½ÃÀ庸°í¼­
»óǰÄÚµå
1735899

À¯·´ÀÇ ÀÚÀ²ÁÖÇàÂ÷ ½Ã¹Ä·¹ÀÌ¼Ç ¼Ö·ç¼Ç ½ÃÀå : ¿ëµµº°, Á¦Ç°º°, ±¹°¡º° - ºÐ¼® ¹× ¿¹Ãø(2025-2035³â)

Europe Autonomous Vehicle Simulation Solutions Market: Focus on Application, Product, and Country-Level Analysis - Analysis and Forecast, 2025-2035

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: BIS Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 1-5ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

À¯·´ÀÇ ÀÚÀ²ÁÖÇàÂ÷ ½Ã¹Ä·¹ÀÌ¼Ç ¼Ö·ç¼Ç ½ÃÀå ±Ô¸ð´Â 2024³â 4¾ï 650¸¸ ´Þ·¯¿¡ ´ÞÇß½À´Ï´Ù.

ÀÌ ½ÃÀåÀº 12.45%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î È®´ëµÉ Àü¸ÁÀ̸ç, 2035³â¿¡´Â 14¾ï 9,590¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù. EUÀÇ ¾ö°ÝÇÑ ¾ÈÀü ¹× ¹è±â°¡½º¹ý ¾Æ·¡, ÀÚµ¿Â÷ Á¦Á¶¾÷ü³ª ÇÏÀÌÅ×Å© ±â¾÷Àº ADAS(¼±Áø ¿îÀü Áö¿ø ½Ã½ºÅÛ)³ª ¿ÏÀü ÀÚÀ² ÁÖÇàÂ÷ÀÇ µµÀÔÀ» °¡¼Ó½Ã۰í ÀÖ¾î, À̰ÍÀÌ À¯·´ÀÇ ÀÚÀ² ÁÖÇàÂ÷ ½Ã¹Ä·¹ÀÌ¼Ç ¼Ö·ç¼Ç ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. EUÀÇ Horizon Europe ¿¬±¸ ÀÚ±Ý ¹× EuroNCAP ÇÁ·ÎÅäÄÝ °³¹ß µîÀÇ ÇÁ·Î±×·¥ °á°ú, Ãæ½Çµµ°¡ ³ô°í ÇÕ¸®ÀûÀÎ °¡°ÝÀÇ °¡»ó Å×½ºÆ® Ç÷§Æû¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¾Ï½ºÅ׸£´ãÀÇ Ä¿³ØÆ¼µå ÀÎÇÁ¶ó ½ÇÇè°ú ¹ÀÇîÀÇ µðÁöÅÐ ±³Åë °ü¸® µî ½º¸¶Æ®½ÃƼ ±¸»óÀÇ È®´ë·Î À¯·´ÀÇ µ¥ÀÌÅÍ ÁÖ±Ç ÇÁ·¹ÀÓ¿öÅ© ³»¿¡ ¼ö¿ëµÇ´Â Ŭ¶ó¿ìµå ±â¹Ý ½Ã¹Ä·¹ÀÌ¼Ç ¼­ºñ½º¿¡ »õ·Î¿î °¡´É¼ºÀÌ »ý°Ü³ª°í ÀÖ½À´Ï´Ù. ±×·¯³ª °íµµÀÇ ½Ã¹Ä·¹À̼ǿë Çϵå¿þ¾î¿Í ¼ÒÇÁÆ®¿þ¾îÀÇ °í°¡ ºñ¿ë, À¯·´ÀÇ ´Ù¾çÇÑ µµ·Îȯ°æ ½Ã¹Ä·¹À̼ÇÀÇ ¾î·Á¿ò, GDPR¿¡ ±Ù°ÅÇÑ µ¥ÀÌÅÍ º¸È£ ±ÔÁ¦ÀÇ ¾ö°ÝÇÔ µîÀÌ º¸±Þ¿¡ ¹æÇذ¡ µÇ°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
¿¹Ãø ±â°£ 2025-2035³â
Æò°¡¾×(2025³â) 4¾ï 6,260¸¸ ´Þ·¯
¿¹Ãø(2035³â) 14¾ï 9,590¸¸ ´Þ·¯
CAGR 12.45%

