시장보고서
상품코드
1797398

세계의 슈퍼커패시터 시장(2026-2036년)

The Global Supercapacitors Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 280 Pages, 134 Tables, 23 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 슈퍼커패시터 시장은 세계 산업이 전기와 신재생에너지의 통합을 받아들이는 가운데 상당한 성장이 예상되고 매우 중요한 기로에 서 있습니다. 울트라커패시터로도 알려진 슈퍼커패시터는 에너지저장 에코시스템에서 독자적인 틈새를 차지하고, 매우 높은 전력밀도, 급속한 충방전능력, 100만 사이클을 넘는 긴 사이클수명을 제공함으로써 기존의 커패시터와 리튬 이온 배터리의 갭을 메우고 있습니다. 슈퍼커패시터 시장은 강력한 확대를 나타내고 있으며, 2036년까지의 CAGR은 15.3%를 나타낼 전망입니다. 이 성장의 촉진요인이 되고 있는 것은 다양한 산업에 있어서 고출력, 단시간 지속의 에너지 저장 솔루션에 대한 수요가 높아지고 있다는 것입니다. 에너지 밀도가 뛰어난 배터리와는 달리, 슈퍼커패시터는 순간적인 전력 공급을 필요로 하는 용도에서 빛을 발하며, 회생 제동 시스템, 그리드 주파수 응답, 백업 전원 용도에 필수적인 존재가 되고 있습니다.

시장의 진화는 그 용도의 분포에서 특히 두드러집니다. 지금까지 자동차 및 운송 용도가 주류였지만, 송전망과 신재생에너지 통합으로 이동하고 있으며, 이들은 2036년까지 점점 중요한 시장 부문이 될 것으로 예측됩니다. 이러한 전환은 신재생에너지의 보급이 세계적으로 진행되고 있는 가운데 그리드의 안정화와 주파수 응답 기능의 중요성이 높아지고 있음을 반영합니다.

슈퍼커패시터 기술에는 세 가지 주요 카테고리가 있습니다. 전기 이중층 슈퍼커패시터(EDLC), 의사커패시터, 하이브리드 슈퍼커패시터입니다. EDLC는 여전히 가장 성숙하고 상업적으로 실행 가능한 기술이며 고출력 용도에 입증된 신뢰성과 비용 효과를 제공합니다. 한편, 하이브리드 슈퍼커패시터, 특히 리튬 이온 커패시터(LIC)는 고출력과 적당한 에너지 밀도를 모두 요구하는 용도에서 인기를 끌고 있습니다. 첨단 재료의 혁신은 성능에 혁명을 가져옵니다. 그래핀을 기반으로 한 전극은 전도성과 표면적을 향상시키고, MXene(2차원 탄화물 및 질화물)과 같은 새로운 2차원 재료는 추가적인 성능 향상을 약속하고 있습니다. 유기금속구조체(MOF)는 차세대 전극구조로 연구되고 있으며, 연구기관은 자동차 및 항공우주용도의 구조 슈퍼커패시터 등 획기적인 용도로 공동 연구하고 있습니다.

자동차 부문은 특히 회생 제동 시스템, 스타트 스톱 용도 및 하이브리드 파워트레인에서 여전히 큰 시장 기회를 보여줍니다. 그러나 이 산업은 기존의 온로드 용도에서 슈퍼커패시터의 내구성과 온도 내성이 큰 이점을 제공하는 오프로드 자동차, 광산기계 및 산업 자동화로의 전략적 변화를 보여줍니다. 파워 그리드 용도는 주파수 응답, 무효 전력 보상 및 재생에너지 평활화의 필요성으로 인해 고성장 부문으로 부상하고 있습니다. 슈퍼커패시터는 송전망 장애에 밀리초 단위로 응답하는 능력으로 이러한 용도에서 우수하며 간헐적인 재생에너지원이 증가하는 동안 송전망의 안정성을 유지하는 데 필수적입니다. 무정전 전원 공급 장치(UPS) 시장은 특히 미션 크리티컬 백업 전력이 필요한 데이터센터 및 반도체 제조 시설을 위한 또 다른 큰 성장 경로를 보여줍니다. 슈퍼커패시터는 기존의 배터리 기반 UPS 시스템에 비해 우수한 신뢰성과 낮은 유지보수 요구사항을 제공합니다.

