시장보고서
상품코드
1806171

스마트 팩토리 시장 : 구성요소, 기술, 커넥티비티, 기업 규모, 전개, 응용 분야, 최종 용도별 - 세계 예측(2025-2030년)

Smart Factory Market by Components, Technology, Connectivity, Enterprise Size, Deployment, Application Area, End Use - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 194 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

스마트 팩토리 시장은 2024년에는 1,471억 3,000만 달러로 평가되었으며, 2025년에는 1,595억 2,000만 달러, CAGR 8.67%로 성장하여 2030년에는 2,424억 2,000만 달러에 달할 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 1,471억 3,000만 달러
추정 연도 2025년 1,595억 2,000만 달러
예측 연도 2030년 2,424억 2,000만 달러
CAGR(%) 8.67%

스마트 제조 기술로 산업혁명 4.0을 선도하고, 전례 없는 효율성과 민첩한 생산을 촉진합니다.

제조 부문은 디지털 기술, 첨단 분석, 상호연결된 디바이스의 융합으로 인해 큰 변화를 겪고 있습니다. 스마트 팩토리는 이러한 진화의 집약체로, 사이버 물리 시스템이 생산 공정을 원활하게 조정하고 실시간 가시성과 자율적인 의사결정을 가능하게 합니다. 이러한 통합 환경은 다운타임 최소화, 자원 활용 최적화, 예지보전 및 적응형 스케줄링을 통한 낭비 감소를 통해 운영 효율성을 향상시킵니다.

디지털화, 지속가능성, 노동력의 진화가 어떻게 제조 생태계를 재구성하고 있는지 알아봅니다.

제조업의 산업 환경은 혼란스러운 상황과 시장 수요의 변화로 인해 재정의되고 있습니다. 디지털화는 보조적인 기능에서 현대 생산 시스템의 근간으로 진화하고 있습니다. 그 결과, 기업들은 클라우드 기반 플랫폼과 엣지 컴퓨팅 아키텍처를 통합하여 중요한 의사결정을 중앙과 현장 모두에서 내릴 수 있도록함으로써 새로운 길을 개척하고 있습니다. 이 하이브리드 접근 방식은 미션 크리티컬한 작업의 실시간 응답성을 유지하면서 데이터 처리 속도를 높입니다.

2025년 미국 관세 정책이 세계 스마트 제조 공급망과 전략적 조달 결정에 미치는 연쇄적인 영향 평가

최근 미국이 2025년에 발동한 관세 조정은 전 세계 스마트 제조 분야에 새로운 복잡성을 가져왔습니다. 중요한 기계, 로봇, 반도체 부품을 대상으로 한 이러한 조치는 조달 전략의 재조정을 불러일으켰습니다. 특히, 고도로 전문화된 자본설비를 갖춘 제조업체들은 수입관세 상승에 따른 위험을 줄이기 위해 공급업체 네트워크를 재평가하고 있습니다. 그 결과, 특혜무역협정을 체결한 국가로 조달 흐름이 재분배되고 있습니다.

구성요소, 기술, 연결성, 기업 규모, 애플리케이션이 시장 역학을 어떻게 움직이는지, 중요한 세분화 관점을 밝힙니다.

스마트 팩토리 아키텍처는 다양한 산업 환경에서의 미묘한 촉진요인과 채택 패턴이 다양한 렌즈를 통해 분석되고 있습니다. 컴포넌트 기반 생태계는 장비, 서비스, 소프트웨어에 이르기까지 다양합니다. 장비에는 정밀 CNC 기계, 산업용 PC 및 컨트롤러, 로봇 조작기, 실시간 공정 지표를 수집하는 센서 네트워크가 포함됩니다. 서비스에는 시스템 통합, 배포, 지속적인 유지보수, 지원이 포함되며, 복잡한 설비의 원활한 운영을 보장합니다. 소프트웨어는 데이터 수집, 분석 플랫폼, 기업 자원 계획 제품군, 제조 실행 시스템, 제품 수명주기 관리 도구를 지원하여 전체 밸류체인의 정보를 조화시킵니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양 시장의 뉘앙스를 읽어내고, 성장 통로와 투자 핫스팟을 파악합니다.

