberKnife technology, positioning it as a transformative force in modern healthcare and contributing to the expansion of the global CyberKnife market.

Advancements in Imaging and Robotics

Advancements in imaging and robotics are key drivers in the global CyberKnife market. These innovations have significantly elevated the precision, effectiveness, and versatility of the CyberKnife system - a cutting-edge medical technology developed by Accuray Incorporated. In the context of imaging, state-of-the-art advancements enable real-time visualization of the treatment area. The integration of advanced imaging techniques, such as cone-beam computed tomography (CBCT), allows for on-the-fly adjustments during treatment sessions. This real-time monitoring ensures that the radiation is accurately targeted even if a patient moves or if there are anatomical changes. The incorporation of robotics in the CyberKnife system has revolutionized its maneuverability. The robotic arm can adjust its position with sub-millimeter precision, providing unprecedented flexibility in directing radiation beams from multiple angles. This capability enhances the treatment's accuracy and widens its applications, making it suitable for treating tumors and lesions in intricate or challenging anatomical locations. Advancements in imaging and robotics converge to enhance patient outcomes, enabling clinicians to precisely deliver radiation doses to target areas while minimizing damage to healthy tissues. This progress has expanded the CyberKnife system's applications beyond cancer treatment, encompassing neurological disorders and other medical conditions. The continuous evolution of imaging and robotics ensures that the CyberKnife system remains at the forefront of modern medical technology, driving the global CyberKnife market by offering patients and healthcare providers an unparalleled solution for accurate, non-invasive, and patient-friendly treatment.

Increasing Prevalence of Cancer

The increasing prevalence of cancer is a significant driver in the global CyberKnife market. As cancer cases continue to rise globally, there is a growing demand for innovative and effective treatment options. The CyberKnife system, with its advanced technology and precision, is uniquely positioned to address this challenge. Cancer remains a leading cause of mortality and morbidity worldwide. The CyberKnife system offers a non-invasive approach to treating various types of cancers, providing patients with a valuable alternative to traditional surgical procedures. Its precision in delivering radiation therapy allows for the targeted destruction of cancerous cells while minimizing damage to surrounding healthy tissues. The rising incidence of complex cases, including tumors located in challenging anatomical areas, underscores the need for advanced treatment solutions like CyberKnife. The system's ability to treat tumors in delicate locations, such as the brain, spine, and lungs, sets it apart as a versatile tool in the fight against cancer. As healthcare systems strive to meet the demand for effective cancer treatment options, the CyberKnife system's capability to offer patient-friendly, non-invasive treatment becomes increasingly important. Its ability to enhance treatment outcomes, reduce side effects, and improve patients' quality of life positions it as a vital component in the global effort to combat the increasing prevalence of cancer.

Key Market Challenges

High Initial Costs

High initial costs are a notable restraining factor in the global CyberKnife market. The acquisition and installation of a CyberKnife system entail substantial upfront financial investments that can pose challenges for healthcare institutions and providers. These costs encompass various components, including the purchase of the CyberKnife technology itself, associated equipment, facility modifications, and training. The initial investment required for a CyberKnife system is significant due to its sophisticated technology, advanced robotics, and integrated imaging capabilities. The system's precision and real-time imaging functionalities contribute to its complex design, which in turn contributes to its elevated price point. Moreover, the need for a specialized treatment vault, radiation shielding, and integration with existing medical infrastructure further contributes to the initial costs. For healthcare institutions with limited budgets, these high upfront expenses can present barriers to adopting the CyberKnife system. Smaller hospitals and medical centers might find it challenging to allocate resources for such a substantial investment, particularly when competing with other healthcare priorities. While the long-term benefits of the CyberKnife system, such as improved patient outcomes, reduced side effects, and efficient treatment options, are well-documented, the initial financial burden can deter some healthcare facilities from considering its implementation. Strategies to address this challenge might include exploring leasing options, partnerships, or collaborative arrangements to share costs, as well as advocating for funding from healthcare authorities or private investments. In conclusion, the high initial costs associated with acquiring and installing a CyberKnife system can present a significant obstacle in the global market. While the technology offers substantial benefits in terms of patient care and treatment efficacy, addressing these financial challenges is essential to ensure broader accessibility and adoption of CyberKnife technology across a range of healthcare settings.

