시장보고서
상품코드
1622674

SLAM(Simultaneous Localization and Mapping) 시장 : 지도제작 유형, 제품, 용도, 최종사용자, 지역별(2024-2031년)

Simultaneous Localization and Mapping Market By Mapping Type, Product, Application, End-User, & Region 2024-2031

발행일: | 리서치사: Verified Market Research | 페이지 정보: 영문 202 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

SLAM(Simultaneous Localization and Mapping) 시장 평가, 2024-2031년

SLAM(Simultaneous Localization and Mapping)은 디바이스나 로봇이 실시간으로 환경을 이해하고 지도제작 하는 것과 동시에 환경내에서 자신의 위치를 결정하는 것을 가능하게 하는 기술입니다. 이것에 의해 군·방위, 제조, 기타 다양한 분야에서의 응용이 매우 효율화됩니다. Verified Market Research의 애널리스트에 따르면 세계의 SLAM(Simultaneous Localization and Mapping) 시장은 2023년에 2억 6,200만 달러의 평가를 얻고 있습니다. 2031년에는 18억 달러의 매출이 예측됩니다.

시장 확대는 AR/VR 용도에 대한 수요 증가, 자율주행차 도입 증가, 센서 기술 발전 등 다양한 요인에 기인합니다. 이러한 SLAM 용도의 급증으로 시장은 2024-2031년 연평균 41.6%의 성장률을 보일 것으로 예상됩니다.

SLAM(Simultaneous Localization and Mapping) 시장 : 정의/개요

동시 현지화와 매핑은 환경을 탐색하는 무인 차량이나 로봇의 도움을 받아 지도를 만드는 과정으로, SLAM은 로봇 지도 제작 또는 로봇 매핑에 사용되는 시스템입니다. 이 절차는 복잡한 계산, 알고리즘 및 감각 입력을 사용하여 탐색을 수행합니다. 이를 통해 인간이 지도를 만드는 것이 위험한 환경에서도 원격지에서 지리정보시스템(GIS) 데이터를 생성할 수 있습니다. 지도를 개발하거나 업그레이드할 때 발생하는 계산상의 어려움을 현지화와 매핑의 동시 진행이라고 합니다.

SLAM 용도를 목적으로 설계된 로봇을 SLAM 로봇이라는데, SLAM(Simultaneous Localization and Mapping)은 로봇이나 무인 차량이 지도를 생성하는 동시에 생성된 지도를 이용하여 환경을 탐색하는 기술입니다. 환경을 탐색하기 위해 채택되는 기술입니다. 시각적 SLAM 시스템은 실시간으로 작동해야 하므로 주기적으로 위치 정보와 매핑 데이터를 별도로 묶어 조정해야 하지만, 최종적으로 통합할 때까지의 처리 속도를 높이기 위해 동시에 수행합니다. 로봇 등 다양한 분야에 활용될 수 있습니다. 현지화와 매핑의 동시 처리 기술을 통해 정확도가 크게 향상되었습니다.

세계 SLAM(Simultaneous Localization and Mapping) 시장을 촉진하는 요인은?

세계 SLAM 시장은 채택과 성장을 가속하는 몇 가지 중요한 요인에 의해 주도되고 있습니다. 중요한 요인 중 하나는 다양한 산업 분야에서 자율 이동 로봇 및 차량에 대한 수요가 증가하고 있다는 점입니다. 이러한 로봇과 차량은 사람의 개입 없이 주변 환경을 정확하게 탐색하고 매핑하는 SLAM 기술에 의존하고 있습니다.

제조, 물류, 농업 등의 산업에서 자동화가 진행됨에 따라 강력한 SLAM 솔루션에 대한 수요는 지속적으로 증가하고 있습니다. 증강현실(AR) 및 가상현실(VR) 용도의 인기가 높아지고 있으며, SLAM 기술은 사용자의 위치와 주변 환경을 실시간으로 정확하게 추적하여 몰입감 있는 AR 경험을 가능하게 하는 데 중요한 역할을 하고 있습니다.