스마트 팩토리 영역의 지역별 역동성을 통해 성장 궤적과 투자 우선순위를 파악할 수 있습니다. 북미에서는 제조 업계의 리더들이 공급망 혼란을 완화하고 북미에 구축된 공급업체 생태계를 활용하기 위해 니어쇼어링 트렌드를 활용하고 있습니다. 이 지역에서는 산업계와 학술 센터 간의 공동 연구 이니셔티브를 촉진하는 동시에 경쟁 우위를 유지하기 위해 레거시 시설을 첨단 분석 및 로봇 플랫폼으로 개조하는 데 초점을 맞추고 있습니다.

전략적 움직임, 기술적 이정표, 업계 리더십을 형성하는 공동 이니셔티브 분석, 주요 스마트 팩토리 혁신가 프로파일링

스마트 팩토리 분야는 다양한 기술 제공업체, 시스템 통합업체, 솔루션 설계자 등 다양한 주체들이 혁신의 최첨단을 달리고 있습니다. 주요 업체들은 인공지능을 기계 자동화와 통합하기 위한 연구개발에 많은 투자를 하는 한편, 전략적 파트너십을 맺어 전 세계적으로 발자취를 넓혀가고 있습니다. 이러한 협업은 엔드 투 엔드 솔루션을 제공하기 위해 로봇 공학 전문가, 사이버 보안 기업, 클라우드 서비스 제공 업체와의 합작 투자를 포함하는 경우가 많습니다.

스마트 팩토리 도입을 가속화하고, 운영의 강인함과 미래 대비를 강화하는 전략적 경로를 제시하는 업계 리더를 위한 실행 가능한 청사진

스마트 팩토리의 잠재력을 활용하고자 하는 업계 리더들은 먼저 장기적인 비즈니스 목표에 부합하는 명확한 디지털 비전을 수립해야 합니다. 이를 위해서는 전사적 확산에 착수하기 전에 실제 조건에서 기술의 성능을 검증할 수 있는 종합적인 파일럿 프로그램을 실시해야 합니다. 기업은 개방형 아키텍처 원칙에 따라 장비와 소프트웨어 솔루션을 선택함으로써 상호 운용성을 우선시하고 향후 확장성과 통합의 유연성을 확보해야 합니다.

1차 정보, 2차 정보, 강력한 분석 프레임워크를 결합한 스마트 팩토리 조사 방법론의 엄격성과 데이터 무결성

이 조사 방법은 업계 임원, 엔지니어, 기술 채용자들에 대한 광범위한 1차 인터뷰와 출판된 백서, 규제 당국 신고서, 특허 데이터베이스를 통한 엄격한 2차 조사를 결합한 다층적 조사 방법을 활용하고 있습니다. 구조화된 토론과 워크숍 세션을 통해 1차적인 인사이트를 수집하여 구현의 과제와 성공요인에 대한 미묘한 관점을 포착할 수 있었습니다.

스마트 팩토리에 대한 인사이트 통합 의사결정 강화, 혁신적인 산업 기회 창출, 일관성 있는 스토리텔링 구축

스마트 팩토리 진화의 다면적인 측면을 종합하면 몇 가지 종합적인 주제가 떠오릅니다. 디지털 통합은 더 이상 선택이 아닌 필수이며, 경쟁이 치열해지는 환경에서 성공하고자 하는 제조업체에게는 필수입니다. 고급 분석, 자동화, 인간 전문 지식의 상호 작용은 적응력과 복원력이 가장 중요한 운영 우수성의 다음 경계를 정의합니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향 2025

제8장 스마트 팩토리 시장 : 구성요소별

  • 장비
    • CNC 머신
    • 산업용 PC와 컨트롤러
    • 산업용 로봇
    • 센서
  • 서비스
    • 통합과 전개
    • 유지관리와 지원
  • 소프트웨어
    • 분석 플랫폼
    • 전사적 자원 계획
    • 제조 실행 시스템
    • 제품 수명주기 관리(PLM)

제9장 스마트 팩토리 시장 : 기술별

  • 빅데이터 분석
  • 클라우드 컴퓨팅
  • 디지털 트윈
  • 가상현실과 증강현실

제10장 스마트 팩토리 시장 : 연결성별

  • 유선
    • 이더넷
    • 필드버스
  • 무선
    • Bluetooth
    • Wi-Fi
    • 무선 HART
    • 지그비

