½ÃÀ庸°í¼­
»óǰÄÚµå
1796822

¼Ò¸Å ¾à±¹ ºñ½Äº°È­ °Ç°­ µ¥ÀÌÅÍ ½ÃÀå : ¼¼°è »ê¾÷ ±Ô¸ð, Á¡À¯À², µ¿Çâ, ±âȸ, ¿¹Ãø - µ¥ÀÌÅÍ ¼¼Æ® À¯Çüº°, Áö¿ªº°, °æÀﺰ - ¿¹Ãø(2020-2030³â)

Retail Pharmacy De-identified Health Data Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Dataset Type, By Region and Competition, 2020-2030F

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: TechSci Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 186 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼Ò¸Å ¾à±¹ ºñ½Äº°È­ °Ç°­ µ¥ÀÌÅÍ ¼¼°è ½ÃÀå ±Ô¸ð´Â 2024³â¿¡ 81¾ï 1,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, CAGR 9.09%¸¦ ³ªÅ¸³¾ Àü¸ÁÀ̸ç, 2030³â¿¡´Â 136¾ï 9,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¼¼°è ¼Ò¸Å ¾à±¹ ºñ½Äº°È­ °Ç°­ µ¥ÀÌÅÍ ½ÃÀåÀº ÇコÄɾî ÀÇ»ç°áÁ¤¿¡ µ¥ÀÌÅÍ ºÐ¼®°ú ½ÇÁ¦ Áõ°ÅÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ¼Ò¸Å ¾à±¹¿¡¼­´Â ó¹æÀü Á¶Á¦ ¹× ÀϹÝÀǾàǰ ÆÇ¸Å ½Ã ¹æ´ëÇÑ ¾çÀÇ È¯ÀÚ µ¥ÀÌÅͰ¡ »ý¼ºµÇ´Âµ¥, ÀÌ·¯ÇÑ µ¥ÀÌÅ͸¦ ºñ½Äº°È­Çϸé ȯÀÚÀÇ ÇÁ¶óÀ̹ö½Ã¸¦ º¸È£Çϸ鼭 Á¶»ç ¹× ºÐ¼®À» À§ÇÑ ±ÍÁßÇÑ ¸®¼Ò½º°¡ µÉ ¼ö ÀÖ½À´Ï´Ù. ÀÌ µ¥ÀÌÅÍ´Â °³ÀÎ ¸ÂÃãÇü ÀǷḦ Áö¿øÇϰí, ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü¿Í Á¦¾àȸ»ç°¡ Ä¡·á ÆÐÅÏ, º¹¾à ¼øÀÀµµ, ȯÀÚ °á°ú¸¦ ´õ Àß ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù. ±Ý¾× ±âÁØ Áø·á ¸ðµ¨·Î ÀüȯÇϸ鼭 ÀÇ·á ¼­ºñ½ºÀÇ È¿°ú¼ºÀ» Æò°¡Çϰí ÀÚ¿ø ¹èºÐÀ» ÃÖÀûÈ­Çϱâ À§ÇØ ÀÌ·¯ÇÑ µ¥ÀÌÅÍÀÇ Çʿ伺ÀÌ ´õ¿í Ä¿Áö°í ÀÖ½À´Ï´Ù. ÀüÀÚÀǹ«±â·Ï, ¾à±¹ °ü¸® ½Ã½ºÅÛ µî µðÁöÅÐ Çコ ±â¼úÀÇ ¼ºÀåÀ¸·Î ºñ½Äº°È­µÈ µ¥ÀÌÅÍÀÇ ¿øÈ°ÇÑ ¼öÁý°ú 󸮰¡ ¿ëÀÌÇØÁö°í, ´Ù¾çÇÑ ÀÌÇØ°ü°èÀÚµéÀÌ µ¥ÀÌÅÍ¿¡ ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.

½ÃÀå °³¿ä
¿¹Ãø ±â°£ 2026-2030³â
½ÃÀå ±Ô¸ð : 2024³â 81¾ï 1,000¸¸ ´Þ·¯
½ÃÀå ±Ô¸ð : 2030³â 136¾ï 9,000¸¸ ´Þ·¯
CAGR : 2025-2030³â 9.09%
±Þ¼ºÀå ºÎ¹® ¿¡ÇÇ¼Òµå µ¥ÀÌÅÍ/¾à±¹ ó¹æÀü û±¸ µ¥ÀÌÅÍ
ÃÖ´ë ½ÃÀå ºÏ¹Ì