새로운 용도로는 6G 통신 인프라, 전기 항공, 핵융합 에너지 시스템, 전자기 무기 및 위성 전력 시스템을 포함한 고급 방어 기술이 포함됩니다. 이러한 차세대 용도는 고전력 밀도, 신속한 응답, 매우 높은 신뢰성이라는 슈퍼커패시터 고유의 조합을 활용합니다.

세계의 슈퍼커패시터 산업은 Maxwell Technologies(현재는 Tesla 산하)와 Nippon Chemi-Con 같은 기존 업체부터 곡면 그래핀 기술을 가진 Skeleton Technologies와 같은 혁신적인 전문 기업까지 110개 이상의 활발한 기업으로 구성되어 있습니다.

이 보고서는 세계 슈퍼커패시터 시장을 조사했으며, 시장 성장 예측, 각 용도 시장 분석, 각 지역 시장 성장 패턴 등의 정보를 제공합니다.

목차

제1장 주요 요약

  • 과거의 슈퍼커패시터 시장
  • 세계의 슈퍼커패시터 시장의 성장
  • 가격 진화와 비용 절감
  • 기술 로드맵
  • 기술 혁신
  • 상업화로의 길
  • 시장의 과제, 기회, 전략적 전망
  • 새로운 기회와 미래의 용도
  • 투자 상황

제2장 소개

  • 전기화
  • 에너지 저장 기술
  • 슈퍼커패시터란
  • 기타 기술과의 비교
  • 비용 분석
  • 시장과 용도
  • 상업용 슈퍼커패시터

제3장 슈퍼커패시터 기술

  • 전기 이중층 슈퍼커패시터(EDLC)
  • 의사커패시터
  • 하이브리드 슈퍼커패시터

제4장 첨단 재료

  • 소개
  • 복합 전극 재료
  • 차세대 전극 재료
  • 탄소계 전극 재료
  • 2D 재료, 첨단 나노구조
  • 전도성 폴리머 전극 재료
  • 전해질 기술
  • 지원 재료 및 구성 요소

제5장 새로운 폼 팩터

  • 유연하고 신축성있는 슈퍼커패시터
  • 섬유 및 패브릭 통합 에너지 저장
  • 구조형 슈퍼커패시터 : 다기능 재료
  • 소형화와 마이크로 장치
  • 새로운 폼 팩터와 통합

제6장 시장과 용도

  • 자동차 및 운송
  • 전력망 및 에너지 저장
  • 신재생에너지
  • 무정전 전원 장치(UPS)
  • 공업 및 재료 핸들링
  • 소형 전자기기 및 소비자용도
  • 전자통신 시스템
  • 군사
  • 항공우주
  • 핵융합 및 첨단 에너지

제7장 기업 프로파일(기업 45사의 프로파일)

제8장 부록

제9장 참고문헌

SHW 25.09.26

The global supercapacitors market stands at a pivotal juncture, poised for substantial growth as industries worldwide embrace electrification and renewable energy integration. Supercapacitors, also known as ultracapacitors, occupy a unique niche in the energy storage ecosystem, bridging the gap between traditional capacitors and lithium-ion batteries by offering exceptionally high power density, rapid charge-discharge capabilities, and extended cycle life exceeding one million cycles. The supercapacitor market is experiencing robust expansion, with projections indicating a compound annual growth rate (CAGR) of 15.3% through 2036. This growth is driven by the increasing demand for high-power, short-duration energy storage solutions across multiple industries. Unlike batteries that excel in energy density, supercapacitors shine in applications requiring instantaneous power delivery, making them indispensable for regenerative braking systems, grid frequency response, and backup power applications.

The market's evolution is particularly notable in its application distribution. Historically dominated by automotive and transportation applications, the landscape is shifting toward power grid and renewable energy integration, which are expected to become increasingly significant market segments by 2036. This transition reflects the growing importance of grid stabilization and frequency response capabilities as renewable energy penetration increases globally.