Maintenance and Operational Expenses

Maintenance and operational expenses are significant considerations in the global CyberKnife market. While the initial investment in acquiring and installing a CyberKnife system is substantial, ongoing costs related to maintenance and day-to-day operations are equally important factors that impact the viability and sustainability of this advanced medical technology. Maintenance expenses encompass regular servicing, calibration, and repairs required to ensure the CyberKnife system's optimal performance. The technology's complexity, involving advanced robotics and real-time imaging, demands specialized expertise for upkeep. As the system comprises intricate components, preventive maintenance is essential to minimize downtime and ensure accurate treatment delivery. Operational expenses include personnel training, staffing, and administrative costs associated with running the CyberKnife facility. Skilled personnel are needed to operate, monitor, and maintain the technology effectively. Training and continuous education are essential due to the evolving nature of medical technology and the need to stay updated with the latest advancements. Furthermore, operational costs extend to other resources, such as the electricity required to power the system, software updates, and data storage for treatment plans and patient records. Additionally, regular quality assurance and quality control measures are necessary to ensure that the CyberKnife system consistently delivers precise and accurate treatment. The combination of maintenance and operational expenses can pose financial challenges for healthcare institutions, particularly for smaller facilities with limited budgets. Balancing the costs of maintaining and operating the CyberKnife system with its long-term benefits requires careful financial planning and resource allocation. Addressing maintenance and operational expenses might involve negotiating service contracts with the technology provider, streamlining workflows to optimize staff utilization, and exploring opportunities for cost-sharing through collaborations or partnerships. Overcoming these challenges is crucial to ensuring the sustainable and effective utilization of CyberKnife technology in modern healthcare settings.

Key Market Trends

Personalized Treatment

Personalized treatment is a prominent trend in the global CyberKnife market that emphasizes tailoring medical interventions to the unique characteristics of individual patients. In the context of CyberKnife technology, personalized treatment refers to the customization of treatment plans based on a patient's specific medical condition, anatomical features, tumor characteristics, and overall health status. The precision and adaptability of the CyberKnife system make it well-suited for delivering personalized treatments. Advanced imaging capabilities allow healthcare professionals to create highly detailed and accurate images of the tumor and its surrounding tissues. These images guide the development of treatment plans that precisely target the tumor while sparing healthy tissues, minimizing side effects, and maximizing treatment efficacy. Advanced software and algorithms enable healthcare providers to plan treatments that account for the tumor's size, shape, and location. Dosage and radiation angles are optimized for each patient's unique anatomy. During treatment sessions, the system's real-time imaging and robotic capabilities allow for adjustments in response to any patient movement or changes in tumor position. This adaptability ensures that the radiation is accurately delivered to the intended target. Personalized treatment takes into consideration a patient's overall health, medical history, and potential risk factors. This holistic approach ensures that treatment plans are both effective and safe for each individual.

Integration with Multidisciplinary Care

Integration with multidisciplinary care is a significant trend in the global CyberKnife market that emphasizes collaborative and comprehensive approaches to patient treatment. In this context, integration refers to the seamless coordination of expertise and resources from various medical disciplines to develop holistic treatment plans that address the diverse needs of patients. The complexity of many medical conditions, especially cancer, often requires expertise from multiple specialties such as oncology, radiology, surgery, and pathology. The CyberKnife system's versatility and precision make it an ideal candidate for integration into multidisciplinary care settings. This approach ensures that patients receive the most effective and well-rounded treatment strategies, considering both the disease and the patient's individual circumstances. Different medical experts collaborate to create comprehensive treatment plans that take into account various aspects of the patient's condition. This collaboration fosters an environment where diverse perspectives contribute to better decision-making. Multidisciplinary care allows for the tailoring of treatment plans to suit the unique characteristics of each patient. CyberKnife technology's precision aligns well with this approach, enabling targeted treatments that align with the collective expertise of the team. Integration encourages the sharing of knowledge, experience, and best practices among healthcare professionals from different specialties. This interdisciplinary exchange fosters a learning environment that benefits both patients and providers. The integration of CyberKnife technology into multidisciplinary care settings enhances the quality of patient care by leveraging its precision, adaptability, and ability to treat a wide range of medical conditions. As the trend of patient-centric care continues to grow, the collaboration between specialists and the utilization of advanced technologies like CyberKnife play a pivotal role in ensuring comprehensive and effective treatment strategies for patients.