½ÃÀåÀÇ »õ·Î¿î Æ®·»µå·Î´Â ´ë±Ô¸ðÀÇ º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®¿¡¼­ ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» ÃßÃâÇϱâ À§ÇÑ ÀΰøÁö´É(AI)°ú ¸Ó½Å·¯´× ¾Ë°í¸®ÁòÀÇ ÅëÇÕÀÌ ²ÅÈü´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀ» ÅëÇØ ȯÀÚÀÇ Çൿ, ¾àÈ¿, ºÎÀÛ¿ëÀ» º¸´Ù Á¤È®ÇÏ°Ô ¿¹ÃøÇÒ ¼ö ÀÖÀ¸¸ç, ÀÓ»ó °Ë»ç ¼³°è ¹× ÀÇ·á °³ÀÔÀ» °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼Ò¸Å ¾à±¹, ÀÇ·á ¼­ºñ½º Á¦°ø¾÷ü, ¿¬±¸±â°ü °£ÀÇ Çù¾÷À» ÅëÇØ µ¥ÀÌÅÍ °øÀ¯¿Í ÅëÇÕÀ» ÃËÁøÇϰí, ºñ½Äº°È­µÈ °Ç°­ µ¥ÀÌÅÍÀÇ ¹üÀ§¿Í À¯¿ë¼ºÀ» È®´ëÇÒ ¼ö ÀÖ½À´Ï´Ù. HIPAA ¹× GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)°ú °°Àº µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ±ÔÁ¦´Â ºñ½Äº°È­ ±â¼úÀÇ Á߿伺À» °­Á¶Çϰí ÀÖÀ¸¸ç, µ¥ÀÌÅÍÀÇ À¯¿ë¼º°ú ȯÀÚÀÇ ±â¹Ð¼º »çÀÌ¿¡¼­ ±ÕÇüÀ» ¸ÂÃß±â À§ÇØ ²÷ÀÓ¾øÀÌ ÁøÈ­Çϰí ÀÖ½À´Ï´Ù. ¿ø°Ý ÀÇ·á¿Í µðÁöÅÐ Çコ Ç÷§ÆûÀÇ È®´ë´Â °Ç°­ µ¥ÀÌÅÍÀÇ ¾ç°ú ´Ù¾ç¼ºÀ» Áõ°¡½ÃÄÑ ºÐ¼®¿¡ »ç¿ëÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅÍ ¼¼Æ®¸¦ dzºÎÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ

½ÇÁ¦ Áõ°Å¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

ÁÖ¿ä ½ÃÀå °úÁ¦

µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã ¹× º¸¾È¿¡ ´ëÇÑ ¿ì·Á

ÁÖ¿ä ½ÃÀå µ¿Çâ

°¡Ä¡ ±â¹Ý Äɾî(VBC)¿Í »óȯ ¸ðµ¨ÀÇ ¼ºÀå

¸ñÂ÷

Á¦1Àå °³¿ä

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå °í°´ÀÇ ¼Ò¸®

Á¦5Àå ¼¼°èÀÇ ¼Ò¸Å ¾à±¹ ºñ½Äº°È­ °Ç°­ µ¥ÀÌÅÍ ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
    • ±Ý¾×º°
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
    • µ¥ÀÌÅÍ ¼¼Æ® À¯Çüº°(DSCSA µ¥ÀÌÅÍ, ¸¶ÄÏ ¹Ù½ºÄÏ µ¥ÀÌÅÍ, »çÀü ½ÂÀÎ µ¥ÀÌÅÍ, Àç°í µ¥ÀÌÅÍ, ¿¡ÇÇ¼Òµå µ¥ÀÌÅÍ/¾à±¹ ó¹æÀü û±¸ µ¥ÀÌÅÍ)
    • ±â¾÷º°(2024³â)
    • Áö¿ªº°
  • ½ÃÀå ¸Ê

Á¦6Àå ºÏ¹ÌÀÇ ¼Ò¸Å ¾à±¹ ºñ½Äº°È­ °Ç°­ µ¥ÀÌÅÍ ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
  • ºÏ¹Ì : ±¹°¡º° ºÐ¼®
    • ¹Ì±¹
    • ¸ß½ÃÄÚ
    • ij³ª´Ù

Á¦7Àå À¯·´ÀÇ ¼Ò¸Å ¾à±¹ ºñ½Äº°È­ °Ç°­ µ¥ÀÌÅÍ ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
  • À¯·´ : ±¹°¡º° ºÐ¼®
    • ÇÁ¶û½º
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ

Á¦8Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ¼Ò¸Å ¾à±¹ ºñ½Äº°È­ °Ç°­ µ¥ÀÌÅÍ ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
  • ¾Æ½Ã¾ÆÅÂÆò¾ç : ±¹°¡º° ºÐ¼®
    • Áß±¹
    • Àεµ
    • Çѱ¹
    • ÀϺ»
    • È£ÁÖ