제11장 스마트 팩토리 시장 : 기업 규모별

  • 대기업
  • 중소기업

제12장 스마트 팩토리 시장 : 전개별

  • 클라우드 기반
  • 온프레미스

제13장 스마트 팩토리 시장 : 응용 분야별

  • 자산 추적
  • 에너지 관리
  • 프로세스 자동화
  • 생산 계획
  • 품질 검사

제14장 스마트 팩토리 시장 : 최종 용도별

  • 항공우주 및 방위
  • 자동차
  • 화학제품
  • 에너지와 전력
  • 식품 및 음료
  • 헬스케어
  • 물류와 창고
  • 금속 및 기계
  • 석유 및 가스
  • 의약품
  • 반도체 및 일렉트로닉스

제15장 아메리카의 스마트 팩토리 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제16장 유럽, 중동 및 아프리카의 스마트 팩토리 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트
  • 사우디아라비아
  • 남아프리카공화국
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제17장 아시아태평양의 스마트 팩토리 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제18장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • 3D Systems Corporation
    • ABB Ltd.
    • Andea sp. z o.o.
    • Cisco Systems, Inc.
    • Cognex Corporation
    • Emerson Electric Co.
    • Epicor Software Corporation
    • Fanuc Corporation
    • Fruitcore Robotics GmbH
    • Fujitsu Limited
    • General Electric Company
    • Hitachi, Ltd.
    • Honeywell International Inc.
    • HP Development Company, L.P.
    • International Business Machines Corporation
    • KUKA AG by Midea Group
    • Microsoft Corporation
    • Mitsubishi Electric Corporation
    • NVIDIA Corporation
    • Oracle Corporation
    • Robert Bosch GmbH
    • Rockwell Automation, Inc.
    • SAP SE
    • Schneider Electric SE
    • Siemens AG
    • Stratasys Ltd.
    • TE Connectivity Ltd.
    • Telefonaktiebolaget LM Ericsson
    • Texas Instruments Incorporated
    • Ubisense Ltd.
    • Yokogawa Electric Corporation

제19장 리서치 AI

제20장 리서치 통계

제21장 리서치 컨택트

제22장 리서치 기사

제23장 부록

KSM 25.09.12

The Smart Factory Market was valued at USD 147.13 billion in 2024 and is projected to grow to USD 159.52 billion in 2025, with a CAGR of 8.67%, reaching USD 242.42 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 147.13 billion
Estimated Year [2025] USD 159.52 billion
Forecast Year [2030] USD 242.42 billion
CAGR (%) 8.67%

Pioneering the Industrial Revolution 4.0 with Smart Manufacturing Technologies Driving Unprecedented Efficiency and Agility in Production

The manufacturing sector is undergoing a profound metamorphosis driven by the convergence of digital technologies, advanced analytics, and interconnected devices. Smart factories represent the culmination of this evolution, where cyber-physical systems seamlessly coordinate production processes, enabling real-time visibility and autonomous decision-making. These integrated environments elevate operational efficiency by minimizing downtime, optimizing resource utilization, and reducing waste through predictive maintenance and adaptive scheduling.

Moreover, the deployment of Internet of Things sensors, machine learning algorithms, and robotics is democratizing access to high-performance manufacturing capabilities, no longer the exclusive domain of large enterprises. As companies of all sizes embrace digital transformation, they are unlocking new avenues for customization, rapid prototyping, and lean production. Consequently, supply chains are becoming more agile and resilient, capable of responding to market shifts with unprecedented speed.

Furthermore, the push toward sustainability and circular economy principles has intertwined with smart factory initiatives, compelling stakeholders to reevaluate legacy processes and adopt energy-efficient practices. In this landscape, strategic investments in technology not only drive productivity gains but also contribute to environmental stewardship. As a result, competitive differentiation increasingly hinges on a holistic digital strategy that addresses operational performance, workforce empowerment, and ecological responsibility.

Navigating Shifting Paradigms in Smart Factories Unveiling How Digitalization, Sustainability and Workforce Evolution Are Reshaping Manufacturing Ecosystems

The landscape of industrial manufacturing is being redefined by disruptive innovations and shifting market imperatives. Digitalization has evolved from a supplementary capability to the very foundation of modern production systems. As a result, enterprises are forging new paths by integrating cloud-based platforms with edge computing architectures, ensuring that critical decisions can be made both centrally and at the shop floor. This hybrid approach accelerates data processing while preserving real-time responsiveness for mission-critical operations.