가상현실 용도에서 SLAM은 물리적 공간을 매핑하고 디지털 컨텐츠를 원활하게 통합하여 실제와 같은 가상 환경을 쉽게 만들 수 있도록 도와줍니다. 게임, 엔터테인먼트, 교육, 기업 용도에서 AR과 VR의 이용 사례가 증가함에 따라 고급 SLAM 솔루션에 대한 수요가 증가하고 있습니다.

또한 특히 LIDAR, 카메라 시스템, 관성 센서 등 센서 기술의 발전으로 SLAM 알고리즘의 정확도와 신뢰성이 크게 향상되고 있습니다. 이러한 기술 발전으로 다양한 환경과 과제에서 작동할 수 있는 보다 견고하고 효율적인 SLAM 시스템 개발이 진행되고 있습니다. 그 결과, 로봇 산업, 자동차 산업, 가전 산업 등 다양한 산업에서 SLAM 기술을 제품 및 서비스에 도입하여 성능과 기능을 향상시키려는 시도가 증가하고 있습니다.

SLAM의 매출을 급감시키는 과제는 무엇인가?

유망한 기회에도 불구하고 세계 SLAM 시장은 SLAM 알고리즘의 복잡성과 계산의 엄격함, 특히 실시간 용도의 경우 SLAM 알고리즘의 복잡성과 계산의 엄격함이라는 몇 가지 과제에 직면해 있습니다. 컴퓨팅 리소스를 효율적으로 관리하면서 실시간으로 환경을 정확하게 매핑하고 위치를 추적할 수 있는 견고한 SLAM 시스템 개발은 여전히 기술적 장애물이 되고 있습니다.

또한 SLAM 시스템과 기존 하드웨어 및 소프트웨어 플랫폼과의 통합 및 상호운용성, 야외 및 복잡한 실내 공간과 같은 다양하고 역동적인 환경에서 높은 정확도와 신뢰성을 달성하는 것도 과제입니다. 로봇, 자동차, 증강현실(AR) 등 다양한 산업은 다양한 하드웨어 컴포넌트와 소프트웨어 프레임워크에 의존하고 있으며, SLAM 솔루션과 이러한 기존 플랫폼과의 원활한 통합 및 호환성을 보장하기 위해서는 대규모의 커스터마이징 및 개발 노력이 필요할 수 있습니다. 개발 노력이 필요할 수 있습니다. 또한 다양한 SLAM 시스템 및 표준 간의 상호운용성 문제는 협업의 장애물이 될 수 있으며, 다양한 산업에서 SLAM 기반 용도의 확장성을 저해할 수 있습니다.

SLAM 기술과 관련된 프라이버시 및 보안 문제는 특히 민감한 데이터 및 환경과 관련된 용도에서 문제가 될 수 있으며, SLAM 시스템은 카메라 및 LIDAR와 같은 센서에 의존하여 물리적 공간에 대한 데이터를 수집하고 처리하므로 잠재적인 프라이버시 침해 및 기밀 정보에 대한 무단 액세스에 대한 우려가 있습니다. 기밀 정보에 대한 무단 접근에 대한 우려가 있습니다. 이러한 우려를 해결하고 데이터의 프라이버시와 무결성을 보호하는 강력한 보안 조치를 채택하는 것은 SLAM 기술에 대한 신뢰와 채택을 촉진하는 데 필수적입니다.

목차

제1장 세계의 SLAM(Simultaneous Localization and Mapping) 시장 : 서론

  • 시장 개요
  • 조사 범위
  • 전제조건

제2장 개요

제3장 VERIFIED MARKET RESEARCH의 조사 방법

  • 데이터 마이닝
  • 밸리데이션
  • 일차 자료
  • 데이터 소스 리스트

제4장 세계의 SLAM(Simultaneous Localization and Mapping) 시장 전망

  • 개요
  • 시장 역학
    • 촉진요인
    • 억제요인
    • 기회
  • Porter's Five Forces 모델
  • 밸류체인 분석