Á¦9Àå ³²¹ÌÀÇ ¼Ò¸Å ¾à±¹ ºñ½Äº°È­ °Ç°­ µ¥ÀÌÅÍ ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
  • ³²¹Ì : ±¹°¡º° ºÐ¼®
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
    • ÄÝ·Òºñ¾Æ

Á¦10Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ¼Ò¸Å ¾à±¹ ºñ½Äº°È­ °Ç°­ µ¥ÀÌÅÍ ½ÃÀå Àü¸Á

  • ½ÃÀå ±Ô¸ð¿Í ¿¹Ãø
  • ½ÃÀå Á¡À¯À²°ú ¿¹Ãø
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« : ±¹°¡º° ºÐ¼®
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)

Á¦11Àå ½ÃÀå ¿ªÇÐ

  • ¼ºÀå ÃËÁø¿äÀÎ
  • °úÁ¦

Á¦12Àå ½ÃÀå µ¿Çâ°ú ¹ßÀü

  • ÀμöÇÕº´(M&A)
  • Á¦Ç° Ãâ½Ã

Á¦13Àå È¥¶õ : ºÐÀï, ÆÒµ¥¹Í, ¹«¿ªÀ庮

Á¦14Àå PorterÀÇ Five Forces ºÐ¼®

  • »ê¾÷³» °æÀï
  • ½Å±Ô Âü¿© °¡´É¼º
  • °ø±Þ¾÷üÀÇ Èû
  • °í°´ÀÇ Èû
  • ´ëüǰÀÇ À§Çù

Á¦15Àå °æÀï ±¸µµ

  • CVS Health Corporation
  • Walgreens Boots Alliance, Inc.
  • Walmart Inc.
  • The Kroger Co.
  • Albertsons Companies, Inc.
  • UnitedHealth Group Incorporated
  • Humana Inc.
  • BrightSpring Health Services, Inc.
  • Costco Wholesale Corporation
  • Centene Corporation

Á¦16Àå Àü·«Àû Á¦¾È

Á¦17Àå ȸ»ç ¼Ò°³ ¹× ¸éÃ¥Á¶Ç×

LSH 25.09.01

The Global Retail Pharmacy De-identified Health Data Market was valued at USD 8.11 Billion in 2024 and is expected to reach USD 13.69 Billion by 2030 with a CAGR of 9.09%. The Global Retail Pharmacy De-identified Health Data Market is witnessing significant growth driven by the increasing adoption of data analytics and real-world evidence in healthcare decision-making. Retail pharmacies generate vast amounts of patient data during prescription dispensing and over-the-counter medication sales, which, when de-identified, becomes a valuable resource for research and analysis while preserving patient privacy. This data supports personalized medicine, enabling healthcare providers and pharmaceutical companies to better understand treatment patterns, medication adherence, and patient outcomes. The shift toward value-based care models further intensifies the need for such data to evaluate healthcare effectiveness and optimize resource allocation. Growth in digital health technologies, including electronic health records and pharmacy management systems, facilitates the seamless collection and processing of de-identified data, enhancing its accessibility for various stakeholders.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 8.11 Billion
Market Size 2030USD 13.69 Billion
CAGR 2025-20309.09%
Fastest Growing SegmentEpisodic Data/Pharmacy Rx Claims Data
Largest MarketNorth America

Emerging trends in the market include the integration of artificial intelligence (AI) and machine learning algorithms to extract actionable insights from large, complex datasets. These technologies enable more accurate predictions of patient behavior, drug efficacy, and adverse reactions, improving clinical trial designs and healthcare interventions. The increasing collaboration between retail pharmacies, healthcare providers, and research organizations fosters data sharing and aggregation, broadening the scope and utility of de-identified health data. Data privacy regulations such as HIPAA and GDPR emphasize the importance of de-identification techniques, which are continuously evolving to balance data utility with patient confidentiality. The expansion of telemedicine and digital health platforms is also contributing to the volume and diversity of health data generated, enriching the datasets available for analysis.

Key Market Drivers

Rising Demand for Real-World Evidence

The rising demand for real-world evidence (RWE) is a powerful driver of the Global Retail Pharmacy De-identified Health Data Market, as stakeholders across the healthcare spectrum seek deeper insights beyond controlled clinical environments. Pharmacy claims and dispensing data when de-identified offer invaluable visibility into actual patient medication usage, treatment adherence patterns, and health outcomes. Pharmaceutical companies utilize this data to inform regulatory submissions, post-market safety surveillance, and label expansions, supported by frameworks such as the FDA's Real-World Evidence Program. The U.S. FDA's Center for Drug Evaluation and Research (CDER) recently announced the establishment of the Center for Real-World Evidence Innovation, tasked with coordinating and promoting use of real-world data (RWD) and real-world evidence in regulatory decisions.