À¯·´ÀÇ ÀÚÀ²ÁÖÇàÂ÷ ½Ã¹Ä·¹ÀÌ¼Ç ¼Ö·ç¼Ç ½ÃÀåÀº EUÀÇ ¾ÈÀü ¹× µ¥ÀÌÅÍ º¸È£¿¡ °üÇÑ ¹ý·üÀÌ º¯È­ÇÏ´Â °¡¿îµ¥ OEM, Tier 1 °ø±Þ¾÷ü, ¿¬±¸±â°üÀÌ È®À强ÀÌ ÀÖ¾î ÇÕ¸®ÀûÀÎ °¡°ÝÀÇ °ËÁõ Ç÷§ÆûÀ» ¿ä±¸ÇÏ´Â °¡¿îµ¥ ±Þ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Ç¥ÁØÈ­µÈ ½Ã³ª¸®¿À ¶óÀ̺귯¸®(OpenSCENARIO, OpenDRIVE) »ó¿¡ ±¸ÃàµÈ µµ½Ã, ±³¿Ü, °í¼Óµµ·Î ȯ°æÀÇ Ãæ½Çµµ°¡ ³ôÀº µðÁöÅÐ Æ®À©¿¡ ÀÇÇØ ½ÇÁ¦ ÇÁ·ÎÅäŸÀÔ°ú °°Àº ºñ¿ëÀ̳ª À§ÇèÀ» ¼ö¹ÝÇÏÁö ¾Ê°í ÀÚµ¿ÁÖÂ÷, ADAS ±â´É, ¿ÏÀüÇÑ ÀÚÀ²¼ºÀÇ Çö½ÇÀûÀÎ Å×½ºÆ®°¡ °¡´ÉÇØÁý´Ï´Ù. Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ¾ÆÅ°ÅØÃ³¸¦ äÅÃÇÑ ¿¤¶ó½ºÆ½ÇÑ HPC ¹é¿£µå¸¦ ÅëÇØ ÀÌÇØ°ü°èÀÚ´Â ¼ö¹é¸¸ °³ÀÇ ½Ã³ª¸®¿À¸¦ µ¿½Ã¿¡ ½ÇÇàÇÒ ¼ö ÀÖÀ¸¸ç, ¿¡Áö¿¡ ¹èÄ¡µÈ ½Ã¹Ä·¹ÀÌ¼Ç ³ëµå´Â Ä¿³ØÆ¼µåÄ«¸¦ Æ÷ÇÔÇÑ »ç¿ë »ç·ÊÀÇ ³·Àº ´ë±â½Ã°£ °ËÁõÀ» ¿ëÀÌÇÏ°Ô ÇÕ´Ï´Ù.

AI¸¦ Ȱ¿ëÇÑ ½Ã³ª¸®¿À »ý¼º, ¼¾¼­ À¶ÇÕ Å×½ºÆ®, ¸Ó½Å·¯´× ±â¹Ý °ËÁõ ¸ðµâÀÇ °³¹ßÀº Horizon Europe ¹× °¢±¹ÀÇ ¿¬±¸°³¹ß ÇÁ·ÎÁ§Æ®¿¡¼­ ÀÚ±ÝÀ» Á¦°øÇÔÀ¸·Î½á °¡¼ÓÇϰí ÀÖ½À´Ï´Ù. ¹ÀÇî, ¾Ï½ºÅ׸£´ã, ½ºÅåȦ¸§ÀÇ ½º¸¶Æ®½ÃƼ ÇÁ·ÎÁ§Æ®¿¡¼­´Â µðÁöÅаú ¹°¸®ÀûÀÎ ½ÃÇè ¿µ¿ªÀ» ¿¬°áÇÔÀ¸·Î½á °¡»ó ¼³Á¤À» °³¼±Çϱâ À§ÇÑ ½Ç¼¼°è µ¥ÀÌÅÍÀÇ ÀÎDzÀ» Á¦°øÇϰí ÀÖ½À´Ï´Ù. ÇÑÆí, ¾ö°ÝÇÑ GDPR ±ÔÁ¦¿Í UNECE WP.29 »çÀ̹ö º¸¾È °¡À̵å¶óÀÎÀ» ÅëÇØ °­È­µÈ ¼ÒÇÁÆ®¿þ¾î ½ºÅðú ¾ÈÀüÇϰí À͸íÈ­µÈ µ¥ÀÌÅÍ ÆÄÀÌÇÁ¶óÀο¡ ´ëÇÑ ÅõÀÚ°¡ ÃßÁøµÇ°í ÀÖ½À´Ï´Ù.

Ư¼öÇÑ ½Ã¹Ä·¹ÀÌ¼Ç ¼ÒÇÁÆ®¿þ¾î ¹× ¿ÂÇÁ·¹¹Ì½º ±â±â¿¡ ´ëÇÑ °í¾×ÀÇ ¼±Çà ÅõÀÚ, µ¶ÀÚÀûÀÎ Åø üÀΰ£ÀÇ È£È¯¼ºÀÇ °¸, ÈÆ·ÃÀ» ¹ÞÀº ½Ã¹Ä·¹ÀÌ¼Ç ¿£Áö´Ï¾îÀÇ ºÎÁ· µîÀÌ Àå¾Ö°¡ µÇ°í ÀÖ½À´Ï´Ù. ±×·¯³ª, ÀÌ·¯ÇÑ ÀåÇØ´Â, Çù·ÂÀûÀÎ ÄÁ¼Ò½Ã¾öÀ̳ª, ÄÁÅ×À̳ÊÈ­µÈ ¸ðµâ·¯ ½Ã½ºÅÛ¿¡ÀÇ ÀÇÁ¸ÀÇ °íÁ¶¿¡ ÀÇÇØ¼­ °æ°¨µÇ°í ÀÖ½À´Ï´Ù. ÇâÈÄ 5G ¿¡Áö ÄÄÇ»ÆÃ, AI¸¦ Ȱ¿ëÇÑ ½Ã³ª¸®¿À ¿ÀÄɽºÆ®·¹À̼Ç, ¹üÀ¯·´Àû ÀÎÁõ Çϸð´ÏÁ¦À̼ÇÀÇ À¶ÇÕÀ¸·Î À¯·´ÀÌ ÀÚÀ²ÁÖÇàÂ÷ °ËÁõ ±â¼ú ¼¼°è ¼±µÎÁÖÀÚ°¡ µÉ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