제5장 세계의 SLAM(Simultaneous Localization and Mapping) 시장 : 제품별

  • 개요
  • 스파스법과 고밀도법
  • 직접법과 간접법

제6장 세계의 SLAM(Simultaneous Localization and Mapping) 시장 : 용도별

  • 개요
  • 모바일 로봇
  • 스마트 AR
  • 기타

제7장 세계의 SLAM(Simultaneous Localization and Mapping) 시장 : 지역별

  • 개요
  • 북미
    • 미국
    • 캐나다
    • 멕시코
  • 유럽
    • 독일
    • 영국
    • 프랑스
    • 기타 유럽
  • 아시아태평양
    • 중국
    • 일본
    • 인도
    • 기타 아시아태평양
  • 세계의 기타 지역
    • 라틴아메리카
    • 중동 및 아프리카

제8장 세계의 SLAM(Simultaneous Localization and Mapping) 시장 : 경쟁 구도

  • 개요
  • 각사 시장 순위
  • 주요 개발 전략

제9장 기업 개요

  • Google
  • Microsoft
  • Uber
  • Sony
  • Clearpath Robotics
  • Vecna
  • Locus Robotics
  • Fetch Robotics
  • IRobot
  • LG Electronics

제10장 주요 발전

  • 제품 출시/개발
  • 합병과 인수
  • 사업 확대
  • 파트너십과 제휴

제11장 부록

  • 관련 조사
KSA 25.01.17

Simultaneous Localization and Mapping (SLAM) Market Valuation - 2024-2031

Simultaneous Localization and Mapping is a technology that enables devices or robots to understand and map their environment in real-time while simultaneously determining their own position within that environment. Thereby, rendering highly efficient for further application in the military and defense, manufacturing, and other diverse sectors. According to the analyst from Verified Market Research, the Global Simultaneous Localization and Mapping Market has valuation of USD 262 Million in 2023. The forecast by subjugating the revenue of USD 1.8 Billion in 2031.

The market proliferation predominantly ascribes to numerous factors, such as the rising demand for AR/VR applications, the increasing adoption of autonomous vehicles, and advancements in sensor technologies. This upsurge in the application of SLAM enables the market to grow at aCAGR of 41.6% from 2024 to 2031.

Simultaneous Localization and Mapping (SLAM) Market: Definition/ Overview

Simultaneous localization and mapping is the process of creating a map with the help of an unmanned vehicle or a robot that navigates the environment. Simultaneous localization and mapping is a system used in robot cartography or robot mapping. This procedure employs a complex array of computations, algorithms, and sensory inputs to navigate. It allows for the remote creation of geographic information system (GIS) data in situations where the surroundings are dangerous for humans to map. A computational difficulty encountered during map development or upgrade is referred to as simultaneous localization and mapping.

Robots that have been designed to serve the purpose of SLAM applications are referred to as SLAM robots. Simultaneous localization and mapping (SLAM) is a technique employed by robots or unmanned vehicles to generate a map while simultaneously navigating the environment, utilizing the map it generates. Visual SLAM systems need to operate in real-time, so regularly location and mapping data suffer bundle adjustment separately, but simultaneously to facilitate faster processing speeds before they're ultimately merged. The SLAM technology has numerous applications, including augmented reality, projecting virtual images, and a diverse range of field robots. The accuracy has greatly improved with the help of simultaneous localization and mapping technology.

What's inside a VMR industry report?

Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.

Which are the Drivers Encouraging the Global Simultaneous Localization and Mapping (SLAM) Market?

The Global SLAM market is being driven by several key factors that are driving its adoption and growth. One significant factor is the escalating demand for autonomous mobile robots and vehicles across diverse industries. These robotics and vehicles rely on SLAM technology to navigate and map their surroundings accurately without human intervention.

As industries such as manufacturing, logistics, and agriculture continue to automate their operations, the demand for robust SLAM solutions continues to grow. The escalating popularity of augmented reality (AR) and virtual reality (VR) applications. SLAM technology has a crucial role in enabling immersive AR experiences by accurately tracking the user's position and surroundings in real time.

In virtual reality applications, SLAM facilitates the creation of authentic virtual environments by mapping physical spaces and seamlessly integrating digital content. The increasing use cases for AR and VR in gaming, entertainment, education, and enterprise applications are driving demand for advanced SLAM solutions.