The supercapacitor technology spectrum encompasses three primary categories: Electric Double-Layer Supercapacitors (EDLCs), pseudocapacitors, and hybrid supercapacitors. EDLCs remain the most mature and commercially viable technology, offering proven reliability and cost-effectiveness for high-power applications. However, hybrid supercapacitors, particularly lithium-ion capacitors (LICs), are gaining traction for applications requiring both high power and moderate energy density. Innovation in advanced materials is revolutionizing performance capabilities. Graphene-based electrodes are enhancing conductivity and surface area, while emerging 2D materials like MXenes (two-dimensional carbides and nitrides) promise even greater performance improvements. Metal-organic frameworks (MOFs) are being explored for next-generation electrode architectures, with research institutions collaborating on breakthrough applications including structural supercapacitors for automotive and aerospace applications.

The automotive sector continues to represent a substantial market opportunity, particularly in regenerative braking systems, start-stop applications, and hybrid powertrains. However, the industry is witnessing a strategic shift from traditional on-road applications toward off-road vehicles, mining equipment, and industrial automation, where supercapacitors' durability and temperature resistance provide significant advantages. Power grid applications are emerging as a high-growth segment, driven by the need for frequency response, reactive power compensation, and renewable energy smoothing. Supercapacitors excel in these applications due to their ability to respond within milliseconds to grid disturbances, making them essential for maintaining grid stability as intermittent renewable sources increase. The uninterruptible power supply (UPS) market presents another significant growth avenue, particularly for data centers and semiconductor manufacturing facilities requiring mission-critical backup power. Supercapacitors offer superior reliability and lower maintenance requirements compared to traditional battery-based UPS systems.

Emerging applications include 6G communications infrastructure, electric aviation, nuclear fusion energy systems, and advanced defense technologies including electromagnetic weapons and satellite power systems. These next-generation applications leverage supercapacitors' unique combination of high power density, rapid response, and extreme reliability.

The global supercapacitor industry comprises over 110 active companies, ranging from established players like Maxwell Technologies (now part of Tesla) and Nippon Chemi-Con to innovative specialists such as Skeleton Technologies with their curved graphene technology. The competitive landscape is characterized by ongoing consolidation, strategic partnerships, and substantial R&D investments in advanced materials and manufacturing processes. Geographically, Asia-Pacific dominates both production and consumption, led by China's massive manufacturing capacity and Japan's technological leadership. North America and Europe represent sophisticated markets focused on high-performance applications and advanced research, while emerging markets in Latin America, Africa, and Southeast Asia offer significant long-term growth potential.

The supercapacitor market's future is intrinsically linked to global electrification trends, renewable energy adoption, and the evolution toward smart grid technologies. As industries prioritize energy efficiency and sustainability, supercapacitors' inherent advantages in power delivery, longevity, and environmental performance position them as essential components in the transition to a more electrified, sustainable future. Success in this dynamic market requires understanding the nuanced trade-offs between energy density, power density, cost, and application requirements-factors that will ultimately determine which technologies and companies emerge as leaders in this rapidly evolving energy storage landscape.

"The Global Supercapacitors Market 2026-2036" in-depth analysis of the supercapacitors market, offering strategic insights for investors, manufacturers, technology developers, and end-users navigating this rapidly evolving landscape.

Report Contents include:

  • Historical supercapacitor market analysis and baseline assessment
  • Global market growth projections with detailed forecasting through 2036
  • Market segmentation by technology (EDLCs, pseudocapacitors, hybrid supercapacitors)
  • Application market analysis across automotive, power grid, renewable energy, UPS, industrial, electronics, military, and aerospace sectors
  • Regional market development patterns across key geographic markets
  • Price evolution trends and cost reduction trajectories
  • Technology roadmap and innovation timeline
  • Technology and Advanced Materials
    • Electric Double-Layer Supercapacitors (EDLCs) comprehensive analysis including symmetric vs asymmetric designs
    • Pseudocapacitor mechanisms and ferrimagnetic pseudocapacitor developments
    • Hybrid supercapacitor technologies including Li-ion capacitors, zinc-ion capacitors, and sodium-ion capacitors
    • Advanced carbon-based electrode materials: activated carbon, carbon nanotubes, graphene, carbon aerogels, and biochar
    • Cutting-edge 2D materials: MXenes, Metal-Organic Frameworks (MOFs), silicon nanowires, transition metal dichalcogenides, black phosphorus, and boron nitride nanosheets
    • Electrolyte technologies spanning organic, aqueous, ionic liquid, solid-state, and hydrogel electrolytes
    • Supporting materials including separators, current collectors, binders, and packaging innovations
  • Emerging Form Factors and Integration Technologies
    • Flexible and stretchable supercapacitor design principles and medical applications
    • Textile and fabric-integrated energy storage with biomimetic approaches
    • Structural supercapacitors for multifunctional material applications
    • Micro-supercapacitors and on-chip energy storage integration
    • Novel form factors: wire/cable supercapacitors, paper variants, printed technologies, and concrete integration
  • Market Applications and Industry Analysis
    • Automotive and transportation applications including backup power, engine-starting systems, electric vehicles, marine, and electric aviation
    • Power grid and energy storage solutions for frequency response, reactive power compensation, and utility-scale applications
    • Renewable energy integration covering wind turbine pitch control, hybrid energy storage systems, solar integration, and wave/tidal energy capture
    • Uninterruptible Power Supply (UPS) markets with focus on AI data centers and mission-critical applications
    • Industrial and materials handling including automated guided vehicles, mining electrification, and warehouse automation
    • Electronics applications spanning wearables, 6G communications, IoT sensors, and energy harvesting systems
    • Military applications including electromagnetic weapons, force field protection, and unmanned aircraft systems
    • Aerospace applications covering aviation systems, satellite power management, and nuclear fusion energy systems
  • Strategic Analysis and Market Intelligence
    • Technology innovation pathways including materials advancement, manufacturing scale economics, and performance enhancement strategies
    • Market challenges analysis covering energy density trade-offs, standardization issues, and competitive threats
    • Growth drivers including electrification megatrends, regulatory mandates, and government incentive programs
    • Emerging opportunities in 6G infrastructure, electric aviation, space exploration, and smart city technologies
    • Investment landscape assessment and strategic recommendations for market participants
    • Long-term market evolution projections and competitive landscape consolidation trends

This report features comprehensive profiles of 45 leading supercapacitor companies including Allotrope Energy, Asahi Kasei, Avadain Inc., Aztrong Inc., Caiqi Xin Cailiao, CAP-XX, CAPCHEM, CapTop, Carbon-Ion, Chongqing CAS Supercap Technology Co Ltd., CRRC Corporation, Ecocitor, enyGy, florrent, InnoCell, Innovasion Labs PINC, Integrated Graphene Ltd., Ionic Industries Ltd., Ioxus, KAMCAP, Korchip and more....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. The Historical Supercapacitors Market
  • 1.2. Global Supercapacitor Market Growth
    • 1.2.1. Total Market
    • 1.2.2. By Technology
    • 1.2.3. By Application
    • 1.2.4. By Region
  • 1.3. Price Evolution and Cost Reduction
  • 1.4. Technology Roadmap
  • 1.5. Technology Innovation
    • 1.5.1. Materials
      • 1.5.1.1. Enhancing EDLC and Battery-Supercapacitor Hybrid (BSH) adoptability
      • 1.5.1.2. Energy-power trade-off
      • 1.5.1.3. Self-discharge challenges
      • 1.5.1.4. Separator membranes
    • 1.5.2. Advanced Manufacturing and Processing
      • 1.5.2.1. Production Scale Economics and Cost Reduction
      • 1.5.2.2. Process Innovations in Manufacturing
      • 1.5.2.3. Quality Control and Reliability Improvements
      • 1.5.2.4. Automation and Industry 4.0 Integration
      • 1.5.2.5. Sustainability in Manufacturing Processes
    • 1.5.3. Performance Enhancement
      • 1.5.3.1. Energy Density Improvement Pathways
      • 1.5.3.2. Power Density Optimization Techniques
      • 1.5.3.3. Cycle Life Extension Methods
      • 1.5.3.4. Operating Temperature Range Expansion
      • 1.5.3.5. Safety Enhancement Technologies
    • 1.5.4. Integration and System-Level Innovation
      • 1.5.4.1. Hybrid Energy Storage System (HESS)
      • 1.5.4.2. Smart Energy Management Integration
      • 1.5.4.3. Wireless Monitoring and Diagnostics
      • 1.5.4.4. Predictive Maintenance Technologies
      • 1.5.4.5. System-Level Optimization Approaches
  • 1.6. Commercialisation Pathways
  • 1.7. Market Challenges, Opportunities and Strategic Outlook
    • 1.7.1. Market Barriers and Limitations
      • 1.7.1.1. Energy Density vs Cost Trade-offs
      • 1.7.1.2. Market Education and Technology Awareness
      • 1.7.1.3. Competition from Alternative Energy Storage
    • 1.7.2. Growth Drivers and Market Enablers
      • 1.7.2.1. Electrification Megatrends Across Industries
      • 1.7.2.2. Renewable Energy Integration Requirements
      • 1.7.2.3. Energy Efficiency Regulatory Mandates
      • 1.7.2.4. Government Policies and Financial Incentives
      • 1.7.2.5. Technology Maturation and Cost Reduction
  • 1.8. Emerging Opportunities and Future Applications
    • 1.8.1. 6G Communications Infrastructure Deployment
    • 1.8.2. Electric Aviation and Urban Air Mobility
    • 1.8.3. Space Exploration and Satellite Constellations
    • 1.8.4. Fusion Energy Commercial Development
    • 1.8.5. Next-Generation Grid Technologies and Smart Cities
  • 1.9. Investment Landscape