½ÃÀå ¼¼ºÐÈ­

¼¼ºÐÈ­ 1 : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÀÚµ¿Â÷ OEM ¹× ÀÚÀ² ÁÖÇà ±â¼ú °³¹ß ±â¾÷
  • Tier 1 ¹× Tier 2 ºÎǰ Á¦Á¶¾÷ü
  • ´ëÇÐ ¹× ¿¬±¸¼¾ÅÍ, ±â¼ú±â¾÷, ±ÔÁ¦±â°ü

¼¼ºÐÈ­ 2 : ÀÚÀ² ÁÖÇà ·¹º§º°

  • ·¹º§ 1 ¹× 2(ºÎºÐ ¿îÀü Áö¿ø)
  • ·¹º§ 3 ¹× 4(ÁØÀÚµ¿¿îÀü-°íÀÚµ¿¿îÀü)
  • ·¹º§ 5(¿ÏÀü ÀÚµ¿È­)

¼¼ºÐÈ­ 3 : Á¦Ç°º°

  • ¼ÒÇÁÆ®¿þ¾î
  • ¼­ºñ½º

¼¼ºÐÈ­ 4 : Àü°³º°

  • ¿ÂÇÁ·¹¹Ì½º
  • Ŭ¶ó¿ìµå

¼¼ºÐÈ­ 5 : Áö¿ªº°

  • À¯·´-µ¶ÀÏ, ÇÁ¶û½º, ¿µ±¹, ½ºÆäÀÎ µî

À¯·´ÀÇ ÀÚÀ²ÁÖÇà ½Ã¹Ä·¹ÀÌ¼Ç ¼Ö·ç¼Ç ½ÃÀå µ¿Çâ°ú ÃËÁø¿äÀÎ ¹× °úÁ¦

½ÃÀå µ¿Çâ

  • EUÀÇ µµ·Î ȯ°æÀ» ¸®¾óÇÏ°Ô ÀçÇöÇϱâ À§ÇÑ °íÃæ½Çµµ µðÁöÅÐ Æ®À© ½Ã³ª¸®¿À ¶óÀ̺귯¸®(OpenSCENARIO, OpenDRIVE) ä¿ë
  • È®Àå °¡´ÉÇÑ HPC ¹é¿£µå¸¦ °®Ãá Ŭ¶ó¿ìµå ³×ÀÌÆ¼ºê ½Ã¹Ä·¹ÀÌ¼Ç Ç÷§Æû ¼ºÀå
  • °¡»ó ȯ°æ¿¡¼­ ¸ÖƼ ¼¾¼­(LiDAR, ·¹ÀÌ´õ, Ä«¸Þ¶ó)ÀÇ À¶ÇÕ Å×½ºÆ® ÅëÇÕ
  • Euro NCAP ÇÁ·ÎÅäÄÝ ¹× UNECE WP.29 ÁöħÀ» ÅëÇÑ Ç¥ÁØÈ­ ³ë·Â
  • OEM, Tier-1 °ø±Þ¾÷ü, ¿¬±¸ ±â°üÀ» ¿¬°áÇÏ´Â °øµ¿ »ýŰè

½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ

  • EUÀÇ ¾ö°ÝÇÑ ¾ÈÀü ¹× ¹è±â °¡½º ±ÔÁ¦(Euro NCAP, GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)¿¡ ÁذÅÇÑ µ¥ÀÌÅÍ Ã³¸®)
  • AV ½Ã¹Ä·¹ÀÌ¼Ç R&D¿¡ ÀÚ±ÝÀ» Á¦°øÇÏ´Â Horizon Europe¿Í °¢±¹ÀÇ R&D º¸Á¶±Ý
  • ¹ÀÇîÀ̳ª ¾Ï½ºÅ׸£´ã µîÀÇ µµ½Ã¿¡¼­ ½º¸¶Æ® ½ÃƼ Àü°³¿¡ ÀÇÇØ Ä¿³ØÆ¼µå ºñŬ °ËÁõ ÇÊ¿ä
  • °¡»ó °ËÁõ ´ë ½ÇÁ¦ ÁÖÇà Å×½ºÆ®¿¡¼­ OEM ºñ¿ë Àý°¨ ¸ñÇ¥
  • ADASÀÇ ½Å·Ú¼º ¹× ¾ÈÀü¼º °ËÁõ¿¡ ´ëÇÑ ¼ÒºñÀÚ ¿ä±¸ Áõ°¡

