시장보고서
상품코드
1572905

마이크로 서버 IC 시장 - 세계 산업 규모, 점유율, 동향, 기회, 예측 : 구성요소별, 프로세서 유형별, 최종사용자별, 지역별, 경쟁(2019-2029년)

Micro Server IC Market - Global Industry Size, Share, Trends, Opportunity, and Forecast Segmented By Component (Hardware and Software), By Processor Type (x86 and ARM), By End User (Enterprises and Data Centers) By Region & Competition, 2019-2029F

발행일: | 리서치사: TechSci Research | 페이지 정보: 영문 185 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    




※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

마이크로 서버 IC 세계 시장 규모는 2023년 18억 달러에 달할 것으로 예상되며, 2029년까지 연평균 13.80%의 견조한 성장세를 보일 것으로 전망됩니다.

마이크로 서버용 IC(집적회로)는 마이크로서버용으로 설계된 전용 부품입니다. 마이크로 서버는 가볍고 저전력 소모 컴퓨팅 작업을 위해 데이터센터에서 일반적으로 사용되는 소형의 에너지 효율적인 서버입니다. 이 마이크로 서버는 웹 호스팅, 컨텐츠 전송, 클라우드 컴퓨팅 애플리케이션 등 대량의 병렬 처리가 가능한 소규모 작업을 처리하는 데 최적화되어 있습니다. 마이크로 서버 IC는 여러 기능을 하나의 칩에 통합하여 전체 시스템 크기와 전력 소비를 줄이는 동시에 특정 애플리케이션의 성능을 향상시킵니다.

시장 개요
예측 기간 2025-2029년
시장 규모 : 2023년 18억 달러
시장 규모 : 2029년 39억 4,000만 달러
CAGR : 2024-2029년 13.80%
급성장 부문 x86
최대 시장 아시아태평양

마이크로 서버 IC 시장은 몇 가지 촉진요인에 의해 크게 성장할 것으로 예상됩니다. 첫째, 디지털 서비스, IoT 기기, 모바일 애플리케이션에서 생성되는 데이터의 폭발적인 증가로 인해 확장 가능하고 효율적인 데이터센터 솔루션에 대한 수요가 증가하고 있습니다. 다수의 동시 작업을 효율적으로 처리할 수 있는 마이크로 서버는 이러한 수요를 충족시키기에 적합합니다. 둘째, 보다 친환경적이고 지속가능한 컴퓨팅 솔루션의 추진으로 에너지 효율성이 데이터센터의 최우선 과제로 떠오르고 있습니다. 기존 서버용 칩에 비해 전력 소모가 적은 마이크로 서버용 IC는 이러한 추세에 부합합니다. 셋째, 반도체 기술의 발전으로 더욱 강력하고 다재다능한 마이크로 서버 IC의 개발이 가능해져 성능이 향상되고 적용 범위가 넓어지고 있습니다. 또한, 중앙 집중식 데이터센터가 아닌 데이터 소스 근처에서 데이터를 처리하는 엣지 컴퓨팅의 부상으로 다양한 환경에 배치할 수 있는 소형, 저전력 서버에 대한 수요가 증가하고 있습니다. 각 산업 분야에서 마이크로 서버 솔루션의 채택이 증가하고 있습니다. 마지막으로, 반도체 업계의 경쟁 환경은 기술 혁신을 촉진하고 성능, 통합 및 비용 효율성 측면에서 마이크로 서버 IC의 지속적인 개선으로 이어지고 있습니다. 이러한 요인들로 인해 마이크로 서버 IC 시장은 빠르게 성장하고 있으며, 데이터센터 및 엣지 컴퓨팅 기술의 발전에 필수적인 요소로 자리매김하고 있습니다.

