시장보고서
상품코드
1808297

슈퍼커패시터 시장 : 유형별, 전극 재료별, 폼팩터별, 전압 범위별, 용도별, 유통 채널별 - 세계 예측(2025-2030년)

Supercapacitor Market by Type, Electrode Material, Form Factor, Voltage Range, Application, Distribution Channel - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 195 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

슈퍼커패시터 시장은 2024년에 14억 5,000만 달러로 평가되며, 2025년에는 16억 9,000만 달러, CAGR 17.15%로 성장하며, 2030년에는 37억 6,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준연도 2024 14억 5,000만 달러
추정연도 2025 16억 9,000만 달러
예측연도 2030 37억 6,000만 달러
CAGR(%) 17.15%

슈퍼커패시터의 혁신과 미래 에너지 저장 패러다임 형성에서 슈퍼커패시터의 역할에 대한 종합적인 소개.

슈퍼커패시터는 기존 커패시터와 화학 배터리의 성능 격차를 해소하는 혁신적인 에너지 저장 솔루션입니다. 빠른 충방전 주기와 긴 수명을 가진 이 장치는 운송, 재생에너지, 가전제품에 걸쳐 점점 더 많은 용도에 필수적인 요소가 되고 있습니다. 최근 전극 재료, 셀 아키텍처, 폼팩터의 발전은 현대 에너지 시스템에서 전극의 역할을 재정의하고 있습니다.

시장 성장 촉진요인과 시장 세력을 강조하면서 업계 전반의 슈퍼커패시터 기술 채택에서의 혁신적인 변화의 변화를 밝힙니다.

슈퍼커패시터 기술 환경은 재료, 설계 및 통합 전략의 혁신에 힘입어 혁신적인 변화를 겪고 있습니다. 전기화학적 연구를 통해 뛰어난 사이클 안정성을 유지하면서 커패시턴스를 크게 향상시키는 새로운 복합재료와 나노구조 전극이 만들어지고 있습니다. 이러한 재료 혁신은 기존의 활성탄에서 그래핀 기반 아키텍처, 전도성 폴리머와 금속 산화물을 활용하여 우수한 성능을 발휘하는 하이브리드 유사 커패시터와 같은 첨단 대체품으로의 전환을 촉진하고 있습니다.

미국의 새로운 관세가 슈퍼커패시터 공급망에 미치는 누적 영향과 2025년 업계 상황 분석

2025년 미국의 주요 슈퍼커패시터 부품에 대한 수입 관세가 부과 및 강화되어 비용과 공급에 대한 복잡한 문제가 발생합니다. 탄소 기반 전극 재료, 전도성 폴리머, 주요 금속 산화물을 대상으로 한 관세는 상륙 비용을 상승시켜 거래처 상표 제품 제조업체가 조달 전략을 재구성하고 마진 압력을 흡수하도록 압박하고 있습니다. 이러한 정책 전환은 국내 생산 능력에 대한 탐색을 가속화하고, 현지 화학 및 재료 공급업체와의 제휴를 촉진하고 있습니다.

유형, 전극 재료, 폼팩터, 용도, 유통 채널별 등 다차원적 세분화를 통해 중요 인사이트를 도출할 수 있습니다.

슈퍼커패시터 시장을 면밀히 살펴보면, 전략적 우선순위를 형성하는 여러 세분화 축을 발견할 수 있습니다. 유형별로는 전기화학 이중층 커패시터, 배터리와 같은 전하 저장을 통합한 하이브리드 커패시터, 전도성 폴리머 기반과 금속 산화물 제제로 세분화된 슈도 커패시터가 있습니다. 이들 형식은 각각 에너지 밀도, 출력, 사이클 안정성 사이에서 뚜렷한 트레이드오프를 실현하고 있습니다.

북미, 유럽, 중동 및 아프리카, 아시아태평양 시장의 성장 패턴과 전략적 기회를 파악할 수 있는 핵심 지역 인사이트 탐구

지역 역학은 슈퍼커패시터 분야의 성장 궤적과 경쟁 포지셔닝을 정의하는 데 있으며, 중요한 요소입니다. 북미와 남미에서는 전기자동차, 재생에너지 통합, 첨단 국방 프로그램이 강조되면서 고출력, 고속 응답 스토리지 모듈에 대한 수요가 증가하고 있습니다. 북미의 정책적 특혜와 지역 기반의 연구개발 투자가 차세대 소재와 국내 제조 확대를 지원하고 있습니다.

