시장보고서
상품코드
1808346

세계의 반도체 제조 장비 시장 예측 : 장비 유형별, 포장 치수별, 용도 산업별, 최종 사용자별, 유통별, 용도별(2025-2030년)

Semiconductor Manufacturing Equipment Market by Equipment Type, Packaging Dimension, Application Industry, End-user, Distribution, Applications - Global Forecast 2025-2030

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 196 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

반도체 제조 장비 시장은 2024년에 1,346억 9,000만 달러로 평가되었고, CAGR 7.51%로 2025년에는 1,444억 7,000만 달러로 성장했으며, 2030년까지는 2,080억 8,000만 달러에 이를 것으로 예측됩니다.

주요 시장 통계
기준 연도 2024년 1,346억 9,000만 달러
추정 연도 2025년 1,444억 7,000만 달러
예측 연도 2030년 2,080억 8,000만 달러
CAGR(%) 7.51%

시장 역학의 기술적 진보와 전략적 중요성을 밝혀 반도체 장비 진화의 무대를 정돈

반도체 제조 기술 혁신의 가속화는 경쟁 구도를 재구성하고 전례없는 민첩성과 선견성을 요구합니다. 디지털 전환, 전동화, 차세대 커넥티비티가 첨단 칩 수요를 견인하는 가운데, 제조업체는 보다 높은 수율, 보다 미세한 형상, 신뢰성의 향상을 가능하게 하는 최첨단 장비의 채택을 강요하고 있습니다. 자동차 전동화, 인공지능, 5G 인프라 등 신흥 엔드마켓은 처리량을 최적화하고 결함을 최소화하는 제조 설비에 대한 압력을 강화하고 있습니다. 평면 아키텍처에서 3차원 집적 및 이종 시스템 패키징으로의 전환은 성능 목표 달성에서 성막, 에칭, 이온 주입 및 리소그래피 기술의 중요한 역할을 부각하고 있습니다.

기술 혁신의 수렴과 지속가능성에 대한 압력을 뒷받침하는 반도체 툴링 인프라에서 매우 중요한 변화의 검증

반도체 제조 장비는 기술적 혁신과 지속가능성 우선순위의 융합으로 급속한 변화 시대를 맞이하고 있습니다. 2.5D 및 3D 통합과 같은 첨단 패키징 기술은 성능 벤치마크를 재정의하고 있으며 공급업체는 복잡한 인터포저 및 스루 실리콘 비아에 맞는 성막 및 테스트 툴의 혁신을 촉진하고 있습니다. 한편, 극단 자외선 리소그래피의 출현은 실험적인 채택에서 생산규모의 준비로 진행되어 10나노미터 이하의 프론티어에서의 비용과 해상도의 밸런스를 변화시키고 있습니다.

미국 관세 정책이 세계 반도체 장비 공급망과 전략적 조달 결정에 미치는 복합 영향 평가

반도체 제조 장비에 대한 미국 관세의 부과와 진화는 세계 공급망과 조달 전략에 복합적인 영향을 미칩니다. 새로운 관세가 2025년에 발효되기 때문에 장비 제공업체와 칩 제조업체는 육상 비용 상승에 직면하여 조달 관행의 재평가를 촉구하고 있습니다. 이러한 환경은 니어 쇼어링을 촉진하고 주요 주조소 및 집적 장비 제조업체는 관세 변동의 영향을 줄이기 위해 지역 파트너십을 모색하고 있습니다.

반도체 제조 시장을 형성하는 장비 유형, 포장 치수, 용도, 유통 채널로부터 중요한 통찰을 밝힌다.

반도체 툴 시장을 디바이스 유형별로 분류하면 후공정과 전공정의 성장궤도가 밝혀집니다. 후공정에서 어셈블리 패키징 장비는 고밀도 5마이크론 인터커넥트와 웨이퍼 레벨 패키징을 지원하도록 진화하고 있으며 테스트 장비는 다양화를 계속하는 용도 요구 사항에 적응하고 있습니다. 프론트엔드에서는 원자층 증착법, 화학 기상 성장법, 물리 기상 성장법을 포괄하는 성막 장비가 막의 균일성과 막 두께 제어를 진행시켜 에칭 시스템이 보다 선명한 패턴 프로파일을 가능하게 하고 있습니다. 이온 주입 장비는 도펀트의 정확도를 높이고 리소그래피 플랫폼은 깊은 자외선, 전자빔, 극단 자외선 등 로드맵의 각 이정표를 지원합니다. 웨이퍼 세척 장비는 결함 제어를 더욱 강화하고 팁 노드에서 수율의 일관성을 보장합니다.