Furthermore, advances in sensor technology, particularly in the fields of LIDAR, camera systems, and inertial sensors, have greatly improved the accuracy and reliability of SLAM algorithms. These technological advances have led to the development of more robust and efficient SLAM systems that are capable of operating in diverse environments and under challenging conditions. Consequently, various industries, such as robotics, automotive, and consumer electronics, challenges are increasingly incorporating SLAM technology into their products and services to enhance their performance and functionality.

What are the Challenges Plummeting the Sales of Simultaneous Localization and Mapping?

Despite the promising opportunities, the global SLAM market faces several challenges that could hinder its widespread adoption and growth. The complexity and computational rigor of SLAM algorithms, particularly in the context of real-time applications. The development of robust SLAM systems that are capable of precisely mapping environments and tracking positions in real time while efficiently managing computational resources, remains a technical obstacle.

Furthermore, it is challenging to achieve high accuracy and reliability in diverse and dynamic environments, such as outdoor settings or cluttered indoor spaces. The integration and interoperability of SLAM systems with existing hardware and software platforms. Numerous industries, including robotics, automotive, and augmented reality, rely on a diverse array of hardware components and software frameworks. It can be difficult and require extensive customization and development efforts to ensure seamless integration and compatibility between SLAM solutions and these existing platforms. Furthermore, interoperability concerns among diverse SLAM systems and standards may pose obstacles to collaboration and hinder the scalability of SLAM-based applications across diverse industries.

Privacy and security concerns associated with SLAM technology pose challenges, especially in applications involving sensitive data or environments. Since SLAM systems rely on sensors such as cameras and LIDAR to collect and process data about physical spaces, there are concerns about potential privacy breaches and unauthorized access to sensitive information. Addressing these concerns and adopting robust security measures to protect data privacy and integrity are essential for fostering trust and adoption of SLAM technology.

Category-Wise Acumens

Will Increase in the Production of UAVs Boost the Growth of the Market?

According to VMR analysis, the escalating utilization of unmanned Aerial Vehicles (UAVs), commonly referred to as drones, is presently poised to significantly impact the expansion of enterprises operating in diverse industries. UAVs provide numerous advantages across various industries, including enhanced operational efficacy, cost reduction, enhanced safety, and access to remote or hazardous environments. In various industries, such as agriculture, construction, infrastructure inspection, aerial photography, and emergency response, unmanned aerial vehicles (UAVs) provide companies with the opportunity to acquire valuable data, monitor assets, and execute tasks with greater speed, precision, and flexibility.

In agriculture, UAVs equipped with specialized sensors can monitor crop health, assess soil conditions, and optimize irrigation and pesticide application, leading to higher yields and reduced resource usage. In construction and infrastructure, UAVs can perform aerial surveys, monitor construction progress, and inspect structures, improving project planning, monitoring, and maintenance processes while reducing costs and risks associated with manual inspections. In industries such as oil and gas, utilities, and public safety, UAVs can conduct aerial surveillance, monitor pipelines and power lines, and assist in search and rescue operations, enhancing operational efficiency and safety. This surging application of UAVs is bolstering demand for SLAM over the forecast period.

How will Sales of Deep Learning Based SLAM Fare for SLAM Market?

Deep Learning Based Simultaneous Localization and Mapping (SLAM) is experiencing significant growth. Deep learning techniques have revolutionized the field of computer vision, enabling more accurate and robust perception capabilities. Deep learning models can extract meaningful features from sensor data, such as images and point clouds, by leveraging neural networks and large datasets. This allows for more precise localization and mapping in complex environments.

The increasing availability of powerful hardware, such as graphics processing units (GPUs) and specialized accelerators like tensor processing units (TPUs), has facilitated the training and deployment of deep learning models for SLAM applications. These hardware advances enable faster processing of large volumes of sensor data, making real-time SLAM feasible even on resource-constrained devices.