주요 시장 촉진요인

에너지 효율적이고 비용 효율적인 데이터센터 솔루션에 대한 수요 증가

반도체 산업의 기술 발전

엣지 컴퓨팅 도입 증가

주요 시장 과제

확장성 및 통합성 과제

기존의 서버 기술과의 경쟁

주요 시장 동향

인공지능과 머신러닝 도입 확대

엣지 컴퓨팅 인프라 확대

지속가능한 그린 컴퓨팅의 중요성 강조

목차

제1장 개요

제2장 조사 방법

제3장 주요 요약

제4장 VOC(고객의 소리)

제5장 세계의 마이크로 서버 IC 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 구성요소별(하드웨어, 소프트웨어)
    • 프로세서 유형별(x86, ARM)
    • 최종사용자별(기업, 데이터센터)
    • 지역별
  • 기업별(2023)
  • 시장 맵

제6장 북미의 마이크로 서버 IC 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 구성요소별
    • 프로세서 유형별
    • 최종사용자별
    • 국가별
  • 북미 : 국가별 분석
    • 미국
    • 캐나다
    • 멕시코

제7장 아시아태평양의 마이크로 서버 IC 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 구성요소별
    • 프로세서 유형별
    • 최종사용자별
    • 국가별
  • 아시아태평양 : 국가별 분석
    • 중국
    • 인도
    • 일본
    • 한국
    • 인도네시아

제8장 유럽의 마이크로 서버 IC 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 구성요소별
    • 프로세서 유형별
    • 최종사용자별
    • 국가별
  • 유럽 : 국가별 분석
    • 독일
    • 영국
    • 프랑스
    • 러시아
    • 스페인

제9장 남미의 마이크로 서버 IC 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 구성요소별
    • 프로세서 유형별
    • 최종사용자별
    • 국가별
  • 남미 : 국가별 분석
    • 브라질
    • 아르헨티나

제10장 중동 및 아프리카의 마이크로 서버 IC 시장 전망

  • 시장 규모와 예측
    • 금액별
  • 시장 점유율과 예측
    • 구성요소별
    • 프로세서 유형별
    • 최종사용자별
    • 국가별
  • 중동 및 아프리카 : 국가별 분석
    • 사우디아라비아
    • 남아프리카공화국
    • 아랍에미리트
    • 이스라엘
    • 이집트

제11장 시장 역학

  • 성장 촉진요인
  • 과제

제12장 시장 동향과 발전

제13장 기업 개요

  • NXP Semiconductors N.V
  • Hewlett Packard Enterprise Company
  • Fujitsu Limited.
  • Dell Inc.
  • Super Micro Computer, Inc.
  • Advanced Micro Devices, Inc
  • Huawei Technologies Co. Ltd .
  • Intel Corporation.
  • Nvidia Corporation.
  • STMicroelectronics International N.V

제14장 전략적 제안

제15장 조사 회사 소개 및 면책사항

ksm 24.11.01

Global Micro Server IC Market was valued at USD 1.8 Billion in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 13.80% through 2029. Micro Server ICs (Integrated Circuits) are specialized components designed for micro servers, which are compact, energy-efficient servers typically used in data centers for lightweight, low-power computing tasks. These micro servers are optimized for handling large volumes of small, parallelizable tasks, such as web hosting, content delivery, and cloud computing applications, where power efficiency and density are more critical than raw processing power. Micro Server ICs integrate multiple functionalities into a single chip, reducing the overall system size and power consumption while improving performance for specific applications.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 1.8 Billion
Market Size 2029USD 3.94 Billion
CAGR 2024-202913.80%
Fastest Growing Segmentx86
Largest MarketAsia Pacific

The market for Micro Server ICs is set to rise significantly due to several driving factors. Firstly, the explosive growth of data generated by digital services, IoT devices, and mobile applications demands scalable and efficient data center solutions. Micro servers, with their ability to handle numerous concurrent tasks efficiently, are perfectly suited to meet this demand. Secondly, the push towards greener and more sustainable computing solutions is making energy efficiency a top priority for data centers. Micro Server ICs, with their lower power consumption compared to traditional server chips, align well with this trend. Thirdly, advancements in semiconductor technology are enabling the development of more powerful and versatile Micro Server ICs, enhancing their performance and broadening their applicability. Additionally, the rise of edge computing, where data processing is done closer to the data source rather than in centralized data centers, is boosting the demand for compact, low-power servers that can be deployed in various environments. Companies across industries are increasingly adopting micro server solutions to optimize their IT infrastructure, reduce operational costs, and improve scalability. Lastly, the competitive landscape of the semiconductor industry is driving innovation, leading to the continuous improvement of Micro Server ICs in terms of performance, integration, and cost-efficiency. These factors collectively contribute to the burgeoning market for Micro Server ICs, positioning them as a crucial component in the evolving landscape of data center and edge computing technologies.