2. INTRODUCTION

  • 2.1. Electrification
  • 2.2. Energy Storage Technology
  • 2.3. What are Supercapacitors?
    • 2.3.1. Voltage and Capacitance Ranges for Capacitors and Supercapacitors
    • 2.3.2. Service Life Characteristics and Cycle Performance
  • 2.4. Comparison with Other Technologies
    • 2.4.1. Supercapacitors vs Batteries
    • 2.4.2. Supercapacitors vs Flywheels
    • 2.4.3. Supercapacitors vs Fuel Cells
  • 2.5. Cost Analysis
  • 2.6. Markets and Applications
  • 2.7. Commercial Supercapacitors

3. SUPERCAPACITOR TECHNOLOGIES

  • 3.1. Electric Double-Layer Supercapacitors (EDLCs)
    • 3.1.1. Technology Overview
    • 3.1.2. EDLCs vs Conventional Capacitors
    • 3.1.3. High Power Density and Cycle Life Advantages
    • 3.1.4. Energy Density Limitations and Cost/W Benefits
    • 3.1.5. Symmetric vs Asymmetric EDLC Designs
    • 3.1.6. Cylindrical, Prismatic, and Pouch Cells
  • 3.2. Pseudocapacitors
    • 3.2.1. Pseudocapacitance Mechanisms
    • 3.2.2. Types of Pseudocapacitance
    • 3.2.3. Intrinsic vs Extrinsic Pseudocapacitive Materials
    • 3.2.4. Ferrimagnetic Pseudocapacitors
    • 3.2.5. Pseudocapacitor commercialization
  • 3.3. Hybrid Supercapacitors
    • 3.3.1. Technology Overview
      • 3.3.1.1. Asymmetric design
      • 3.3.1.2. Cost
    • 3.3.2. Battery-Supercapacitor Hybrids (BSH)
      • 3.3.2.1. Li-ion Hybrid Supercapacitors (LICs)
      • 3.3.2.2. Zinc-ion Capacitors
      • 3.3.2.3. Sodium-ion Capacitors
      • 3.3.2.4. Other BSH Technologies
    • 3.3.3. Capacitor-Supercapacitor Hybrids (CSH)
      • 3.3.3.1. Design Principles
      • 3.3.3.2. Applications