세계 슈퍼커패시터 생태계에서 혁신 경쟁 전략과 협업 동향을 주도하는 주요 기업의 주요 전략 및 협업 동향 소개

슈퍼커패시터 생태계내 주요 기업은 시장에서의 입지를 강화하기 위해 다양한 전략을 실행하고 있습니다. 일부 기업은 첨단 소재 기업 및 연구기관과 전략적 제휴를 맺고 고성능 전극 및 전해질 화학의 혁신을 가속화하고 있습니다. 또한 일부 기업은 보완적인 기술을 통합하거나 지역적 범위를 확장하기 위해 특히 신흥 전기 모빌리티 및 그리드 지원 분야에서 타겟팅된 인수를 추진하고 있습니다.

업계 리더들이 새로운 과제에 대응할 수 있는 실행 가능한 제안 동향을 활용하여 슈퍼커패시터 기술의 배포를 가속화

변화하는 시장 역학과 복잡한 규제 속에서 성공하기 위해 업계 리더들은 소재 혁신, 공급망 복원력, 전략적 파트너십을 우선시하는 적극적인 전략을 채택해야 합니다. 관세가 부과되는 수입품에 대한 의존도를 줄이면서 더 높은 에너지 밀도를 실현할 수 있는 차세대 전극 화학에 대한 투자는 필수적입니다. 국내 생산자 및 연구기관과의 파트너십을 통해 정책 리스크를 줄이고, 획기적인 소재의 상용화를 가속화할 수 있습니다.

종합적인 슈퍼커패시터 시장 조사에서 데이터 수집 분석 및 검증을 위해 채택한 엄격한 연구 방법론에 대해 자세히 알아보세요.

이 보고서는 슈퍼커패시터 시장에 대한 종합적인 관점을 제공하기 위해 2차 데이터 분석, 전문가 인터뷰, 1차 검증 방법을 결합한 엄격한 연구 방법을 활용했습니다. 먼저, 기술 개발, 재료 특허 출원, 과거 채택 곡선을 포괄하는 기초 데이터세트를 컴파일하기 위해 자체 데이터베이스와 피어 리뷰 출판물을 발굴했습니다. 업계 백서 및 규제 당국에 제출된 서류에서 정책 전환 및 컴플라이언스 기준에 대한 추가 배경을 읽을 수 있었습니다.

슈퍼커패시터 시장의 진화에 대한 결론적 전망: 이해관계자 및 투자자를 위한 전략적 의미와 향후 방향성

결론적으로 슈퍼커패시터 시장은 급속한 기술 발전, 진화하는 정책 프레임워크, 역동적인 최종 사용 수요의 결절점에 있습니다. 첨단 전극 재료, 다양한 폼팩터, 신흥 용도의 융합은 전통적인 에너지 저장의 패러다임을 재구성하고 있습니다. 동시에 무역 정책과 지역적 인센티브가 공급망 구성과 투자 우선순위에 영향을 미치고 있습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 슈퍼커패시터 시장 : 유형별

  • 전기화학 이중층 커패시터
  • 하이브리드 커패시터
  • 의사 커패시터
    • 전도성 폴리머 기반
    • 금속 산화물 기반

제9장 슈퍼커패시터 시장 : 전극 재료별

  • 탄소 기반
    • 활성탄
    • 탄소 에어로젤
    • 탄소나노튜브(CNT)
    • 그래핀
  • 복합재료
  • 전도성 폴리머
    • Polyaniline
    • Polypyrrole
    • Polythiophene
  • 금속 산화물
    • 산화 망간
    • 산화 니켈
    • 산화 루테늄