Key Market Drivers

Increasing Demand for Energy-Efficient and Cost-Effective Data Center Solutions

The rapid expansion of digital services, fueled by the proliferation of Internet of Things devices, mobile applications, and cloud computing, has resulted in an unprecedented surge in data generation. This massive influx of data necessitates scalable and efficient data center solutions that can handle high volumes of information processing while minimizing operational costs. Micro Server Integrated Circuits (ICs) are uniquely positioned to address this need. Unlike traditional server architectures, micro servers are designed to optimize energy efficiency and cost-effectiveness, making them ideal for environments where power consumption and space are critical considerations. As businesses strive to enhance their IT infrastructure while managing expenses, the adoption of micro servers is becoming increasingly attractive. These servers leverage Micro Server ICs to deliver high-density computing power with significantly lower energy requirements, translating to substantial cost savings in terms of both power consumption and cooling needs. Consequently, the demand for energy-efficient and cost-effective data center solutions is a primary driver of the Micro Server IC market, as organizations seek to balance performance with sustainability and financial prudence.

Technological Advancements in Semiconductor Industry

The semiconductor industry has witnessed remarkable advancements in recent years, driving the evolution of Micro Server Integrated Circuits. Innovations in semiconductor technology have enabled the development of more powerful, efficient, and versatile Micro Server ICs, thereby enhancing their performance and broadening their applicability. These advancements include the miniaturization of circuit components, improvements in chip architecture, and the integration of multiple functionalities into single chips. Such technological progress allows Micro Server ICs to deliver superior processing capabilities while maintaining low power consumption and compact form factors. Furthermore, the continuous innovation within the semiconductor industry is leading to cost reductions in manufacturing processes, making advanced Micro Server ICs more accessible to a broader range of businesses. This democratization of high-performance, energy-efficient micro server technology is propelling market growth, as more organizations can now leverage these advanced solutions to optimize their data center operations. As the semiconductor industry continues to push the boundaries of technology, the capabilities and adoption of Micro Server ICs are expected to expand, driving further growth in the market.

Rising Adoption of Edge Computing

Edge computing represents a paradigm shift in how data is processed and managed, moving computation closer to the data source rather than relying solely on centralized data centers. This shift is driven by the need for real-time data processing, reduced latency, and enhanced data security, especially in applications such as autonomous vehicles, smart cities, and industrial Internet of Things deployments. Micro servers, equipped with specialized Integrated Circuits, are ideally suited for edge computing environments due to their compact size, energy efficiency, and ability to handle distributed computing tasks effectively. The rising adoption of edge computing is a significant driver for the Micro Server IC market, as organizations across various sectors recognize the benefits of deploying micro servers at the edge of their networks. By processing data locally, micro servers reduce the need for data transmission to centralized data centers, thereby decreasing latency and improving response times. Additionally, the ability to handle data processing at the edge enhances data security and privacy, as sensitive information can be processed locally without being transmitted over potentially insecure networks. As edge computing continues to gain traction, the demand for micro servers and their associated Integrated Circuits is expected to rise, further fueling market growth. The alignment of Micro Server ICs with the evolving needs of edge computing positions them as critical components in the infrastructure of the future, driving their adoption across a wide range of industries and applications.