The proliferation of data-driven approaches and open-source frameworks has lowered the barrier to entry for developers and researchers interested in implementing SLAM solutions. The democratization of technology has sparked innovation and collaboration within the SLAM community, resulting in rapid advancements in algorithmic performance and scalability.

Global Simultaneous Localization and Mapping Report Methodology

Country/Region-wise Acumens

Which Region has the Most Potential for Growth in Simultaneous Localization and Mapping?

The Asia-Pacific region presents significant potential for the advancement of Simultaneous Localization and Mapping (SLAM) technology. With the rapid expansion of economies, the escalating urbanization, and the escalating investments in robotics, autonomous vehicles, and augmented reality applications, there is a rising demand for precise and dependable localization and mapping solutions across diverse industries.

Countries such as China, Japan, and South Korea are at the forefront of technological innovation, with thriving ecosystems of research institutions, start-ups, and established companies driving advancements in SLAM algorithms and applications.

Moreover, the extensive manufacturing base and consumer market in the region present ample prospects for the deployment of SLAM-enabled products and services, rendering Asia-Pacific a crucial growth market for SLAM technology.

Which Region is Dominating in Simultaneous Localization and Mapping Market?

North America is emerging as a dominant force within the Simultaneous Localization and Mapping (SLAM) market. This prominence is attributed to several factors. North America has a strong ecosystem of technology companies, research institutions, and start-ups that specialize in robotics, autonomous vehicles, augmented reality, and other SLAM-enabled applications.

Silicon Valley, California, and the Boston area, Massachusetts, are major hubs for innovation and investment in SLAM technology. Furthermore, North America is home to leading players in the automotive industry, who are investing heavily in autonomous driving technology and leveraging SLAM for localization and mapping capabilities.

Favorable government initiatives, supportive regulatory frameworks, and high consumer acceptance of emerging technologies further contribute to North America's dominance in the SLAM market. In general, the region continues to hold a significant position in the research, development, and commercialization of SLAM solutions, rendering it a pivotal player in the global market landscape.

Competitive Landscape

The competitive landscape in global simultaneous localization and mapping markets is dynamic and evolving, driven by changing customer preferences, technological advancements, and market dynamics. Providers continue to innovate and differentiate their offerings to stay competitive and capture market share in this rapidly growing industry.

Some of the prominent players operating in the global simultaneous localization and mapping Market include:

Alphabet

Amazon Robotics

Apple

Microsoft

Clearpath Robotics

Aethon

The Hi-Tech Robotic Systemz

Facebook

Intellias

MAXST

Intel

Magic Leap

Rethink Robotics

Skydio

NavVis

Mobile Industrial Robot Aps

Google

Uber

Sony

Vecna

Locus Robotics

Fetch Robotics

IRobot

LG Electronics

Wikitude

SLAM

DJI

AVIC

Latest Developments:

In October 2020, Apple Inc. acquired Vilynx Inc. Apple's artificial intelligence solutions, which are merged with the iPhone and its applications, strengthened as an outcome of this acquisition.

In February 2020, Facebook, Inc., acquired Scape Technologies Ltd. The acquisition provides Facebook with such a huge number of SLAM-based augmented reality possibilities.

In December 2018, Intel (US) partnered with Waymo (US), an Alphabet subsidiary capable of providing computational power for Level 4 and 5 autonomous vehicles.

In June 2020, OTTO Motors, a Clearpath Robotics division, raised USD 29 million in Series C funding to support the continued growth of its autonomous mobile robot (AMR) platform. This funding was used to increase OTTO's global network of delivery partners and boost its product roadmap for corporate clients, with a focus on the company's industry-leading automation technology.

In May 2020, Kudan Inc has developed KudanSLAM1 in ToF cameras utilizing Analog Devices, K.K. products, as well as the collaborative development of 3D SLAM demonstration software running on ROS. The use of ToF cameras in independent robotics enables 3D SLAM to function even in dimly lit environments where standalone RGB cameras are ineffective.