Segmental Insights

Application Insights

In 2023, the CyberKnife Market was dominated by the cancer segment and is predicted to continue expanding over the coming years. CyberKnife technology's hallmark lies in its unparalleled precision and accuracy, enabling highly targeted radiation therapy. By leveraging cutting-edge imaging and robotic techniques, CyberKnife empowers clinicians to administer radiation with exceptional precision, minimizing harm to surrounding healthy tissues. This precision seamlessly aligns with the evolving paradigm of precision medicine in oncology, where personalized treatments are paramount.

In today's cancer treatment landscape, multimodal therapy has gained prominence for its effectiveness against complex malignancies. CyberKnife seamlessly integrates into this approach, providing a versatile platform that complements other modalities like chemotherapy and surgery. Its capability to deliver precise radiation to tumors, even those considered inoperable or resistant to traditional therapies, positions it as a cornerstone in the multimodal treatment arsenal against cancer.

Over time, CyberKnife technology has expanded to address a broader spectrum of cancer indications, spanning from primary tumors to metastatic lesions and recurrent diseases. This diversification underscores the technology's versatility and effectiveness across various cancer types, enhancing its appeal to both clinicians and patients. Moreover, ongoing research and clinical trials continue to explore novel applications, further cementing its position as a leader in the oncology landscape.

Regional Insights

In 2023, the Global CyberKnife Market was dominated by the North America segment and is predicted to continue expanding over the coming years. The region possesses a strong healthcare infrastructure characterized by a high demand for advanced cancer treatment technologies. CyberKnife, a state-of-the-art robotic radiosurgery system, delivers precise, non-invasive treatment for tumors across the body, particularly beneficial for challenging or intricate cases. This capability resonates with North America's focus on pioneering healthcare solutions, stimulating adoption among healthcare providers and patients. North America hosts numerous leading medical institutions and research centers renowned for their expertise in cancer care. These institutions frequently lead the way in adopting innovative technologies like CyberKnife, contributing significantly to its widespread usage and market dominance. Additionally, the region's commitment to research and development drives ongoing enhancements in CyberKnife technology, ensuring its continued leadership in precision radiation therapy.

Also, favorable reimbursement policies and comprehensive insurance coverage in North America facilitate the uptake of CyberKnife treatment. Patients can access this advanced technology without encountering significant financial obstacles, bolstering its market penetration. Furthermore, the region's sizable patient population, especially those seeking treatment for various cancers, serves as a substantial market base for CyberKnife utilization. North America's regulatory framework promotes innovation and prioritizes patient safety in the integration of technologies like CyberKnife. Rigorous standards and approvals inspire confidence among healthcare providers and patients, further catalyzing market expansion.

Key Market Players

Accuray Incorporated

Varian Medical Systems Inc.

Koninklijke Philips N.V.

Hitachi, Ltd.

Mevion Medical Systems

Mitsubishi Heavy Industries, Ltd.

RaySearch Laboratories

Siemens Healthineers AG

ViewRay, Inc.

Report Scope:

In this report, the Global CyberKnife Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

CyberKnife Market, By Application:

    Tumor Cancer Vascular malformation Others

CyberKnife Market, By End Use:

    Hospitals Outpatient facilities Research and Manufacturing

CyberKnife Market, By Region:

    North America

United States

Canada

Mexico

    Europe

France

United Kingdom

Italy

Germany

Spain

    Asia-Pacific

China

India

Japan

Australia

South Korea

    South America

Brazil

Argentina

Colombia

    Middle East & Africa

South Africa

Saudi Arabia

UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global CyberKnife Market.