Health insurers and payers rely on RWE from pharmacy data to inform reimbursement decisions and design outcomes-focused payment models. Providers and payers leverage these insights for personalizing patient care, pinpointing gaps in medication adherence, and reducing preventable hospital admissions. The data's de-identified status ensures compliance with strict privacy regulations like HIPAA and GDPR, enabling wide yet secure utilization in analytics. Federal support for RWE is evident: in 2023, the FDA awarded additional U01 grants to advance the use of RWD in regulatory decision-making, reinforcing its increasing institutional reliance on real-world evidence.

As chronic conditions and specialty therapies proliferate, pharmacy-derived RWD becomes even more critical, providing continuous, real-time insight into patient outcomes across diverse populations. Enhanced analytical capabilities now enable stakeholders to extract predictive intelligence that informs drug development, population health strategies, and value-based care initiatives. This growing emphasis on real-world evidence underscores the indispensable role of de-identified pharmacy data in shaping modern healthcare decision-making.

Key Market Challenges

Data Privacy and Security Concerns

Data privacy and security concerns present a significant challenge for the Global Retail Pharmacy De-identified Health Data Market due to the sensitive nature of healthcare information, even when de-identified. Although data is stripped of personal identifiers, the risk of re-identification through advanced analytics or cross-referencing with other datasets remains a pressing issue. Stakeholders must comply with stringent regulations such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States, the General Data Protection Regulation (GDPR) in the European Union, and other regional data protection laws that impose strict requirements on handling, storage, and sharing of health-related data. Any breach, unauthorized access, or misuse of such information can lead to legal liabilities, financial penalties, and reputational damage for organizations involved.

The rapid advancement of data analytics, artificial intelligence, and machine learning tools increases the complexity of safeguarding de-identified health data, as these technologies can unintentionally increase the likelihood of re-identification. Building and maintaining robust cybersecurity infrastructure requires significant investments, yet even well-protected systems can be vulnerable to sophisticated cyberattacks or insider threats. As retail pharmacies expand their data-sharing partnerships with pharmaceutical companies, insurers, and research institutions, the number of access points to sensitive datasets grows, compounding the risk of unauthorized data exposure. Trust among consumers, regulatory bodies, and business partners depends heavily on the ability of market participants to uphold the highest data protection standards, making privacy and security challenges a critical barrier to sustained market growth.

Key Market Trends

Growth in Value Based Care (VBC) and Reimbursement Models

Growth in Value-Based Care (VBC) and evolving reimbursement models is becoming a significant trend shaping the Global Retail Pharmacy De-identified Health Data Market. Healthcare systems worldwide are shifting from volume-driven approaches, where providers are paid based on the quantity of services delivered, to value-based frameworks that reward improved patient outcomes, cost efficiency, and care quality. Retail pharmacies are increasingly positioned as critical touchpoints in this transformation, leveraging de-identified health data to demonstrate measurable impacts on patient health and adherence. The availability of large-scale pharmacy data, including prescription fill patterns, medication adherence rates, and therapeutic outcomes, enables payers and providers to align reimbursement strategies with evidence-based performance metrics.

This shift encourages collaborative care models where retail pharmacies, physicians, and payers work together to manage chronic diseases, reduce hospital readmissions, and prevent avoidable complications. De-identified datasets help assess the effectiveness of interventions, allowing stakeholders to refine care pathways and allocate resources more efficiently. The integration of this data into VBC initiatives also drives innovation in patient engagement, targeted medication management programs, and real-time performance monitoring. As reimbursement models continue to prioritize cost savings and improved patient outcomes, demand for de-identified pharmacy data is set to accelerate, reinforcing its strategic importance in value-based healthcare ecosystems.