In addition, sustainability targets and regulatory pressures are accelerating the adoption of energy monitoring, emissions tracking, and closed-loop recycling systems. Companies are leveraging these technologies not only to comply with environmental mandates but also to differentiate their offerings through certified green manufacturing credentials. Allied to this, the workforce paradigm is shifting: operators and technicians are increasingly expected to possess digital literacy alongside traditional skills, driving a new era of upskilling and human-machine collaboration.

Consequently, the smart factory blueprint is no longer a one-size-fits-all model. Instead, it has become a modular ecosystem where plug-and-play automation units, AI-driven analytics, and digital twin simulations converge to create bespoke production cells. As a result, the manufacturers that can orchestrate these elements with precision will emerge as industry leaders, setting new benchmarks for performance and innovation.

Assessing the Cascading Effects of 2025 United States Tariff Policies on Global Smart Manufacturing Supply Chains and Strategic Sourcing Decisions

Recent tariff adjustments instituted by the United States in 2025 have introduced new complexities into the global smart manufacturing arena. These measures, targeting critical machinery, robotics, and semiconductor components, have triggered a recalibration of sourcing strategies. In particular, manufacturers with highly specialized capital equipment are reevaluating supplier networks to mitigate exposure to increased import duties. This has led to a redistribution of procurement flows toward countries with preferential trade arrangements.

Consequently, some enterprises are investing in nearshoring initiatives to preserve operational continuity and reduce lead times. This trend has dovetailed with growing concerns over geopolitical volatility, prompting organizations to diversify their manufacturing footprints. In parallel, research and development centers are being established closer to end markets to accelerate innovation cycles and adapt product designs to local regulatory standards.

Furthermore, the cost pressures induced by tariffs have underscored the importance of component standardization and interoperability. Enterprises are collaborating with equipment manufacturers to develop modular systems that can be assembled from alternative suppliers without compromising performance. Ultimately, the confluence of trade policy shifts and strategic adaptation is redefining global value chains, compelling stakeholders to adopt more agile, resilient frameworks for sustained competitiveness.

Unveiling Critical Segmentation Perspectives Illuminating How Components, Technologies, Connectivity, Enterprise Scale and Applications Drive Market Dynamics

Smart factory architectures are being dissected through multiple lenses, revealing nuanced drivers and adoption patterns across diverse industrial settings. Based on components, the ecosystem spans equipment, services, and software. Equipment encompasses precision CNC machines, industrial PCs and controllers, robotic manipulators, and sensor networks that capture real-time process metrics. Services envelop system integration, deployment, ongoing maintenance, and support, ensuring seamless operation of complex installations. Software underpins data ingestion, analytics platforms, enterprise resource planning suites, manufacturing execution systems, and product lifecycle management tools that harmonize information across the entire value chain.

Technology segmentation highlights the rise of big data analytics engines that process vast telemetry datasets to generate actionable insights, while cloud computing infrastructures provide scalable resources for collaboration and remote monitoring. Digital twin models replicate physical assets in virtual environments for predictive simulation, and virtual and augmented reality interfaces facilitate immersive training, remote assistance, and design validation.

Connectivity remains a foundational pillar, with wired architectures leveraging Ethernet backbones and fieldbus protocols to guarantee deterministic communication, while wireless networks-spanning Bluetooth and BLE, Wi-Fi campuses, WirelessHART mesh topologies, and low-power Zigbee nodes-empower untethered sensor deployment and flexible mobile robotics. In parallel, enterprises of varying scales are defining their digital journeys. Large corporations marshal extensive capital and dedicated innovation labs, whereas small and medium enterprises adopt selective, scalable solutions that align with constrained budgets and nimble organizational structures.

Deployment models further differentiate the market, as cloud-based platforms accelerate time-to-value through subscription-based services, while on-premises installations appeal to stakeholders with stringent data sovereignty and latency requirements. Across application areas, smart factory implementations address asset tracking for real-time inventory visibility, energy management to optimize power consumption, process automation for repetitive tasks, production planning to streamline workflows, and quality inspection systems that leverage machine vision for defect detection.

End-use industries encompass aerospace and defense, where precision and reliability are paramount; automotive manufacturing, which demands high-volume throughput; chemicals and energy operations with complex process controls; food and beverages, where safety and traceability are critical; healthcare device production, which requires compliance and sterility; logistics and warehousing, emphasizing material flow optimization; metal and machinery fabrication, reliant on heavy automation; oil and gas, balancing remote asset monitoring; pharmaceuticals with strict validation protocols; and semiconductor and electronics assembly, where miniaturization and cleanroom standards drive specialized solutions.