아메리카, 유럽, 중동, 아프리카, 아시아태평양의 반도체 장비 시장의 지역 역학 및 성장 촉진요인 이해

아메리카 지역은 첨단 연구 대학과 디자인 하우스의 견고한 생태계를 특징으로 하며, 지역의 최첨단 장비 수요를 견인하고 있습니다. 장려금 제도와 관민 파트너십을 통해 특히 주요 제조 거점에서는 생산 능력 확대가 가속화되고 있습니다. 한편, 유럽, 중동 및 아프리카는 성숙한 자동차 센터와 신흥 디지털 인프라 개념의 태피스트리를 보여줍니다. 각국 정부는 반도체의 주권을 우선시하고 외부 의존을 줄이기 위해 첨단 패키징과 조립 능력에 대한 전략적 투자를 촉진하고 있습니다. 환경 컴플라이언스를 중시하는 규제 프레임워크은 유럽, 중동 및 아프리카 전역에서 툴 사양과 벤더 선정 프로세스를 더욱 형성하고 있습니다.

반도체 제조 에코시스템에서 전략적 제휴와 경쟁 포지션을 확립하고 혁신을 선도하는 시장을 선도하는 기업의 하이라이트

대기업은 반도체 제조 장비 분야에서 경쟁 우위를 확보하기 위해 유기적 혁신과 전략적 제휴의 융합을 추구해 왔습니다. 기술의 선구자는 특허 포트폴리오를 계속 확장하고 로드맵의 진전을 유지하기 위해 극단적인 자외선 리소그래피와 원자층 증착에 중점을 둡니다. 동시에 재료과학기업과의 협력관계에 따라 패턴의 충실도를 높이는 새로운 화학물질과 포토레지스트의 도입이 가속화되고 있습니다.

업계 리더가 기술적 혼란, 무역 과제, 지속가능성의 필수 조건을 극복하기 위한 실행 가능한 전략적 제안

업계 리더는 10나노미터 이하의 로드맵과의 무결성을 보장하기 위해 극단적인 자외선 리소그래피 능력과 인접한 측정 도구에 대한 투자를 우선해야 합니다. 동시에, 지역을 가로질러 여러 장비 공급업체를 관여함으로써 공급망을 다양화하여 관세 변동 및 지정학적 위험에 대한 노출을 줄일 수 있습니다. 재료 및 소프트웨어 제공업체와의 공동 기술 개발 파트너십을 확립함으로써, 특히 첨단 패키징 및 이종 집적화에서 생산까지의 시간을 단축할 수 있습니다.

마켓 인텔리전스 조사 결과를 지원하는 엄격한 분석 프레임 워크 조사 방법 및 데이터 검증 방법 공개

이러한 지식을 지원하는 조사 기법은 1차 및 2차 조사를 엄격한 검증 프로토콜로 통합한 것입니다. 1차 설문조사는 팹, 집적 디바이스 제조업체, 장비 공급업체의 주요 의사결정자와 구조화된 인터뷰로 구성되어 조달 전략, 기술 도입 일정, 관세 관리 관행에 대한 직접적인 관점을 제공했습니다. 2차 정보에는 기술 논문, 특허 출원, 기업 투자자의 프레젠테이션, 정책 발표 등이 포함되어 시장 역학을 종합적으로 이해할 수 있습니다.

핵심 통찰력과 전략적 성과를 통합하여 반도체 제조 장비에서 미래의 경로와 업계의 진화를 밝혀

전략적, 기술적, 정책적 통찰을 종합하면 반도체 제조 장비 시장이 큰 변화의 도중에 있음을 알 수 있습니다. 고급 패키징, 극단적 자외선 리소그래피 및 디지털 공정 제어로의 지속적인 이동은 공급업체의 가치 제안과 구매자의 기대를 재정의합니다. 관세 중심공급망 재구성은 지역 분산 및 위험 완화 전략의 중요성을 강조합니다. 한편, 세분화 분석에서는 장비 수요가 점점 전문화되고 있으며, 각 장비 범주와 용도 영역이 독특한 추진 요인을 보여주는 것으로 밝혀졌습니다.