½ÃÀåÀÇ °úÁ¦

  • Àü¿ë ½Ã¹Ä·¹ÀÌ¼Ç ¼ÒÇÁÆ®¿þ¾î¿Í ¿ÂÇÁ·¹¹Ì½º Çϵå¿þ¾î¿¡ ´ëÇÑ °í¾×ÀÇ ¼±Çà ÅõÀÚ
  • À¯·´ÀÇ ´Ù¾çÇÑ ÁöÇü, ³¯¾¾, ±³Åë ±ÔÄ¢ÀÇ ¸ðµ¨¸µÀÇ º¹À⼺
  • GDPR(EU °³ÀÎÁ¤º¸º¸È£±ÔÁ¤)¿¡ ÁذÅÇÑ µ¥ÀÌÅÍÀÇ À͸íÈ­ ¹× °øÀ¯ ½Ã¹Ä·¹ÀÌ¼Ç µ¥ÀÌÅÍ ¼¼Æ®ÀÇ »çÀ̹ö º¸¾È È®º¸
  • µ¶ÀÚÀûÀÎ ½Ã¹Ä·¹ÀÌ¼Ç Åø üÀΰ£ÀÇ »óÈ£ ¿î¿ë¼ºÀÇ °¸
  • ½Ã¹Ä·¹ÀÌ¼Ç ¿£Áö´Ï¾î¸µ ¹× °ËÁõ ±â¹ýÀÇ ½ºÅ³ ºÎÁ·

Á¦Ç° ¹× Çõ½Å Àü·« : Á¦Ç° ºÎ¹®Àº ÃÖÁ¾ »ç¿ëÀÚ(ÀÚµ¿Â÷ OEM ¹× ÀÚÀ² ÁÖÇà ±â¼ú °³¹ß ±â¾÷, Tier 1 ¹× Tier 2 ºÎǰ Á¦Á¶¾÷ü, ´ëÇÐ ¹× ¿¬±¸¼¾ÅÍ, ±â¼ú ±â¾÷, ±ÔÁ¦ ±â°ü), ÀÚÀ² ÁÖÇà ¼öÁغ°(·¹º§ 1 ¹× 2(ºÎºÐ) ¿îÀü Áö¿ø), ·¹º§ 3 ¹× 4(ÁØ-°íµµ ÀÚµ¿È­), ·¹º§ 5(¿ÏÀü ÀÚµ¿È­), Á¦Ç°º°(¼ÒÇÁÆ®¿þ¾î ¹× ¼­ºñ½º), Àü°³º°(¿ÂÇÁ·¹¹Ì½º ¹× Ŭ¶ó¿ìµå), ÀÚÀ² ÁÖÇà ½Ã¹Ä·¹ÀÌ¼Ç ¼Ö·ç¼ÇÀÇ ´Ù¾çÇÑ ¿ëµµ¸¦ ÀÌÇØÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. À¯·´ÀÇ ÀÚÀ²ÁÖÇàÂ÷ ½Ã¹Ä·¹ÀÌ¼Ç ¼Ö·ç¼Ç ½ÃÀåÀº Áö¼ÓÀûÀÎ ±â¼ú Áøº¸, ÅõÀÚ Áõ°¡, ±ÔÁ¦ ÁؼöÀÇ Á߿伺¿¡ ´ëÇÑ ÀǽÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó Å©°Ô È®´ëµÉ Àü¸ÁÀÔ´Ï´Ù.

¼ºÀå ¹× ¸¶ÄÉÆÃ Àü·« : À¯·´ÀÇ ÀÚÀ² ÁÖÇà ½Ã¹Ä·¹ÀÌ¼Ç ¼Ö·ç¼Ç ½ÃÀåÀº ±Þ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. À¯·´ÀÇ ÀÚÀ² ÁÖÇà ½Ã¹Ä·¹ÀÌ¼Ç ¼Ö·ç¼Ç ½ÃÀåÀº ±âÁ¸ ¹× ½ÅÈï ½ÃÀå ÁøÃâ ±â¾÷¿¡ Å« ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ ºÎ¹®¿¡¼­ ´Ù·ç´Â Àü·«¿¡´Â M&A, Á¦Ç° ÅõÀÔ, Á¦ÈÞ ¹× Çù·Â, »ç¾÷ È®´ë, ÅõÀÚ µîÀÌ ÀÖ½À´Ï´Ù. ±â¾÷ÀÌ ½ÃÀå¿¡¼­ÀÇ ÁöÀ§¸¦ À¯ÁöÇÏ°í °­È­Çϱâ À§ÇØ ¼±È£ÇÏ´Â Àü·«¿¡´Â ÁÖ·Î Á¦Ç° °³¹ßÀÌ Æ÷ÇԵ˴ϴÙ.