Deciphering Regional Market Nuances Across the Americas, Europe Middle East Africa, and Asia Pacific to Identify Growth Corridors and Investment Hotspots

Regional dynamics in the smart factory domain reveal distinct growth trajectories and investment priorities. In the Americas, manufacturing leaders are capitalizing on nearshoring trends to mitigate supply chain disruptions and leverage established North American supplier ecosystems. This region's focus is on retrofitting legacy facilities with advanced analytics and robotics platforms to sustain competitive advantage while fostering collaborative research initiatives between industry and academic centers.

Conversely, Europe, the Middle East, and Africa are characterized by heterogeneous regulatory landscapes and varying levels of digital maturity. Western European nations are pioneering energy-efficient production models, harmonizing smart grid integration with factory automation to meet aggressive decarbonization targets. In parallel, emerging markets within the region are accelerating infrastructure modernization, investing in standardized automation platforms to bridge the gap with global benchmarks.

Asia-Pacific remains a powerhouse of production capacity and technological innovation. Manufacturers in this region are deploying expansive IoT networks and indigenous AI frameworks to support mass customization and just-in-time delivery models. Government-led initiatives and public-private partnerships are fueling large-scale digitization programs, positioning the region as a testbed for autonomous factories and advanced robotics applications. Collectively, these regional nuances underscore the importance of tailored go-to-market strategies that align with local policy priorities and competitive landscapes.

Profiling Leading Smart Factory Innovators Analyzing Strategic Moves, Technological Milestones and Collaborative Initiatives Shaping Industry Leadership

The smart factory sphere is anchored by a diverse roster of technology providers, system integrators, and solution architects advancing the edge of innovation. Key players are investing heavily in research and development to integrate artificial intelligence with machine automation, while forging strategic partnerships to expand their global footprints. These collaborations often encompass joint ventures with robotics specialists, cybersecurity firms, and cloud service providers to deliver end-to-end solutions.

Additionally, several leaders have introduced platform-based offerings that converge equipment, software, and managed services under unified digital ecosystems. These platforms enable customers to adopt modular capabilities incrementally, reducing implementation risk and aligning with evolving business objectives. Moreover, vendor alliances have emerged to establish open standards and interoperability frameworks that facilitate third-party integrations, thus preventing vendor lock-in and fostering a competitive marketplace.

In parallel, newer entrants are carving niches by focusing on specialized segments such as predictive maintenance analytics, augmented reality for remote assistance, and blockchain-enabled traceability. Their agile development cycles and customer-centric innovation models allow them to respond swiftly to emerging use cases, often driving legacy incumbents to accelerate their own product roadmaps. Together, these industry participants form a dynamic constellation that continuously redefines the benchmarks for smart factory performance and scalability.

Actionable Blueprints for Industry Leaders Charting Strategic Pathways to Accelerate Smart Factory Adoption, Enhance Operational Resilience and Future Readiness

Industry leaders seeking to harness smart factory potential must first establish a clear digital vision aligned with long-term business goals. This entails conducting comprehensive pilot programs that validate technology performance under real-world conditions before committing to enterprise-wide rollouts. Companies should prioritize interoperability by selecting equipment and software solutions adhering to open architecture principles, thereby safeguarding future scalability and integration flexibility.

Furthermore, organizations must invest in workforce transformation, deploying targeted training programs that cultivate both digital proficiency and domain expertise. By embedding multidisciplinary teams-comprising data scientists, automation engineers, and operations specialists-manufacturers can accelerate cross-functional innovation and drive continuous improvement initiatives. Equally crucial is the development of robust data governance frameworks that ensure data integrity, security, and compliance across all digital touchpoints.

In addition, enterprise leaders should adopt a phased approach to modernization, aligning capital expenditure with measurable key performance indicators to maintain financial discipline. Collaboration with ecosystem partners-ranging from academic institutions to industry consortiums-can amplify innovation potential and facilitate knowledge transfer. Ultimately, the most successful organizations will integrate smart factory investments into a broader corporate strategy that balances operational efficiency, environmental sustainability, and customer-centricity.