제10장 슈퍼커패시터 시장 : 폼팩터별

  • 플렉서블
  • 모듈
  • 팩/스택

제11장 슈퍼커패시터 시장 : 전압 범위별

  • 10V-50V
  • 50V 이상
  • 10V 이하

제12장 슈퍼커패시터 시장 : 용도별

  • 항공우주 및 방위
  • 자동차·운송
  • 가전
  • 에너지·전력
  • 헬스케어
  • 산업
  • 통신

제13장 슈퍼커패시터 시장 : 유통 채널별

  • 오프라인
  • 온라인

제14장 아메리카의 슈퍼커패시터 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동 및 아프리카의 슈퍼커패시터 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양의 슈퍼커패시터 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • CAP-XX Ltd.
    • Chengdu Holy Tech Co., Ltd.
    • Cornell Dubilier Electronics, Inc. by Knowles Corp.
    • Eaton Corporation PLC
    • Ioxus, Inc. by Systemic Power Manufacturing, LLC.
    • Jinzhou Kaimei Power Co.Ltd
    • JYH HSU(JEC) Electronics Ltd
    • KEMET Corporation
    • KORCHIP Corporation
    • KYOCERA AVX Components Corporation
    • LS Materials Co., Ltd.
    • Nantong Jianghai capacitor Co., Ltd.
    • Nippon Chemi-Con Corporation
    • Panasonic Corporation
    • PRC Tech LLC
    • Shanghai Aowei Technology Development Co., Ltd.
    • Shanghai Green Tech Co.,Ltd.
    • Skeleton Technologies GmbH
    • SPEL Technologies Pvt. Ltd
    • TDK Corporation
    • UCAP Power, Inc.
    • VINATech Co.,Ltd.
    • Yunasko Ltd.

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택

제21장 리서치 기사

제22장 부록

KSA 25.09.25

The Supercapacitor Market was valued at USD 1.45 billion in 2024 and is projected to grow to USD 1.69 billion in 2025, with a CAGR of 17.15%, reaching USD 3.76 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 1.45 billion
Estimated Year [2025] USD 1.69 billion
Forecast Year [2030] USD 3.76 billion
CAGR (%) 17.15%

Setting the Stage with a Comprehensive Introduction to Supercapacitor Innovations and Their Role in Shaping Future Energy Storage Paradigms

Supercapacitors represent an innovative energy storage solution that bridges the performance gap between traditional capacitors and chemical batteries. By combining attributes of rapid charge and discharge cycles with longer operational lifespans, these devices are increasingly integral to applications spanning transportation, renewables, and consumer electronics. Recent advancements in electrode materials, cell architectures, and form factors are redefining their role within modern energy systems.

This introduction contextualizes the evolution of supercapacitor technology from niche industrial uses to mainstream deployment in electric vehicles and grid-level stabilization. It explores the fundamental electrochemical principles that underpin double-layer capacitance and pseudocapacitance, illustrating how material science breakthroughs are pushing the limits of energy density without compromising power delivery. Throughout this section, emphasis is placed on the ways supercapacitors complement battery systems, offering hybrid solutions that address peak power demands and regenerative braking in mobility platforms.

By establishing foundational concepts and highlighting current technological milestones, this section prepares readers for a deeper examination of market dynamics, regulatory influences, and strategic imperatives. It underscores the importance of these high-performance storage devices in advancing global sustainability objectives and propelling the next generation of electrified applications.

Uncovering the Transformative Shifts in Supercapacitor Technology Adoption Across Industries While Highlighting Key Drivers and Disruptive Market Forces

The landscape of supercapacitor technology is undergoing transformative shifts driven by breakthroughs in materials, design, and integration strategies. Electrochemical research has yielded novel composites and nanostructured electrodes that significantly enhance capacitance while maintaining exceptional cycle stability. These materials innovations are catalyzing a transition from traditional activated carbon to advanced alternatives such as graphene-based architectures and hybrid pseudocapacitors, which leverage conducting polymers and metal oxides for superior performance.

Meanwhile, system-level engineering is evolving to accommodate higher voltage ranges and modular form factors. Manufacturers are increasingly adopting flexible cells and compact pack configurations that integrate seamlessly with electric vehicle drivetrains, grid-support solutions, and portable electronics. This multi-dimensional approach to device architecture is fostering a versatile ecosystem in which storage modules can be tailored to unique application requirements.

Concurrently, sustainability and circular economy considerations are emerging as critical determinants of market direction. Recycling initiatives, closed-loop manufacturing processes, and the adoption of eco-friendly solvents in electrode fabrication are reshaping production ethics. As these interlocking forces converge, industry participants must reassess value chains and prioritize agile innovation strategies to maintain relevance and capitalize on expanding use cases.