°æÀï Àü·« : º» ¿¬±¸¿¡¼­ ºÐ¼® ¹× ÇÁ·ÎÆÄÀϸµÇÑ À¯·´ ÀÚÀ²ÁÖÇà Â÷·® ½Ã¹Ä·¹ÀÌ¼Ç ¼Ö·ç¼Ç ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷ ÇÁ·ÎÆÄÀÏ¿¡´Â ÀÚµ¿Â÷ ¹× ÀÚµ¿Â÷ ¿µ¿ªÀÇ Àü¹® Áö½ÄÀ» °¡Áø Àü¹®°¡°¡ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. ¶ÇÇÑ, Á¦ÈÞ, ÇÕÀÇ ¹× Çù·Â µîÀÇ Á¾ÇÕÀûÀÎ °æÀï ±¸µµ´Â ½ÃÀåÀÇ ¹Ì°³Ã´ ¼öÀÍ Æ÷ÄÏÀ» ÀÌÇØÇϴµ¥ µ¶ÀÚ¸¦ Áö¿øÇÒ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

º» º¸°í¼­¿¡¼­´Â À¯·´ÀÇ ÀÚÀ²ÁÖÇàÂ÷ ½Ã¹Ä·¹ÀÌ¼Ç ¼Ö·ç¼Ç ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, ½ÃÀå °³¿ä¿Í ÇÔ²² ¿ëµµº°, Á¦Ç°º°, ±¹°¡º° µ¿Çâ, ½ÃÀå ÁøÃâ±â¾÷ ÇÁ·ÎÆÄÀÏ µîÀÇ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

ÁÖ¿ä ¿ä¾à

Á¦1Àå ½ÃÀå

  • µ¿Çâ : Çö»ó°ú Àå·¡¿¡ ´ëÇÑ ¿µÇâ Æò°¡
    • AI ±¸µ¿Çü ½Ã¹Ä·¹ÀÌ¼Ç ¹× µðÁöÅÐ Æ®À©
    • Ŭ¶ó¿ìµå ±â¹Ý ¹× ½Ç½Ã°£ ½Ã¹Ä·¹ÀÌ¼Ç Ç÷§Æû
    • AV ½Ã¹Ä·¹À̼ǿ¡¼­ ¾çÀÚ ÄÄÇ»ÆÃÀÇ ÅëÇÕ
    • ¼¾¼­ ¹× ¿§Áö ÄÄÇ»ÆÃ ½Ã¹Ä·¹À̼ÇÀÇ Áøº¸
    • ½Ã¹Ä·¹ÀÌ¼Ç Ç÷§Æû¿¡ NeRF ÅëÇÕ
    • ½Ç½Ã°£ ·»´õ¸µÀ» À§ÇÑ °¡¿ì½º ½ºÇ÷¡ÆÃÀÇ Áøº¸
  • °ø±Þ¸Á °³¿ä
  • ¿¬±¸°³¹ß ¸®ºä
  • ±ÔÁ¦ »óȲ
  • ºñ±³ ºÐ¼® : µ¥ÀÌÅÍ ±¸µ¿Çü ½Ã¹Ä·¹ÀÌ¼Ç ¼ö¹ý ¹× ±âÁ¸ ½Ã¹Ä·¹ÀÌ¼Ç ¼ö¹ý
  • ÀÚÀ²ÁÖÇàÂ÷ ½Ã¹Ä·¹ÀÌ¼Ç ¼Ö·ç¼ÇÀ¸·Î Ȱ¿ëµÇ´Â ½Ã¹Ä·¹ÀÌ¼Ç ¼ö¹ý
  • ½Ã¹Ä·¹ÀÌ¼Ç ¿ëµµ ÀÌ¿ë »ç·Ê
  • ÁÖ¿ä À̺¥Æ®ÀÇ ¿µÇ⠺м®
  • ½ÃÀå ¿ªÇÐ °³¿ä

Á¦2Àå Áö¿ª

  • Áö¿ª ¿ä¾à
  • ÀÚÀ²ÁÖÇàÂ÷ ½Ã¹Ä·¹ÀÌ¼Ç ¼Ö·ç¼Ç ½ÃÀå : Áö¿ªº°
  • À¯·´
    • Áö¿ª °³¿ä
    • ºñÁî´Ï½º»óÀÇ ÃËÁø¿äÀÎ
    • ºñÁî´Ï½º»óÀÇ °úÁ¦
    • ÁÖ¿ä ½ÃÀå ÁøÃâ±â¾÷
    • ¿ëµµ
    • Á¦Ç°
    • À¯·´(±¹°¡º°)

Á¦3Àå ½ÃÀå : °æÀï º¥Ä¡¸¶Å· ¹× ±â¾÷ ÇÁ·ÎÆÄÀÏ

  • ÇâÈÄ Àü¸Á
  • Áö¸®Àû Æò°¡
    • ½ÃÀå Á¡À¯À² ºÐ¼®
    • Àü·«Àû ÀÌ´Ï¼ÅÆ¼ºê(ÆÄÆ®³Ê½Ê, Àμö, Á¦Ç° Ãâ½Ã)
  • °æÀï º¥Ä¡¸¶Å·
    • °æÀï¿ìÀ§¼º ¹× ½ÃÀå Â÷º°È­ ¿äÀÎ
    • ½ºÅ¸Æ®¾÷ ¹× ½Å±Ô Âü°¡ÀÚ
    • µ¥ÀÌÅÍ ±¸µ¿Çü ½Ã¹Ä·¹À̼ÇÀÇ ½ÅÈï ±â¾÷
  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • AVL List GmbH
    • Dassault Systemes
    • dSPACE GmbH
    • Hexagon AB
    • rFpro
    • aiMotive