Key Market Challenges

Scalability and Integration Challenges

One of the primary challenges facing the Micro Server Integrated Circuits market is scalability and integration. As data centers continue to grow in complexity and size, the need for scalable solutions becomes paramount. Micro Server Integrated Circuits, while offering significant advantages in terms of energy efficiency and compactness, often face difficulties when it comes to scaling up to meet the demands of larger and more complex data center environments. Traditional server architectures have the benefit of established frameworks and standardized components that can be easily scaled and integrated into existing infrastructures. In contrast, micro servers require more specialized design considerations and customized integration efforts, which can be both time-consuming and costly. This challenge is compounded by the rapid pace of technological advancements, which necessitates frequent updates and adaptations to maintain compatibility and performance standards.

Moreover, the integration of Micro Server Integrated Circuits into existing data center infrastructures poses significant hurdles. Many data centers operate on legacy systems that are not readily compatible with the latest micro server technologies. This incompatibility can lead to increased integration costs and extended deployment times, as organizations must either overhaul their current systems or develop complex bridging solutions to ensure seamless operation. Additionally, the lack of standardized protocols for micro servers further complicates integration efforts, requiring tailored solutions for each deployment. This customization can lead to increased operational complexities and maintenance challenges, potentially offsetting the benefits gained from the energy efficiency and compactness of Micro Server Integrated Circuits. Addressing these scalability and integration challenges is crucial for the widespread adoption of micro servers in large-scale data center environments, and it will require concerted efforts from manufacturers, developers, and end-users to develop more standardized and easily integrable solutions.

Competition from Traditional Server Technologies

Another significant challenge for the Micro Server Integrated Circuits market is the competition from traditional server technologies. Despite the advantages that micro servers offer in terms of energy efficiency and form factor, traditional servers continue to dominate the market due to their established presence, proven performance, and robust support ecosystems. Traditional server technologies benefit from years of optimization and refinement, resulting in high reliability, extensive compatibility, and comprehensive support networks. These attributes make traditional servers the default choice for many organizations, particularly those with established data center infrastructures that are heavily invested in conventional server solutions.

The economies of scale associated with traditional server production and deployment contribute to their competitive edge. Large-scale production and widespread adoption have driven down the costs of traditional servers, making them more affordable for a broader range of applications. In contrast, Micro Server Integrated Circuits, being relatively newer and less widely adopted, often come with higher initial costs due to the specialized nature of their design and manufacturing processes. This cost differential can be a significant barrier for organizations, particularly small and medium-sized enterprises, that are looking to optimize their data center operations without incurring substantial capital expenditures.

The well-established performance benchmarks and compatibility standards of traditional servers provide a level of assurance to businesses that may be hesitant to transition to newer, less proven technologies. Traditional servers are backed by extensive documentation, support services, and a vast array of compatible software and hardware solutions, which facilitate their deployment and maintenance. In contrast, Micro Server Integrated Circuits, despite their benefits, may not yet have the same level of comprehensive support and proven performance metrics, leading to perceived risks in their adoption. Overcoming this competition from traditional server technologies will require the Micro Server Integrated Circuits market to demonstrate clear and tangible benefits, build robust support ecosystems, and achieve cost parity through increased adoption and economies of scale. This will be essential for convincing organizations to make the shift towards more energy-efficient and compact micro server solutions.

Key Market Trends

Growing Adoption of Artificial Intelligence and Machine Learning

The adoption of artificial intelligence (AI) and machine learning (ML) technologies is significantly influencing the Micro Server Integrated Circuits market. These technologies require substantial computational power to process large datasets and perform complex algorithms, which traditionally has been the domain of high-performance traditional servers. However, the development of specialized Micro Server Integrated Circuits designed to handle AI and ML workloads is shifting this dynamic. These specialized circuits are optimized for parallel processing and can efficiently manage the demanding requirements of AI and ML applications, offering a balance between performance and energy efficiency. As businesses increasingly integrate AI and ML into their operations for predictive analytics, automation, and data-driven decision-making, the demand for micro servers equipped with these advanced integrated circuits is on the rise. This trend is driving innovation in Micro Server Integrated Circuits, pushing manufacturers to develop more powerful and efficient solutions tailored to the needs of AI and ML.