4. ADVANCED MATERIALS

  • 4.1. Introduction
  • 4.2. Composite Electrode Materials
  • 4.3. Next-generation electrode materials
  • 4.4. Carbon-based Electrode Materials
    • 4.4.1. Traditional carbon-based electrode materials
    • 4.4.2. Advanced carbon structures
    • 4.4.3. Activated Carbon
      • 4.4.3.1. Advantages
      • 4.4.3.2. Applications
      • 4.4.3.3. Materials Limitations
      • 4.4.3.4. Costs
    • 4.4.4. Carbon Nanotubes
      • 4.4.4.1. Advantages
      • 4.4.4.2. Materials Limitations
      • 4.4.4.3. Costs
    • 4.4.5. Graphene
      • 4.4.5.1. Advantages
      • 4.4.5.2. Vertically-aligned graphene
      • 4.4.5.3. Supercapacitor frequency response improvements
      • 4.4.5.4. Applications
      • 4.4.5.5. Materials Limitations
      • 4.4.5.6. Curved graphene
      • 4.4.5.7. Graphene-MOF Hybrid Materials
      • 4.4.5.8. Costs
    • 4.4.6. Carbon Aerogels
      • 4.4.6.1. Advantages
      • 4.4.6.2. Applications
      • 4.4.6.3. Material Limitations
      • 4.4.6.4. Costs
    • 4.4.7. Biochar
      • 4.4.7.1. Advantages
      • 4.4.7.2. Applications
      • 4.4.7.3. Materials Limitations
      • 4.4.7.4. Costs
  • 4.5. 2D Materials and Advanced Nanostructures
    • 4.5.1. MXenes
      • 4.5.1.1. Advantages
      • 4.5.1.2. Tantalum carbide MXenes (Ta2CTx, Ta4C3Tx)
      • 4.5.1.3. Processing
      • 4.5.1.4. Applications
    • 4.5.2. Metal-Organic Frameworks (MOFs)
      • 4.5.2.1. Advantages
      • 4.5.2.2. Graphene hybrids
      • 4.5.2.3. Applications
    • 4.5.3. Silicon Nanowires
      • 4.5.3.1. Advantages
      • 4.5.3.2. Applications
      • 4.5.3.3. Materials Limitations
      • 4.5.3.4. Costs
    • 4.5.4. Transition Metal Dichalcogenides (TMDs)
      • 4.5.4.1. Advantages
      • 4.5.4.2. Applications
      • 4.5.4.3. Material Limitations
      • 4.5.4.4. Costs
    • 4.5.5. Black Phosphorus (Phosphorene)
      • 4.5.5.1. Advantages
      • 4.5.5.2. Applications
      • 4.5.5.3. Material Limitations
      • 4.5.5.4. Costs
    • 4.5.6. Boron Nitride Nanosheets
      • 4.5.6.1. Advantages
      • 4.5.6.2. Applications
      • 4.5.6.3. Material Limitations
      • 4.5.6.4. Costs
  • 4.6. Conducting Polymer Electrode Materials
    • 4.6.1. Advantages
    • 4.6.2. Applications
    • 4.6.3. Material Limitations
    • 4.6.4. Costs
  • 4.7. Electrolyte Technologies
    • 4.7.1. Electrolyte Materials Overview
    • 4.7.2. Factors for Electrolyte Performance
    • 4.7.3. Organic vs Aqueous Liquid Electrolytes
    • 4.7.4. Acetonitrile-based electrolyte systems
    • 4.7.5. Aqueous Supercapacitor Electrolytes
    • 4.7.6. Ionic Liquid Electrolytes
    • 4.7.7. Solid-State and Semi-Solid Electrolytes
    • 4.7.8. Hydrogels as Electrolytes for Semi-Solid Supercapacitors
    • 4.7.9. Flexible Electrolyte Technologies
  • 4.8. Supporting Materials and Components
    • 4.8.1. Separator Materials
      • 4.8.1.1. Key Requirements for Separator Performance
    • 4.8.2. Current Collectors
    • 4.8.3. Binders
    • 4.8.4. Packaging Innovations and Form Factor Development