Analyzing the Cumulative Impact of New United States Tariffs on Supercapacitor Supply Chains and Industry Dynamics in 2025 Fiscal Landscape

The imposition and escalation of United States import tariffs on critical supercapacitor components in 2025 have introduced a complex set of cost and supply challenges. Tariffs targeting carbon-based electrode materials, conducting polymers, and key metal oxides have increased landed costs, compelling original equipment manufacturers to reconfigure sourcing strategies or absorb margin pressures. This policy shift is accelerating the exploration of domestic production capabilities and driving partnerships with local chemical and materials suppliers.

Beyond direct cost impacts, these duties are reshaping global value chains. Logistics timelines have tightened as companies seek alternative ports of entry and regionally diversified supply networks. Some market leaders are investing in backward integration to control key precursor materials and mitigate dependency on high-tariff imports. At the same time, research collaborations are intensifying with universities and national labs to develop next-generation materials that circumvent existing tariff classifications.

While these measures introduce near-term headwinds, they also present an opportunity to strengthen domestic manufacturing resilience and stimulate targeted innovation. Firms that proactively adapt their procurement, refine their cost structures, and embrace tariff-compliant design adjustments are positioning themselves favorably for long-term competitive advantage in a policy-driven marketplace.

Deriving Key Insights from Multi-Dimensional Segmentation of the Supercapacitor Market Across Type Electrode Material Form Factor Application and Distribution Channels

A nuanced examination of the supercapacitor market reveals multiple axes of segmentation that collectively shape strategic priorities. Looking at device type, the landscape comprises electrochemical double-layer capacitors, hybrid capacitors that integrate battery-like charge storage, and pseudocapacitors further subdivided into conducting polymer-based variants and metal oxide formulations. Each of these formats delivers distinct trade-offs between energy density, power output, and cycle stability.

Shifting focus to electrode materials, carbon-based substrates such as activated carbon, aerogels, carbon nanotubes, and graphene lead the charge in delivering high surface area and conductivity. Composite materials offer synergies between carbon and alternative components, while conducting polymers like polyaniline, polypyrrole, and polythiophene introduce redox-active sites. Metal oxide electrodes, including manganese oxide, nickel oxide, and ruthenium oxide, further extend pseudocapacitive behavior for specialized performance requirements.

Form factor segmentation highlights the importance of flexible cells for wearable devices alongside traditional cell configurations, with module and pack or stack assemblies enabling scalable integration into electric vehicles and grid applications. Voltage ranges below ten volts suit small electronics, the ten-to-fifty-volt bracket addresses industrial and transportation needs, and above-fifty-volt systems are unlocking heavy-duty power management. Finally, application segments span aerospace and defense systems, automotive and transportation platforms, consumer electronics, energy and power infrastructure, healthcare devices, industrial machinery, and telecommunications gear, while distribution channels encompass both offline and online procurement pathways. These interconnected insights inform targeted product development and go-to-market strategies.

Exploring Core Regional Insights to Illuminate Growth Patterns and Strategic Opportunities in the Americas Europe Middle East Africa and Asia Pacific Markets

Regional dynamics are instrumental in defining growth trajectories and competitive positioning within the supercapacitor sector. In the Americas, a robust emphasis on electric vehicles, renewable energy integration, and advanced defense programs has spurred demand for high-power rapid-response storage modules. North American policy incentives and localized R&D investments are supporting next-generation materials and domestic manufacturing expansions.

Across Europe, the Middle East, and Africa, regulatory frameworks are evolving to prioritize energy efficiency and grid stabilization. European Union directives on carbon neutrality and industrial electrification are bolstering deployment in automotive, industrial, and energy storage projects. Meanwhile, the Middle East is investing in grid resiliency and off-grid applications, and Africa's infrastructure modernization efforts are creating emerging opportunities for decentralized energy storage solutions.

The Asia-Pacific region stands out for its scale of production and consumption. Major manufacturing hubs leverage high-volume capacity for carbon-based and metal oxide materials, while technology centers in Japan, South Korea, and China drive pioneering research in nanostructured electrodes. Additionally, growing consumer electronics markets in India and Southeast Asia are adopting compact module form factors, further diversifying regional demand profiles and forging a globally interconnected supply ecosystem.