Expansion of Edge Computing Infrastructure

The expansion of edge computing infrastructure is another significant trend propelling the Micro Server Integrated Circuits market. Edge computing involves processing data closer to its source, reducing latency and improving response times for critical applications. As the Internet of Things continues to grow, with more devices generating vast amounts of data, the need for efficient edge computing solutions becomes more pronounced. Micro servers, with their compact size and low power consumption, are ideally suited for deployment in edge environments. They can handle distributed computing tasks effectively, making them indispensable for applications such as smart cities, autonomous vehicles, and industrial automation. The increasing deployment of edge computing infrastructure is driving demand for advanced Micro Server Integrated Circuits that can meet the unique requirements of these environments, including reliability, real-time processing capabilities, and energy efficiency. This trend is expected to continue as businesses and governments alike seek to leverage edge computing for improved operational efficiency and innovation.

Emphasis on Sustainable and Green Computing

Sustainable and green computing is becoming a critical consideration for businesses and data center operators, driven by both regulatory pressures and corporate social responsibility goals. The emphasis on reducing carbon footprints and minimizing energy consumption is leading to increased interest in energy-efficient technologies. Micro Server Integrated Circuits are at the forefront of this movement, as they are designed to deliver high performance with lower power consumption compared to traditional server technologies. This makes them an attractive option for organizations looking to build more sustainable data center infrastructures. The trend towards sustainable computing is not only influencing purchasing decisions but also driving research and development efforts in the semiconductor industry to produce even more efficient Micro Server Integrated Circuits. As global awareness of environmental issues continues to grow, the demand for green computing solutions will likely increase, further propelling the Micro Server Integrated Circuits market. This trend underscores the broader shift towards sustainability in the tech industry, with energy-efficient micro servers playing a crucial role in achieving these goals.

Segmental Insights

Processor Type Insights

In 2023, the ARM processor segment dominated the Micro Server Integrated Circuits market and is expected to maintain its dominance throughout the forecast period. This dominance is driven by several factors, including ARM's inherent advantages in power efficiency, scalability, and cost-effectiveness. ARM processors are specifically designed to deliver high performance with low power consumption, making them ideal for micro servers, which prioritize energy efficiency and compact form factors. As data centers and edge computing environments increasingly seek to reduce their energy footprints and operational costs, the adoption of ARM-based micro servers is accelerating. Furthermore, the ARM ecosystem has seen substantial growth, with a broad range of support from major technology companies and a rapidly expanding developer community. This ecosystem fosters continuous innovation and improvement in ARM processors, enhancing their capabilities and broadening their applications. Additionally, the rise of specialized workloads, such as artificial intelligence, machine learning, and Internet of Things applications, aligns well with ARM's architecture, which can be tailored for specific tasks. As organizations across various industries prioritize sustainability and efficiency in their data processing infrastructure, ARM processors' ability to deliver performance while minimizing power usage positions them as the preferred choice for micro servers. Consequently, the ARM processor segment is expected to not only sustain its lead but also expand its influence in the Micro Server Integrated Circuits market in the coming years, driven by ongoing technological advancements and the growing emphasis on green computing solutions.

Regional Insights

In 2023, the Asia Pacific region dominated the Micro Server Integrated Circuits market and is expected to maintain its dominance throughout the forecast period. This leadership is attributed to several key factors, including the rapid growth of data centers, the proliferation of digital services, and the substantial investments in information technology infrastructure across the region. Countries like China, India, Japan, and South Korea are at the forefront of technological advancements, driving demand for efficient and scalable computing solutions. The expansion of cloud computing, Internet of Things, and artificial intelligence applications has significantly increased the need for micro servers, which are well-suited for handling distributed and energy-efficient data processing tasks. Additionally, the Asia Pacific region is home to some of the world's largest and most innovative semiconductor manufacturers, contributing to the development and production of advanced Micro Server Integrated Circuits. The region's strong manufacturing capabilities, coupled with favorable government policies and investments in research and development, have fostered a conducive environment for the growth of the micro server market. Furthermore, the burgeoning digital economy in the Asia Pacific, characterized by the rapid adoption of e-commerce, digital payments, and online services, is driving the demand for robust and efficient data processing infrastructure. As businesses and governments continue to invest in digital transformation initiatives, the need for high-performance, low-power micro server solutions is expected to rise. Consequently, the Asia Pacific region is poised to sustain its leadership position in the Micro Server Integrated Circuits market, propelled by ongoing technological innovation, increasing digitalization, and robust economic growth.