Á¦4Àå Á¶»ç ¹æ¹ý

AJY 25.06.09

Introduction to Europe Autonomous Vehicle Simulation Solutions Market

The Europe autonomous vehicle simulation solutions market was valued at $406.5 million in 2024 and is expected to grow at a CAGR of 12.45% and reach $1,495.9 million by 2035. Under strict EU safety and emissions laws, automakers and tech companies are accelerating the implementation of advanced driver-assistance systems (ADAS) and fully autonomous vehicles, which is driving growth in the European market for autonomous vehicle simulation solutions. The need for high-fidelity, reasonably priced virtual testing platforms is growing as a result of programs like the EU's Horizon Europe research funding and Euro NCAP's developing protocols. The expansion of smart-city initiatives, such as Amsterdam's connected infrastructure experiments and Munich's digital traffic management, is opening up new possibilities for cloud-based simulation services housed inside European data-sovereignty frameworks. Widespread adoption is still hampered by the expensive cost of sophisticated simulation hardware and software, the difficulty of simulating various European road settings, and the strict GDPR-driven data protection regulations.

Market Introduction

KEY MARKET STATISTICS
Forecast Period2025 - 2035
2025 Evaluation$462.6 Million
2035 Forecast$1,495.9 Million
CAGR12.45%

The market for autonomous vehicle simulation solutions in Europe is growing quickly as OEMs, Tier-1 suppliers, and research institutions look for scalable, reasonably priced validation platforms in light of changing EU safety and data-protection laws. Built on standardised scenario libraries (OpenSCENARIO, OpenDRIVE), high-fidelity digital twins of urban, suburban, and highway environments allow for realistic testing of automatic parking, ADAS features, and complete autonomy without the cost and danger of actual prototypes. Elastic HPC back-ends with cloud-native architectures enable stakeholders to execute millions of scenarios concurrently, and simulation nodes deployed on the edge facilitate low-latency validation for use cases including connected vehicles.

The development of AI-driven scenario generation, sensor-fusion testing, and machine-learning-based validation modules is accelerated by funding from Horizon Europe and national R&D projects. By connecting the digital and physical testing realms, smart-city projects in Munich, Amsterdam, and Stockholm offer real-world data inputs to improve virtual settings. In the meantime, investments in fortified software stacks and safe, anonymised data pipelines are driven by the strict GDPR regulations and the UNECE WP.29 cybersecurity guidelines.

High upfront expenditures for specialised simulation software and on-premises gear, compatibility gaps across proprietary toolchains, and a scarcity of trained simulation engineers are all obstacles. These obstacles are being lessened, though, by cooperative consortiums and an increasing reliance on containerised, modular systems. In the future, Europe is expected to become a global leader in autonomous vehicle validation technology thanks to the convergence of 5G-enabled edge computing, AI-powered scenario orchestration, and pan-European certification harmonisation.

Market Segmentation

Segmentation 1: by End Users

  • Automotive OEMs and Autonomous Driving Technology Development Companies
  • Tier-1 and Tier-2 Component Manufacturers
  • University and Research Centers, Technology Companies, and Regulatory Bodies

Segmentation 2: by Level of Autonomy

  • Levels 1 and 2 (Partially Assisted Driving)
  • Levels 3 and 4 (Semi to High Automation)
  • Level 5 (Full Automation)

Segmentation 3: by Product

  • Software
  • Services

Segmentation 4: by Deployment

  • On-Premises
  • Cloud

Segmentation 5: by Region

  • Europe: Germany, France, U.K., Spain, and Rest-of-Europe

Europe Autonomous Vehicle Simulation Solutions Market Trends, Drivers and Challenges

Market Trends

  • Adoption of high-fidelity digital twins and scenario libraries (OpenSCENARIO, OpenDRIVE) for realistic EU road environments
  • Growth of cloud-native simulation platforms with scalable HPC back-ends
  • Integration of multi-sensor (LiDAR, radar, camera) fusion testing in virtual environments
  • Standardization efforts via Euro NCAP protocols and UNECE WP.29 guidelines
  • Collaborative ecosystems linking OEMs, Tier-1 suppliers, and research institutions

Market Drivers

  • Stringent EU safety and emissions regulations (Euro NCAP, GDPR-compliant data handling)
  • Horizon Europe and national R&D grants funding AV simulation R&D
  • Smart-city deployments in cities like Munich and Amsterdam requiring connected-vehicle validation
  • OEM cost-reduction goals for virtual validation vs. on-road testing
  • Rising consumer demand for verified ADAS reliability and safety

Market Challenges

  • High upfront investment in specialized simulation software and on-premises hardware
  • Complexity in modeling diverse European terrains, weather, and traffic rules
  • Ensuring GDPR-compliant data anonymization and cybersecurity for shared simulation datasets
  • Interoperability gaps between proprietary simulation toolchains
  • Skills shortage in simulation engineering and validation methodologies

How can this report add value to an organization?