5. EMERGING FORM FACTORS

  • 5.1. Flexible and Stretchable Supercapacitors
    • 5.1.1. Design
    • 5.1.2. Applications
    • 5.1.3. Stretchable Supercapacitor Technologies
    • 5.1.4. Wearable Integration Challenges and Solutions
    • 5.1.5. Medical Applications for Flexible Devices
  • 5.2. Textile and Fabric-Integrated Energy Storage
    • 5.2.1. Textile and Fabric Supercapacitors: Biomimetic Approaches
    • 5.2.2. Fabric Manufacturing Integration Processes
    • 5.2.3. Tubular Flexible and Wearable Designs
    • 5.2.4. Performance vs Flexibility Trade-offs
    • 5.2.5. Applications in Smart Textiles
  • 5.3. Structural Supercapacitors: Multifunctional Materials
    • 5.3.1. Overview
    • 5.3.2. Applications
      • 5.3.2.1. Aircraft
      • 5.3.2.2. Marine
      • 5.3.2.3. Automotive
  • 5.4. Miniaturization and Micro-devices
    • 5.4.1. Micro-supercapacitors: Design and Fabrication
    • 5.4.2. On-chip Energy Storage Integration
    • 5.4.3. MEMS-compatible Manufacturing Processes
    • 5.4.4. Performance Scaling Challenges
    • 5.4.5. Applications in Microsystems
  • 5.5. Novel Form Factors and Integration
    • 5.5.1. Wire and Cable Supercapacitors
    • 5.5.2. Cable-based Supercapacitor Systems
    • 5.5.3. Paper Supercapacitors and Variants
    • 5.5.4. Printed Supercapacitor Technologies
    • 5.5.5. Editable and Reconfigurable Supercapacitors
    • 5.5.6. Transparent and Flexible Combined Technologies
    • 5.5.7. Supercapacitor Concrete and Bricks