Key Market Players

  • NXP Semiconductors N.V
  • Hewlett Packard Enterprise Company
  • STMicroelectronics International N.V
  • Fujitsu Limited
  • Dell Inc.
  • Super Micro Computer, Inc
    • Advanced Micro Devices, Inc
  • Huawei Technologies Co., Ltd
  • Intel Corporation
  • Nvidia Corporation

Report Scope:

In this report, the Global Micro Server IC Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Micro Server IC Market, By Component:

  • Hardware
  • Software

Micro Server IC Market, By Processor Type:

  • x86
  • ARM

Micro Server IC Market, By End User:

  • Enterprises
  • Data Centers

Micro Server IC Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Asia-Pacific
    • China
    • India
    • Japan
    • South Korea
    • Indonesia
  • Europe
    • Germany
    • United Kingdom
    • France
    • Russia
    • Spain
  • South America
    • Brazil
    • Argentina
  • Middle East & Africa
    • Saudi Arabia
    • South Africa
    • Egypt
    • UAE
    • Israel

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Micro Server IC Market.

Available Customizations:

Global Micro Server IC Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
  • 1.3. Markets Covered
  • 1.4. Years Considered for Study
  • 1.5. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

4. Voice of Customers

5. Global Micro Server IC Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Component (Hardware and Software)
    • 5.2.2. By Processor Type (x86 and ARM)
    • 5.2.3. By End User (Enterprises and Data Centers)
    • 5.2.4. By Region
  • 5.3. By Company (2023)
  • 5.4. Market Map

6. North America Micro Server IC Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Component
    • 6.2.2. By Processor Type
    • 6.2.3. By End User
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Micro Server IC Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Component
        • 6.3.1.2.2. By Processor Type
        • 6.3.1.2.3. By End User
    • 6.3.2. Canada Micro Server IC Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Component
        • 6.3.2.2.2. By Processor Type
        • 6.3.2.2.3. By End User
    • 6.3.3. Mexico Micro Server IC Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Component
        • 6.3.3.2.2. By Processor Type
        • 6.3.3.2.3. By End User

7. Asia-Pacific Micro Server IC Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Component
    • 7.2.2. By Processor Type
    • 7.2.3. By End User
    • 7.2.4. By Country
  • 7.3. Asia-Pacific: Country Analysis
    • 7.3.1. China Micro Server IC Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Component
        • 7.3.1.2.2. By Processor Type
        • 7.3.1.2.3. By End User
    • 7.3.2. India Micro Server IC Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Component
        • 7.3.2.2.2. By Processor Type
        • 7.3.2.2.3. By End User
    • 7.3.3. Japan Micro Server IC Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Component
        • 7.3.3.2.2. By Processor Type
        • 7.3.3.2.3. By End User
    • 7.3.4. South Korea Micro Server IC Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Component
        • 7.3.4.2.2. By Processor Type
        • 7.3.4.2.3. By End User
    • 7.3.5. Indonesia Micro Server IC Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Component
        • 7.3.5.2.2. By Processor Type
        • 7.3.5.2.3. By End User

8. Europe Micro Server IC Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Component
    • 8.2.2. By Processor Type
    • 8.2.3. By End User
    • 8.2.4. By Country
  • 8.3. Europe: Country Analysis
    • 8.3.1. Germany Micro Server IC Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By Processor Type
        • 8.3.1.2.3. By End User
    • 8.3.2. United Kingdom Micro Server IC Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By Processor Type
        • 8.3.2.2.3. By End User
    • 8.3.3. France Micro Server IC Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By Processor Type
        • 8.3.3.2.3. By End User
    • 8.3.4. Russia Micro Server IC Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Component
        • 8.3.4.2.2. By Processor Type
        • 8.3.4.2.3. By End User
    • 8.3.5. Spain Micro Server IC Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Component
        • 8.3.5.2.2. By Processor Type
        • 8.3.5.2.3. By End User