Methodological Rigor and Data Integrity in Smart Factory Research Combining Primary Insights, Secondary Sources and Robust Analytical Frameworks

This research leverages a multi-tiered methodology combining extensive primary interviews with industry executives, engineers, and technology adopters, alongside rigorous secondary research from published white papers, regulatory filings, and patent databases. Primary insights were garnered through structured consultations and workshop sessions, enabling the capture of nuanced perspectives on implementation challenges and success factors.

Secondary data sources include cross-referenced company annual reports, technical journals, and engineering standards documentation. Market movements and technology roadmaps were analyzed through thematic content analysis and trend mapping to identify emergent innovation clusters. Quantitative data points were validated through triangulation, applying statistical checks and scenario modeling to ensure reliability and consistency.

Furthermore, the research framework integrates a SWOT analysis tailored to smart factory deployment, illuminating strengths, weaknesses, opportunities, and threats across technology stacks and regional ecosystems. This approach ensures that recommendations are grounded in empirical evidence and aligned with both macroeconomic conditions and sector-specific drivers. The resulting insights are presented in an interactive dashboard, enabling stakeholders to customize views according to priority segments and strategic themes.

Synthesis of Smart Factory Insights Forging a Cohesive Narrative That Empowers Decision Making and Unlocks Transformative Industrial Opportunities

In synthesizing the multifaceted dimensions of smart factory evolution, several overarching themes emerge. Digital integration is no longer optional but imperative for manufacturers aiming to thrive in an increasingly competitive environment. The interplay between advanced analytics, automation, and human expertise defines the next frontier of operational excellence, where adaptability and resilience are paramount.

Trade policy shifts and regional disparities underscore the necessity for flexible sourcing strategies and localized implementation roadmaps. Meanwhile, segmentation analyses reveal that no single technological pathway suits all use cases; rather, success derives from tailoring solutions to specific component categories, connectivity architectures, and end-use requirements. Collaborative ecosystems, open standards, and workforce upskilling form the bedrock of sustainable digital transformation.

Ultimately, decision-makers can harness these insights to chart informed trajectories, balancing short-term performance gains with long-term strategic imperatives. By aligning digital investments with corporate vision, ensuring methodological rigor in project execution, and fostering a culture of continuous innovation, organizations will unlock the full potential of smart factory initiatives and secure durable competitive advantage.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of AI and machine learning for predictive maintenance and operational efficiency in smart factories
  • 5.2. Adoption of Industrial Internet of Things (IIoT) devices to enhance real-time monitoring and control
  • 5.3. Implementation of advanced robotics and automation for increased production flexibility and accuracy
  • 5.4. Utilization of digital twins to simulate, analyze, and optimize manufacturing processes in smart factories
  • 5.5. Deployment of edge computing to reduce latency and improve decision-making in factory operations
  • 5.6. Emphasis on cybersecurity measures to protect sensitive data and industrial control systems in smart manufacturing environments
  • 5.7. Development of sustainable and energy-efficient smart factory technologies to reduce carbon footprints
  • 5.8. Expansion of collaborative robots (cobots) working alongside human operators on factory floors
  • 5.9. Application of cloud computing platforms for scalable data storage and advanced analytics in smart production systems
  • 5.10. Use of augmented reality (AR) and virtual reality (VR) for enhanced training, maintenance, and operational support in smart factories

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Smart Factory Market, by Components

  • 8.1. Introduction
  • 8.2. Equipment
    • 8.2.1. CNC Machines
    • 8.2.2. Industrial PCs & Controllers
    • 8.2.3. Industrial Robots
    • 8.2.4. Sensors
  • 8.3. Services
    • 8.3.1. Integration & Deployment
    • 8.3.2. Maintenance & Support
  • 8.4. Software
    • 8.4.1. Analytics Platforms
    • 8.4.2. Enterprise Resource Planning
    • 8.4.3. Manufacturing Execution Systems
    • 8.4.4. Product Lifecycle Management (PLM)

9. Smart Factory Market, by Technology

  • 9.1. Introduction
  • 9.2. Big Data Analytics
  • 9.3. Cloud Computing
  • 9.4. Digital Twins
  • 9.5. Virtual & Augmented Reality

10. Smart Factory Market, by Connectivity

  • 10.1. Introduction
  • 10.2. Wired
    • 10.2.1. Ethernet
    • 10.2.2. Fieldbus
  • 10.3. Wireless
    • 10.3.1. Bluetooth / BLE
    • 10.3.2. Wi-Fi
    • 10.3.3. WirelessHART
    • 10.3.4. Zigbee