Product/Innovation Strategy: The product segment helps the reader understand the different applications of autonomous vehicle simulation solutions on end users (automotive OEMs and autonomous driving technology development companies, tier-1 and tier-2 component manufacturers, and university and research centers, technology companies, and regulatory bodies), by level of autonomy (levels 1 and 2 (partially assisted driving), levels 3 and 4 (semi to high automation), and level 5 (full automation)), by product (software and services), by deployment (on-premises and cloud). The Europe autonomous vehicle simulation solutions market is set for significant expansion with ongoing technological advancements, increased investments, and growing awareness of the importance of regulatory compliance.

Growth/Marketing Strategy: The Europe autonomous vehicle simulation solutions market has been growing rapidly. The autonomous vehicle simulation solutions market in Europe offers enormous opportunities for existing and emerging market players. Some of the strategies covered in this segment are mergers and acquisitions, product launches, partnerships and collaborations, business expansions, and investments. The strategies preferred by companies to maintain and strengthen their market position primarily include product development.

Competitive Strategy: The key players in the Europe autonomous vehicle simulation solutions market analyzed and profiled in the study include professionals with expertise in the automobile and automotive domains. Additionally, a comprehensive competitive landscape such as partnerships, agreements, and collaborations are expected to aid the reader in understanding the untapped revenue pockets in the market.

Key Market Players and Competition Synopsis

The companies profiled in the Europe autonomous vehicle simulation solutions market have been selected based on inputs gathered from primary experts who have analyzed company coverage, product portfolio, and market penetration.

Some of the prominent names in this market are:

  • AVL List GmbH
  • Dassault Systemes
  • dSPACE GmbH
  • Hexagon AB
  • rFpro
  • aiMotive

Table of Contents

Executive Summary

Scope and Definition

1 Markets

  • 1.1 Trends: Current and Future Impact Assessment
    • 1.1.1 AI-Driven Simulation and Digital Twins
    • 1.1.2 Cloud-Based and Real-time Simulation Platforms
    • 1.1.3 Integration of Quantum Computing in AV Simulation
    • 1.1.4 Advancements in Sensor and Edge Computing Simulations
    • 1.1.5 Integration of NeRF in Simulation Platforms
    • 1.1.6 Advancements in Gaussian Splatting for Real-Time Rendering
  • 1.2 Supply Chain Overview
    • 1.2.1 Value Chain Analysis
    • 1.2.2 Pricing Analysis
  • 1.3 Research and Development Review
    • 1.3.1 Patent Filing Trend (by Country, by Company)
  • 1.4 Regulatory Landscape
    • 1.4.1 Europe Autonomous Vehicle Testing Regulations
    • 1.4.2 ISO and SAE Standards for Simulation and Testing
    • 1.4.3 Government and Policy Initiatives Supporting AV Simulation
  • 1.5 Comparative Analysis: Data-Driven vs. Traditional Simulation Methods
  • 1.6 Simulation Methodologies Utilized in Autonomous Vehicle Simulation Solutions
    • 1.6.1 Log-Based Simulation Methods
      • 1.6.1.1 Standard Log Replay
      • 1.6.1.2 AR-Enhanced Log Replay
    • 1.6.2 Model-Based Simulation Methods
      • 1.6.2.1 Abstract Dynamics Simulations
      • 1.6.2.2 Physics-Based Simulations
      • 1.6.2.3 Sensor Simulation Techniques
      • 1.6.2.4 Traffic and Environment Simulations
    • 1.6.3 Data-Driven Simulation Methods
      • 1.6.3.1 Neural Radiance Fields (NeRF)
      • 1.6.3.2 Gaussian Splatting Techniques
      • 1.6.3.3 Generative Adversarial Networks (GANs)
      • 1.6.3.4 Diffusion Models
      • 1.6.3.5 Reinforcement Learning (RL)-Based Simulations
      • 1.6.3.6 Self-Supervised Learning (SSL) World Models
      • 1.6.3.7 Latent Space Simulation Models
      • 1.6.3.8 Surrogate Modeling for AV Simulation
    • 1.6.4 Hybrid Simulation Methods
      • 1.6.4.1 Mixed Neural Simulation
      • 1.6.4.2 End-to-End AV Simulation Platforms
  • 1.7 Application Use Cases for Simulation
    • 1.7.1 ADAS and Autonomous Driving Validation
      • 1.7.1.1 Lane Assist and Collision Avoidance Simulation
      • 1.7.1.2 Automated Parking Assistance Simulation
      • 1.7.1.3 Traffic Sign and Object Detection Simulation
      • 1.7.1.4 Traffic and Environment Simulation
    • 1.7.2 Smart City Traffic Simulation
      • 1.7.2.1 Weather-based Driving Condition Simulations
      • 1.7.2.2 Emergency Vehicle and Pedestrian Interaction Simulations
    • 1.7.3 Sensor and Perception Simulation
      • 1.7.3.1 LiDAR, RADAR, and Camera-Based Perception Simulation
      • 1.7.3.2 Sensor Fusion and Multi-Modal Sensing Simulation
    • 1.7.4 Vehicle Dynamics Testing
      • 1.7.4.1 Mechanical System Response Testing
      • 1.7.4.2 Braking and Acceleration Simulation
    • 1.7.5 Connectivity and V2X Simulation
      • 1.7.5.1 5G and Vehicle Communication Simulations
      • 1.7.5.2 Cybersecurity and Threat Response Testing
  • 1.8 Impact Analysis for Key Events
  • 1.9 Market Dynamics Overview
    • 1.9.1 Market Drivers
      • 1.9.1.1 Rising Adoption of ADAS and Autonomous Vehicles
      • 1.9.1.2 Increasing Demand for Cost-Effective Testing and Validation
      • 1.9.1.3 Demand for High-Fidelity Simulations
      • 1.9.1.4 Growing Concerns on Road Safety and Reduced Testing Risks
      • 1.9.1.5 Advancements in AI and Machine Learning for Simulations
    • 1.9.2 Market Restraints
      • 1.9.2.1 High Costs of Simulation Software and Hardware
      • 1.9.2.2 Complexity in Real-World Scenario Replication
      • 1.9.2.3 Data Privacy and Security Concerns
    • 1.9.3 Market Opportunities
      • 1.9.3.1 Expansion of Smart Cities and Connected Infrastructure
      • 1.9.3.2 Rising Demand for Cloud-Based Simulation Solutions