Highlighting Leading Companies Driving Innovation Competitive Strategies and Collaboration Trends within the Global Supercapacitor Ecosystem

Leading corporations within the supercapacitor ecosystem are executing a spectrum of strategies to reinforce their market positions. Some organizations are forging strategic alliances with advanced materials firms and research institutions to accelerate innovation in high-performance electrode and electrolyte chemistries. Others are engaging in targeted acquisitions to integrate complementary technologies or expand geographic reach, particularly in emerging electric mobility and grid support segments.

A number of established players have prioritized portfolio diversification, expanding from single-cell offerings to module and pack configurations that cater to automotive, aerospace, and industrial applications. This vertical integration facilitates system-level synergies and accelerates time to market. Concurrently, smaller specialized developers are carving out niches with proprietary nanomaterial processes or flexible form factors for wearable and IoT devices.

Competitive differentiation increasingly hinges on sustainability metrics, including lifecycle analyses, recyclability programs, and carbon footprint reduction. As these companies navigate cost pressures, policy shifts, and evolving customer requirements, collaborative ventures and open innovation platforms are emerging as critical enablers of rapid product development and standardization across global markets.

Presenting Actionable Recommendations for Industry Leaders to Navigate Emerging Challenges Capitalize on Trends and Accelerate Supercapacitor Technology Deployment

To thrive amid shifting market dynamics and regulatory complexities, industry leaders must adopt proactive strategies that prioritize material innovation, supply chain resilience, and strategic partnerships. Investing in next-generation electrode chemistries that deliver higher energy densities while reducing reliance on tariff-exposed imports will be essential. Cultivating partnerships with domestic producers and research institutions can mitigate policy risks and accelerate commercialization of breakthrough materials.

At the system integration level, organizations should focus on scalable module and pack architectures that address diverse voltage and power requirements. Standardizing testing protocols and certification processes can streamline adoption across automotive, grid, and aerospace sectors. Leveraging digital twins and advanced modeling tools will further optimize performance under real-world conditions, reducing development cycles and enhancing reliability.

Moreover, embedding sustainability throughout the value chain-from eco-friendly manufacturing practices to end-of-life recycling initiatives-will strengthen brand reputation and meet escalating ESG mandates. By aligning innovation roadmaps with customer pain points and regulatory trends, executives can chart a clear pathway to market leadership and sustained growth in the evolving supercapacitor landscape.

Detailing the Rigorous Research Methodology Employed for Data Collection Analysis and Validation in the Comprehensive Supercapacitor Market Study

This research leverages a rigorous methodology combining secondary data analysis, expert interviews, and primary validation techniques to deliver a comprehensive view of the supercapacitor market. Initially, proprietary databases and peer-reviewed publications were mined to compile a foundational dataset covering technological developments, material patent filings, and historical adoption curves. Industry white papers and regulatory filings provided further context on policy shifts and compliance standards.

Subsequently, structured interviews were conducted with C-level executives, R&D heads, and supply chain managers across leading supercapacitor manufacturers and end-use industries. These qualitative insights were triangulated with quantitative data derived from company reports, investment announcements, and trade statistics. A multivariate statistical model then synthesized these inputs to validate trends and identify inflection points.

Finally, findings were corroborated through advisory panel reviews comprising academic researchers, technical consultants, and regional market specialists. This layered approach ensures that conclusions are both evidence-based and reflective of on-the-ground realities, providing stakeholders with highly credible analysis and strategic foresight.

Concluding Perspectives on Supercapacitor Market Evolution Strategic Implications and the Path Forward for Stakeholders and Investors

In conclusion, the supercapacitor market stands at the nexus of rapid technological advancement, evolving policy frameworks, and dynamic end-use demands. The convergence of advanced electrode materials, diversified form factors, and emerging applications is reshaping traditional energy storage paradigms. Concurrently, trade policies and regional incentives are influencing supply chain configurations and investment priorities.