11. Smart Factory Market, by Enterprise Size

  • 11.1. Introduction
  • 11.2. Large Enterprises
  • 11.3. Small And Medium Enterprises

12. Smart Factory Market, by Deployment

  • 12.1. Introduction
  • 12.2. Cloud-Based
  • 12.3. On-Premises

13. Smart Factory Market, by Application Area

  • 13.1. Introduction
  • 13.2. Asset Tracking
  • 13.3. Energy Management
  • 13.4. Process Automation
  • 13.5. Production Planning
  • 13.6. Quality Inspection

14. Smart Factory Market, by End Use

  • 14.1. Introduction
  • 14.2. Aerospace & Defense
  • 14.3. Automotive
  • 14.4. Chemicals
  • 14.5. Energy & Power
  • 14.6. Food & Beverages
  • 14.7. Healthcare
  • 14.8. Logistics And Warehousing
  • 14.9. Metal And Machinery
  • 14.10. Oil & Gas
  • 14.11. Pharmaceuticals
  • 14.12. Semiconductor & Electronics

15. Americas Smart Factory Market

  • 15.1. Introduction
  • 15.2. United States
  • 15.3. Canada
  • 15.4. Mexico
  • 15.5. Brazil
  • 15.6. Argentina

16. Europe, Middle East & Africa Smart Factory Market

  • 16.1. Introduction
  • 16.2. United Kingdom
  • 16.3. Germany
  • 16.4. France
  • 16.5. Russia
  • 16.6. Italy
  • 16.7. Spain
  • 16.8. United Arab Emirates
  • 16.9. Saudi Arabia
  • 16.10. South Africa
  • 16.11. Denmark
  • 16.12. Netherlands
  • 16.13. Qatar
  • 16.14. Finland
  • 16.15. Sweden
  • 16.16. Nigeria
  • 16.17. Egypt
  • 16.18. Turkey
  • 16.19. Israel
  • 16.20. Norway
  • 16.21. Poland
  • 16.22. Switzerland

17. Asia-Pacific Smart Factory Market

  • 17.1. Introduction
  • 17.2. China
  • 17.3. India
  • 17.4. Japan
  • 17.5. Australia
  • 17.6. South Korea
  • 17.7. Indonesia
  • 17.8. Thailand
  • 17.9. Philippines
  • 17.10. Malaysia
  • 17.11. Singapore
  • 17.12. Vietnam
  • 17.13. Taiwan

18. Competitive Landscape

  • 18.1. Market Share Analysis, 2024
  • 18.2. FPNV Positioning Matrix, 2024
  • 18.3. Competitive Analysis
    • 18.3.1. 3D Systems Corporation
    • 18.3.2. ABB Ltd.
    • 18.3.3. Andea sp. z o.o.
    • 18.3.4. Cisco Systems, Inc.
    • 18.3.5. Cognex Corporation
    • 18.3.6. Emerson Electric Co.
    • 18.3.7. Epicor Software Corporation
    • 18.3.8. Fanuc Corporation
    • 18.3.9. Fruitcore Robotics GmbH
    • 18.3.10. Fujitsu Limited
    • 18.3.11. General Electric Company
    • 18.3.12. Hitachi, Ltd.
    • 18.3.13. Honeywell International Inc.
    • 18.3.14. HP Development Company, L.P.
    • 18.3.15. International Business Machines Corporation
    • 18.3.16. KUKA AG by Midea Group
    • 18.3.17. Microsoft Corporation
    • 18.3.18. Mitsubishi Electric Corporation
    • 18.3.19. NVIDIA Corporation
    • 18.3.20. Oracle Corporation
    • 18.3.21. Robert Bosch GmbH
    • 18.3.22. Rockwell Automation, Inc.
    • 18.3.23. SAP SE
    • 18.3.24. Schneider Electric SE
    • 18.3.25. Siemens AG
    • 18.3.26. Stratasys Ltd.
    • 18.3.27. TE Connectivity Ltd.
    • 18.3.28. Telefonaktiebolaget LM Ericsson
    • 18.3.29. Texas Instruments Incorporated
    • 18.3.30. Ubisense Ltd.
    • 18.3.31. Yokogawa Electric Corporation

19. ResearchAI

20. ResearchStatistics

21. ResearchContacts

22. ResearchArticles

23. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제