Available Customizations:

Global CyberKnife Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global CyberKnife Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Application (Tumor, Cancer, Vascular malformation, Others)
    • 5.2.2. By End-use (Hospitals, Outpatient facilities, Research and Manufacturing)
    • 5.2.3. By Region (North America, Europe, Asia Pacific, South America, Middle East & Africa)
    • 5.2.4. By Company (2023)
  • 5.3. Product Market Map
    • 5.3.1. By Application
    • 5.3.2. By End Use
    • 5.3.3. By Region

6. North America CyberKnife Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Application
    • 6.2.2. By End Use
    • 6.2.3. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States CyberKnife Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Application
        • 6.3.1.2.2. By End Use
    • 6.3.2. Canada CyberKnife Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Application
        • 6.3.2.2.2. By End Use
    • 6.3.3. Mexico CyberKnife Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Application
        • 6.3.3.2.2. By End Use

7. Europe CyberKnife Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Application
    • 7.2.2. By End Use
    • 7.2.3. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany CyberKnife Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Application
        • 7.3.1.2.2. By End Use
    • 7.3.2. France CyberKnife Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Application
        • 7.3.2.2.2. By End Use
    • 7.3.3. United Kingdom CyberKnife Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Application
        • 7.3.3.2.2. By End Use
    • 7.3.4. Italy CyberKnife Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Application
        • 7.3.4.2.2. By End Use
    • 7.3.5. Spain CyberKnife Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Application
        • 7.3.5.2.2. By End Use

8. Asia-Pacific CyberKnife Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Application
    • 8.2.2. By End Use
    • 8.2.3. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China CyberKnife Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Application
        • 8.3.1.2.2. By End Use
    • 8.3.2. Japan CyberKnife Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Application
        • 8.3.2.2.2. By End Use
    • 8.3.3. India CyberKnife Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Application
        • 8.3.3.2.2. By End Use
    • 8.3.4. South Korea CyberKnife Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Application
        • 8.3.4.2.2. By End Use
    • 8.3.5. Australia CyberKnife Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Application
        • 8.3.5.2.2. By End Use

9. South America CyberKnife Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Application
    • 9.2.2. By End Use
    • 9.2.3. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil CyberKnife Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Application
        • 9.3.1.2.2. By End Use
    • 9.3.2. Argentina CyberKnife Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Application
        • 9.3.2.2.2. By End Use
    • 9.3.3. Colombia CyberKnife Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Application
        • 9.3.3.2.2. By End Use

10. Middle East and Africa CyberKnife Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Application
    • 10.2.2. By End Use
    • 10.2.3. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. UAE CyberKnife Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Application
        • 10.3.1.2.2. By End Use
    • 10.3.2. Saudi Arabia CyberKnife Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Application
        • 10.3.2.2.2. By End Use
    • 10.3.3. South Africa CyberKnife Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Application
        • 10.3.3.2.2. By End Use

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition
  • 12.2. Product Development
  • 12.3. Recent Developments

13. Porter's analysis

14. PESTEL analysis

15. Competitive Landscape

  • 15.1. Accuray Incorporated
    • 15.1.1. Business Overview
    • 15.1.2. Product & Service Offerings
    • 15.1.3. Recent Developments
    • 15.1.4. Financials (If Listed)
    • 15.1.5. Key Personnel
    • 15.1.6. SWOT Analysis
  • 15.2. Varian Medical Systems Inc.
  • 15.3. Koninklijke Philips N.V.
  • 15.4. Hitachi, Ltd.
  • 15.5. Mevion Medical Systems
  • 15.6. Mitsubishi Heavy Industries, Ltd.
  • 15.7. RaySearch Laboratories
  • 15.8. Siemens Healthineers AG
  • 15.9. ViewRay, Inc.

16. Strategic Recommendations

17. About Us & Disclaimer

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제