Key Market Players

  • CVS Health Corporation
  • Walgreens Boots Alliance, Inc.
  • Walmart Inc.
  • The Kroger Co.
  • Albertsons Companies, Inc.
  • UnitedHealth Group Incorporated
  • Humana Inc.
  • BrightSpring Health Services, Inc.
  • Costco Wholesale Corporation
  • Centene Corporation

Report Scope:

In this report, the Global Retail Pharmacy De-identified Health Data Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Retail Pharmacy De-identified Health Data Market, By Dataset Type:

  • DSCSA Data
    • By Buyer Type
      • Pharmaceutical Manufacturers
      • Drug Distributors
      • Regulatory Tech Vendors
      • Healthcare SaaS Vendors
      • Others
  • Market Basket Data
    • By Buyer Type
      • CPG & Pharma Brands
      • Marketing & AdTech Firms
      • Health Insurers & PBMs
      • Retail Analytics Platforms
      • Others
  • Prior Authorization Data
    • By Buyer Type
      • Payers & PBMs
      • Pharma Market Access Teams
      • Health IT Providers
      • Consulting & Policy Firms
      • Others
  • Inventory Data
    • By Buyer Type
      • Pharma Manufacturers
      • Distributors/Wholesalers
      • AI/ML Inventory Optimization Vendors
      • Others
  • Episodic Data/Pharmacy Rx Claims Data
    • By Buyer Type
      • Value-based Payers & ACOs
      • Pharma Outcomes Teams
      • Real-world Evidence Vendors
      • CMS & Government Organizations
      • Others

Retail Pharmacy De-identified Health Data Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Retail Pharmacy De-identified Health Data Market.

Available Customizations:

Global Retail Pharmacy De-identified Health Data Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Retail Pharmacy De-identified Health Data Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Dataset Type (DSCSA Data, Market Basket Data, Prior Authorization Data, Inventory Data, Episodic Data/Pharmacy Rx Claims Data)
    • 5.2.2. By Company (2024)
    • 5.2.3. By Region
  • 5.3. Market Map

6. North America Retail Pharmacy De-identified Health Data Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Dataset Type
    • 6.2.2. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Retail Pharmacy De-identified Health Data Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Dataset Type
    • 6.3.2. Mexico Retail Pharmacy De-identified Health Data Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Dataset Type
    • 6.3.3. Canada Retail Pharmacy De-identified Health Data Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Dataset Type

7. Europe Retail Pharmacy De-identified Health Data Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Dataset Type
    • 7.2.2. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Retail Pharmacy De-identified Health Data Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Dataset Type
    • 7.3.2. Germany Retail Pharmacy De-identified Health Data Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Dataset Type
    • 7.3.3. United Kingdom Retail Pharmacy De-identified Health Data Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Dataset Type
    • 7.3.4. Italy Retail Pharmacy De-identified Health Data Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Dataset Type
    • 7.3.5. Spain Retail Pharmacy De-identified Health Data Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Dataset Type

8. Asia-Pacific Retail Pharmacy De-identified Health Data Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Dataset Type
    • 8.2.2. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Retail Pharmacy De-identified Health Data Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Dataset Type
    • 8.3.2. India Retail Pharmacy De-identified Health Data Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Dataset Type
    • 8.3.3. South Korea Retail Pharmacy De-identified Health Data Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Dataset Type
    • 8.3.4. Japan Retail Pharmacy De-identified Health Data Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Dataset Type
    • 8.3.5. Australia Retail Pharmacy De-identified Health Data Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Dataset Type

9. South America Retail Pharmacy De-identified Health Data Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Dataset Type
    • 9.2.2. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Retail Pharmacy De-identified Health Data Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Dataset Type
    • 9.3.2. Argentina Retail Pharmacy De-identified Health Data Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Dataset Type
    • 9.3.3. Colombia Retail Pharmacy De-identified Health Data Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Dataset Type

10. Middle East and Africa Retail Pharmacy De-identified Health Data Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Dataset Type
    • 10.2.2. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Retail Pharmacy De-identified Health Data Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Dataset Type
    • 10.3.2. Saudi Arabia Retail Pharmacy De-identified Health Data Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Dataset Type
    • 10.3.3. UAE Retail Pharmacy De-identified Health Data Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Dataset Type

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Disruptions: Conflicts, Pandemics and Trade Barriers

14. Porters Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Products

15. Competitive Landscape

  • 15.1. CVS Health Corporation
    • 15.1.1. Business Overview
    • 15.1.2. Company Snapshot
    • 15.1.3. Products & Services
    • 15.1.4. Financials (As Reported)
    • 15.1.5. Recent Developments
    • 15.1.6. Key Personnel Details
    • 15.1.7. SWOT Analysis
  • 15.2. Walgreens Boots Alliance, Inc.
  • 15.3. Walmart Inc.
  • 15.4. The Kroger Co.
  • 15.5. Albertsons Companies, Inc.
  • 15.6. UnitedHealth Group Incorporated
  • 15.7. Humana Inc.
  • 15.8. BrightSpring Health Services, Inc.
  • 15.9. Costco Wholesale Corporation
  • 15.10. Centene Corporation

16. Strategic Recommendations

17. About Us & Disclaimer

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