6. MARKETS AND APPLICATIONS

  • 6.1. Automotive and Transportation
    • 6.1.1. Backup Power Supply for Automotive Systems
    • 6.1.2. Engine-starting Applications and Lead-acid Battery Replacement
    • 6.1.3. Powertrain Options and Integration Features
    • 6.1.4. Higher Voltage Systems
      • 6.1.4.1. Commercial examples
    • 6.1.5. Public Transportation and Rail Systems
      • 6.1.5.1. Commercial examples
    • 6.1.6. Ultracapacitor-powered Electric Ferry Systems
      • 6.1.6.1. Commercial Examples
    • 6.1.7. Tram and Trolleybus Regeneration Systems
    • 6.1.8. Supercapacitor Diesel Hybrid and Hydrogen Trains
      • 6.1.8.1. Commercial Examples
    • 6.1.9. On-board and Trackside Regeneration Systems
    • 6.1.10. Electric Vehicles
    • 6.1.11. Marine
      • 6.1.11.1. Commercial Examples
    • 6.1.12. Electric Aviation
    • 6.1.13. Autonomous Vehicles
  • 6.2. Power Grid and Energy Storage
    • 6.2.1. Supercapacitors in the Energy & Utility Sector
    • 6.2.2. Supercapacitors for Solar and Wind Power Integration
    • 6.2.3. Frequency Response Applications and Grid Stabilization
    • 6.2.4. Reactive Power Compensation Systems
    • 6.2.5. Utility Energy Storage for Grids and Large UPS
    • 6.2.6. 5MW Grid Measurement Supercapacitor Systems
    • 6.2.7. Beyond-Grid Applications
    • 6.2.8. Microgrids and Distributed Energy Systems
    • 6.2.9. Fuel Cells
      • 6.2.9.1. Fuel Cell Stationary Power
      • 6.2.9.2. Fuel Cell-Supercapacitor Hybrid Systems
  • 6.3. Renewable Energy
    • 6.3.1. Wave and Tidal Energy Capture
    • 6.3.2. Tidal Stream Power Systems Integration
    • 6.3.3. Airborne Wind Energy (AWE)
    • 6.3.4. Tall Wind Turbines
    • 6.3.5. Wind Turbine Pitch Control
    • 6.3.6. Hybrid Energy Storage Systems (HESS)
      • 6.3.6.1. Commercial example
    • 6.3.7. Solar Buildings and Microgrid Integration
    • 6.3.8. Hydrogen-Supercapacitor Rural Microgrid
  • 6.4. Uninterruptible Power Supply (UPS)
    • 6.4.1. Supercapacitors for AI Data Centre Peak Shaving
    • 6.4.2. Mission-critical Applications Power Backup
    • 6.4.3. Industrial UPS Applications
  • 6.5. Industrial and Materials Handling
    • 6.5.1. Supercapacitors for Industrial Applications
    • 6.5.2. Materials Handling and Intralogistics
    • 6.5.3. Automated Guided Vehicles (AGVs) and Warehouse Automation
    • 6.5.4. Supercapacitor-related Technologies for Mining Electrification
    • 6.5.5. Mining and Quarrying Applications for Large Supercapacitors
    • 6.5.6. Heavy Duty Powertrains and Active Suspension
  • 6.6. Small Electronics and Consumer Applications
    • 6.6.1. Supercapacitors for Small and Compact Devices
    • 6.6.2. Supercapacitors in Small Electronic Devices
    • 6.6.3. LED Driver Applications
    • 6.6.4. Barcode Scanner Power Systems
    • 6.6.5. Backup Power in Solid-state Drives
    • 6.6.6. Medical Applications
  • 6.7. Electronics and Communication Systems
    • 6.7.1. Wearables, Smart Watches and Smartphones
    • 6.7.2. 6G Communications
    • 6.7.3. Asset Tracking
    • 6.7.4. Battery Support and Back-up Power
    • 6.7.5. Hand-held Terminal Integration
    • 6.7.6. IoT Nodes and Wireless Sensor Networks
    • 6.7.7. Energy Harvesting Integration for Sensors
    • 6.7.8. Peak Power for Data Transmission and Device Activation
    • 6.7.9. Smart Meters
  • 6.8. Military
    • 6.8.1. Applications
    • 6.8.2. Electrodynamic and Electromagnetic Weapons
      • 6.8.2.1. Laser Weapons and Beam Energy Systems
      • 6.8.2.2. Microwave Weapons and Electronic Warfare
      • 6.8.2.3. Electrodynamic Weapons
    • 6.8.3. Force Field Protection Systems
    • 6.8.4. Unmanned Aircraft and Communication Equipment
    • 6.8.5. Radar, Guided Missile, and Munition Ignition
  • 6.9. Aerospace
    • 6.9.1. Aviation
      • 6.9.1.1. More Electric Aircraft (MEA)
    • 6.9.2. Satellites
    • 6.9.3. Space Applications and Extreme Environments
  • 6.10. Nuclear Fusion and Advanced Energy
    • 6.10.1. Supercapacitors in Nuclear Fusion Industry
    • 6.10.2. Thermonuclear Power Applications
      • 6.10.2.1. Implementation

7. COMPANY PROFILES (45 company profiles)

8. APPENDIX

  • 8.1. Research Methodology
  • 8.2. Technical Specifications and Performance Data
    • 8.2.1. Technology Specification Matrix
    • 8.2.2. Advanced Materials Properties
    • 8.2.3. Performance Benchmarking
    • 8.2.4. Cell Size and Configuration Specifications
    • 8.2.5. Operating Parameter Ranges and Limitations
    • 8.2.6. Safety and Environmental Performance Data
  • 8.3. Market Data and Detailed Forecasts
    • 8.3.1. Market Size Data 2024-2036
    • 8.3.2. Application Segment Forecasts by Technology Type
    • 8.3.3. Regional Market Breakdowns and Growth Rates
    • 8.3.4. Price Evolution Data and Projections
  • 8.4. Regulatory and Standards Framework
    • 8.4.1. International Standards (IEC, IEEE, ANSI)
    • 8.4.2. Safety Certification Requirements
    • 8.4.3. Environmental Regulations and Compliance
    • 8.4.4. Regional Regulatory Differences
    • 8.4.5. Emerging Standards Timeline
    • 8.4.6. Testing Protocol Database
    • 8.4.7. Energy Storage Policy
  • 8.5. Energy Storage Market Context
    • 8.5.1. Energy Storage Technology Comparison
    • 8.5.2. Transportation Electrification Impact
    • 8.5.3. Renewable Integration Requirements
    • 8.5.4. Market Positioning vs Alternative Technologies
    • 8.5.5. Grid Storage Market Evolution

9. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제