By synthesizing segmentation insights with regional dynamics and corporate strategies, this analysis reveals clear pathways for stakeholders to optimize R&D focus, refine go-to-market approaches, and reinforce supply networks. As sustainability and performance requirements intensify, organizations that embrace innovation, strategic collaborations, and robust risk management will secure long-term leadership. These insights equip decision-makers with the understanding needed to navigate complexity and capitalize on the transformative potential of supercapacitor technology.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Development of graphene-based electrode materials for enhanced energy density and cycle life in supercapacitors
  • 5.2. Integration of hybrid lithium-ion and supercapacitor systems for improved electric vehicle performance and charging speed
  • 5.3. Deployment of solid-state supercapacitors with ionic polymer electrolytes for higher safety and temperature stability
  • 5.4. Scaling up sustainable biomass-derived carbon electrode production to reduce costs and environmental impact in supercapacitor manufacturing
  • 5.5. Implementation of supercapacitor modules in renewable energy microgrids for rapid load balancing and frequency regulation
  • 5.6. Miniaturization of flexible supercapacitors for wearable electronics and internet of things applications with high power output

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Supercapacitor Market, by Type

  • 8.1. Introduction
  • 8.2. Electrochemical Double-Layer Capacitors
  • 8.3. Hybrid Capacitors
  • 8.4. Pseudocapacitors
    • 8.4.1. Conducting Polymer-based
    • 8.4.2. Metal Oxide-based

9. Supercapacitor Market, by Electrode Material

  • 9.1. Introduction
  • 9.2. Carbon-based
    • 9.2.1. Activated Carbon
    • 9.2.2. Carbon Aerogels
    • 9.2.3. Carbon Nanotubes (CNTs)
    • 9.2.4. Graphene
  • 9.3. Composite Materials
  • 9.4. Conducting Polymers
    • 9.4.1. Polyaniline
    • 9.4.2. Polypyrrole
    • 9.4.3. Polythiophene
  • 9.5. Metal Oxides
    • 9.5.1. Manganese Oxide
    • 9.5.2. Nickel Oxide
    • 9.5.3. Ruthenium Oxide

10. Supercapacitor Market, by Form Factor

  • 10.1. Introduction
  • 10.2. Cell
  • 10.3. Flexible
  • 10.4. Module
  • 10.5. Pack / Stack

11. Supercapacitor Market, by Voltage Range

  • 11.1. Introduction
  • 11.2. 10V to 50V
  • 11.3. Above 50V
  • 11.4. Below 10V

12. Supercapacitor Market, by Application

  • 12.1. Introduction
  • 12.2. Aerospace & Defense
  • 12.3. Automotive & Transportation
  • 12.4. Consumer Electronics
  • 12.5. Energy & Power
  • 12.6. Healthcare
  • 12.7. Industrial
  • 12.8. Telecommunications

13. Supercapacitor Market, by Distribution Channel

  • 13.1. Introduction
  • 13.2. Offline
  • 13.3. Online

14. Americas Supercapacitor Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Supercapacitor Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Supercapacitor Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. CAP-XX Ltd.
    • 17.3.2. Chengdu Holy Tech Co., Ltd.
    • 17.3.3. Cornell Dubilier Electronics, Inc. by Knowles Corp.
    • 17.3.4. Eaton Corporation PLC
    • 17.3.5. Ioxus, Inc. by Systemic Power Manufacturing, LLC.
    • 17.3.6. Jinzhou Kaimei Power Co.Ltd
    • 17.3.7. JYH HSU(JEC) Electronics Ltd
    • 17.3.8. KEMET Corporation
    • 17.3.9. KORCHIP Corporation
    • 17.3.10. KYOCERA AVX Components Corporation
    • 17.3.11. LS Materials Co., Ltd.
    • 17.3.12. Nantong Jianghai capacitor Co., Ltd.
    • 17.3.13. Nippon Chemi-Con Corporation
    • 17.3.14. Panasonic Corporation
    • 17.3.15. PRC Tech LLC
    • 17.3.16. Shanghai Aowei Technology Development Co., Ltd.
    • 17.3.17. Shanghai Green Tech Co.,Ltd.
    • 17.3.18. Skeleton Technologies GmbH
    • 17.3.19. SPEL Technologies Pvt. Ltd
    • 17.3.20. TDK Corporation
    • 17.3.21. UCAP Power, Inc.
    • 17.3.22. VINATech Co.,Ltd.
    • 17.3.23. Yunasko Ltd.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제