TABLE OF CONTENTS

1. INTRODUCTION OF GLOBAL SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) MARKET

  • 1.1. Overview of the Market
  • 1.2. Scope of Report
  • 1.3. Assumptions

2. EXECUTIVE SUMMARY

3. RESEARCH METHODOLOGY OF VERIFIED MARKET RESEARCH

  • 3.1. Data Mining
  • 3.2. Validation
  • 3.3. Primary Interviews
  • 3.4. List of Data Sources

4. GLOBAL SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) MARKET OUTLOOK

  • 4.1. Overview
  • 4.2. Market Dynamics
    • 4.2.1. Drivers
    • 4.2.2. Restraints
    • 4.2.3. Opportunities
  • 4.3. Porters Five Force Model
  • 4.4. Value Chain Analysis

5. GLOBAL SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) MARKET, BY PRODUCT

  • 5.1. Overview
  • 5.2. Sparse and Dense Methods
  • 5.3. Direct and Indirect Methods

6. GLOBAL SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) MARKET, BY APPLICATION

  • 6.1. Overview
  • 6.2. Mobile Robots
  • 6.3. Smart AR
  • 6.4. Other

7. GLOBAL SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) MARKET, BY GEOGRAPHY

  • 7.1 Overview
  • 7.2 North America
    • 7.2.1 U.S.
    • 7.2.2 Canada
    • 7.2.3 Mexico
  • 7.3 Europe
    • 7.3.1 Germany
    • 7.3.2 U.K.
    • 7.3.3 France
    • 7.3.4 Rest of Europe
  • 7.4 Asia Pacific
    • 7.4.1 China
    • 7.4.2 Japan
    • 7.4.3 India
    • 7.4.4 Rest of Asia Pacific
  • 7.5 Rest of the World
    • 7.5.1 Latin America
    • 7.5.2 Middle East and Africa

8. GLOBAL SIMULTANEOUS LOCALIZATION AND MAPPING (SLAM) MARKET COMPETITIVE LANDSCAPE

  • 8.1. Overview
  • 8.2. Company Market Ranking
  • 8.3. Key Development Strategies

9. COMPANY PROFILES

  • 9.1. Google
    • 9.1.1 Overview
    • 9.1.2 Financial Performance
    • 9.1.3 Product Outlook
    • 9.1.4 Key Developments
  • 9.2. Microsoft
    • 9.2.1. Overview
    • 9.2.2. Financial Performance
    • 9.2.3. Product Outlook
    • 9.2.4. Key Developments
  • 9.3. Uber
    • 9.3.1. Overview
    • 9.3.2. Financial Performance
    • 9.3.3. Product Outlook
    • 9.3.4. Key Developments
  • 9.4. Sony
    • 9.4.1. Overview
    • 9.4.2. Financial Performance
    • 9.4.3. Product Outlook
    • 9.4.4. Key Developments
  • 9.5. Clearpath Robotics
    • 9.5.1. Overview
    • 9.5.2. Financial Performance
    • 9.5.3. Product Outlook
    • 9.5.4. Key Developments
  • 9.6. Vecna
    • 9.6.1. Overview
    • 9.6.2. Financial Performance
    • 9.6.3. Product Outlook
    • 9.6.4. Key Developments
  • 9.7. Locus Robotics
    • 9.7.1. Overview
    • 9.7.2. Financial Performance
    • 9.7.3. Product Outlook
    • 9.7.4. Key Developments
  • 9.8. Fetch Robotics
    • 9.8.1. Overview
    • 9.8.2. Financial Performance
    • 9.8.3. Product Outlook
    • 9.8.4. Key Developments
  • 9.9. IRobot
    • 9.9.1. Overview
    • 9.9.2. Financial Performance
    • 9.9.3. Product Outlook
    • 9.9.4. Key Developments
  • 9.10. LG Electronics
    • 9.10.1. Overview
    • 9.10.2. Financial Performance
    • 9.10.3. Product Outlook
    • 9.10.4. Key Developments

10 KEY DEVELOPMENTS

  • 10.1 Product Launches/Developments
  • 10.2 Mergers and Acquisitions
  • 10.3 Business Expansions
  • 10.4 Partnerships and Collaborations

11 Appendix

  • 11.1 Related Research
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제