9. South America Micro Server IC Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Component
    • 9.2.2. By Processor Type
    • 9.2.3. By End User
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Micro Server IC Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By Processor Type
        • 9.3.1.2.3. By End User
    • 9.3.2. Argentina Micro Server IC Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By Processor Type
        • 9.3.2.2.3. By End User

10. Middle East & Africa Micro Server IC Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By Processor Type
    • 10.2.3. By End User
    • 10.2.4. By Country
  • 10.3. Middle East & Africa: Country Analysis
    • 10.3.1. Saudi Arabia Micro Server IC Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By Processor Type
        • 10.3.1.2.3. By End User
    • 10.3.2. South Africa Micro Server IC Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By Processor Type
        • 10.3.2.2.3. By End User
    • 10.3.3. UAE Micro Server IC Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By Processor Type
        • 10.3.3.2.3. By End User
    • 10.3.4. Israel Micro Server IC Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. B By Component
        • 10.3.4.2.2. By Processor Type
        • 10.3.4.2.3. By End User
    • 10.3.5. Egypt Micro Server IC Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Component
        • 10.3.5.2.2. By Processor Type
        • 10.3.5.2.3. By End User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenge

12. Market Trends & Developments

13. Company Profiles

  • 13.1. NXP Semiconductors N.V
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel
    • 13.1.5. Key Product/Services
  • 13.2. Hewlett Packard Enterprise Company
    • 13.2.1. Business Overview
    • 13.2.2. Key Revenue and Financials
    • 13.2.3. Recent Developments
    • 13.2.4. Key Personnel
    • 13.2.5. Key Product/Services
  • 13.3. Fujitsu Limited.
    • 13.3.1. Business Overview
    • 13.3.2. Key Revenue and Financials
    • 13.3.3. Recent Developments
    • 13.3.4. Key Personnel
    • 13.3.5. Key Product/Services
  • 13.4. Dell Inc.
    • 13.4.1. Business Overview
    • 13.4.2. Key Revenue and Financials
    • 13.4.3. Recent Developments
    • 13.4.4. Key Personnel
    • 13.4.5. Key Product/Services
  • 13.5. Super Micro Computer, Inc.
    • 13.5.1. Business Overview
    • 13.5.2. Key Revenue and Financials
    • 13.5.3. Recent Developments
    • 13.5.4. Key Personnel
    • 13.5.5. Key Product/Services
  • 13.6. Advanced Micro Devices, Inc
    • 13.6.1. Business Overview
    • 13.6.2. Key Revenue and Financials
    • 13.6.3. Recent Developments
    • 13.6.4. Key Personnel
    • 13.6.5. Key Product/Services
  • 13.7. Huawei Technologies Co. Ltd .
    • 13.7.1. Business Overview
    • 13.7.2. Key Revenue and Financials
    • 13.7.3. Recent Developments
    • 13.7.4. Key Personnel
    • 13.7.5. Key Product/Services
  • 13.8. Intel Corporation.
    • 13.8.1. Business Overview
    • 13.8.2. Key Revenue and Financials
    • 13.8.3. Recent Developments
    • 13.8.4. Key Personnel
    • 13.8.5. Key Product/Services
  • 13.9. Nvidia Corporation.
    • 13.9.1. Business Overview
    • 13.9.2. Key Revenue and Financials
    • 13.9.3. Recent Developments
    • 13.9.4. Key Personnel
    • 13.9.5. Key Product/Services
  • 13.10. STMicroelectronics International N.V
    • 13.10.1. Business Overview
    • 13.10.2. Key Revenue and Financials
    • 13.10.3. Recent Developments
    • 13.10.4. Key Personnel
    • 13.10.5. Key Product/Services

14. Strategic Recommendations

15. About Us & Disclaimer

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제