2 Regions

  • 2.1 Regional Summary
  • 2.2 Autonomous Vehicle Simulation Solutions Market (by Region)
  • 2.3 Europe
    • 2.3.1 Regional Overview
    • 2.3.2 Business Drivers
    • 2.3.3 Business Challenges
    • 2.3.4 Key Market Participants
    • 2.3.5 Application
    • 2.3.6 Product
    • 2.3.7 Europe (by Country)
      • 2.3.7.1 Germany
        • 2.3.7.1.1 Application
        • 2.3.7.1.2 Product
      • 2.3.7.2 France
        • 2.3.7.2.1 Application
        • 2.3.7.2.2 Product
      • 2.3.7.3 U.K.
        • 2.3.7.3.1 Application
        • 2.3.7.3.2 Product
      • 2.3.7.4 Spain
        • 2.3.7.4.1 Application
        • 2.3.7.4.2 Product
      • 2.3.7.5 Rest-of-Europe
        • 2.3.7.5.1 Application
        • 2.3.7.5.2 Product

3 Markets - Competitive Benchmarking & Company Profiles

  • 3.1 Next Frontiers
  • 3.2 Geographic Assessment
    • 3.2.1 Market Share Analysis
    • 3.2.2 Strategic Initiatives (Partnerships, Acquisitions, and Product Launches)
  • 3.3 Competitive Benchmarking
    • 3.3.1 Competitive Advantages and Market Differentiators
    • 3.3.2 Startup and New Entrants
    • 3.3.3 Emerging Players in Data-Driven Simulation
  • 3.4 Company Profiles
    • 3.4.1 AVL List GmbH
      • 3.4.1.1 Overview
      • 3.4.1.2 Top Products/Product Portfolio
      • 3.4.1.3 Top Competitors
      • 3.4.1.4 Target Customers/End Users
      • 3.4.1.5 Key Personnel
      • 3.4.1.6 Analyst View
      • 3.4.1.7 Market Share, 2023
    • 3.4.2 Dassault Systemes
      • 3.4.2.1 Overview
      • 3.4.2.2 Top Products/Product Portfolio
      • 3.4.2.3 Top Competitors
      • 3.4.2.4 Target Customers/End Users
      • 3.4.2.5 Key Personnel
      • 3.4.2.6 Analyst View
      • 3.4.2.7 Market Share, 2023
    • 3.4.3 dSPACE GmbH
      • 3.4.3.1 Overview
      • 3.4.3.2 Top Products/Product Portfolio
      • 3.4.3.3 Top Competitors
      • 3.4.3.4 Target Customers/End Users
      • 3.4.3.5 Key Personnel
      • 3.4.3.6 Analyst View
      • 3.4.3.7 Market Share, 2023
    • 3.4.4 Hexagon AB
      • 3.4.4.1 Overview
      • 3.4.4.2 Top Products/Product Portfolio
      • 3.4.4.3 Top Competitors
      • 3.4.4.4 Target Customers/End Users
      • 3.4.4.5 Key Personnel
      • 3.4.4.6 Analyst View
      • 3.4.4.7 Market Share, 2023
    • 3.4.5 rFpro
      • 3.4.5.1 Overview
      • 3.4.5.2 Top Products/Product Portfolio
      • 3.4.5.3 Top Competitors
      • 3.4.5.4 Target Customers/End Users
      • 3.4.5.5 Key Personnel
      • 3.4.5.6 Analyst View
      • 3.4.5.7 Market Share, 2023
    • 3.4.6 aiMotive
      • 3.4.6.1 Overview
      • 3.4.6.2 Top Products/Product Portfolio
      • 3.4.6.3 Top Competitors
      • 3.4.6.4 Target Customers/End Users
      • 3.4.6.5 Key Personnel
      • 3.4.6.6 Analyst View
      • 3.4.6.7 Market Share, 2023

4 Research Methodology

  • 4.1 Data Sources
    • 4.1.1 Primary Data Sources
    • 4.1.2 Secondary Data Sources
    • 4.1.3 Data Triangulation
  • 4.2 Market Estimation and Forecast
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