목차

제1장 서문

제2장 조사 방법

제3장 주요 요약

제4장 시장 개요

제5장 시장 역학

  • 시스템 인 패키지 아키텍처를 변화시키는 3D 이종 패키징 기기의 통합
  • 선진 노드 주권에 대한 정부의 인센티브에 의해 추진되는 지역의 파운드리 능력의 구축
  • 리소그래피의 한계를 극복하기 위한 차세대 고 NA EUV 툴 개발에 있어서의 협력
  • 물의 재활용과 화학 폐기물의 삭감에 중점을 둔 지속 가능한 반도체 장비에 대한 투자
  • 다운타임과 오염을 삭감하는 자율형 자재관리 로봇에 의한 제조 자동화 확대
  • 첨단 노드에서의 폐루프 계측과 AI 구동형 결함 검출의 구현
  • 공장에서 실시간 공정 제어를 위한 고급 센서 융합과 머신러닝 도입
  • 3nm 이하의 노드 생산을 가능하게 하는 높은 개구수 EUV 리소그래피의 급속한 도입
  • EV용 파워 디바이스 수요의 급증에 대응하기 위해, SiC 및 GaN 에피택시 툴에 대한 투자를 확대
  • 모바일 및 IoT 용도를 위한 웨이퍼 레벨 팬아웃 및 칩 스케일 패키징 시스템 개발

제6장 시장 인사이트

  • Porter's Five Forces 분석
  • PESTEL 분석

제7장 미국 관세의 누적 영향, 2025년

제8장 반도체 제조 장비 시장 : 장비 유형별

  • 백엔드
    • 조립 및 포장 설비
    • 시험 장비
  • 프론트엔드
    • 증착장비
      • 원자층 증착(ALD)
      • 화학 증착(CVD)
      • 물리 증착(PVD)
    • 에칭 장비
    • 이온 주입 장비
    • 리소그래피 장비
      • 심자외선(DUV) 리소그래피
      • 전자빔 리소그래피
      • 극단 자외선(EUV) 리소그래피
    • 웨이퍼 세정 장비

제9장 반도체 제조 장비 시장 : 포장 치수별

  • 2.5D
  • 2D
  • 3D

제10장 반도체 제조 장비 시장 : 용도 산업별

  • 항공우주 및 방위
  • 자동차
  • 소비자 가전제품
  • 헬스케어
  • 통신

제11장 반도체 제조 장비 시장 : 최종 사용자별

  • 파운드리
  • 통합 장치 제조업체(IDM)
  • 아웃소싱 반도체 조립 및 시험 제공업체(OSAT)

제12장 반도체 제조 장비 시장 : 유통별

  • 직접 판매
  • 리셀러 판매

제13장 반도체 제조 장비 시장 : 용도별

  • 이산
  • 논리
  • 메모리
  • 마이크로프로세서 유닛(MPU)

제14장 아메리카의 반도체 제조 장비 시장

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 아르헨티나

제15장 유럽, 중동, 아프리카의 반도체 제조 장비 시장

  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 아랍에미리트(UAE)
  • 사우디아라비아
  • 남아프리카
  • 덴마크
  • 네덜란드
  • 카타르
  • 핀란드
  • 스웨덴
  • 나이지리아
  • 이집트
  • 튀르키예
  • 이스라엘
  • 노르웨이
  • 폴란드
  • 스위스

제16장 아시아태평양 반도체 제조 장비 시장

  • 중국
  • 인도
  • 일본
  • 호주
  • 한국
  • 인도네시아
  • 태국
  • 필리핀
  • 말레이시아
  • 싱가포르
  • 베트남
  • 대만

제17장 경쟁 구도

  • 시장 점유율 분석, 2024년
  • FPNV 포지셔닝 매트릭스, 2024년
  • 경쟁 분석
    • Advantest Corporation
    • Analog Devices, Inc.
    • Aixtron Group
    • Applied Materials, Inc.
    • ASML Holding NV
    • Atlas Copco AB
    • Bruker Corporation
    • Camtek Ltd.
    • Canon Inc.
    • Carl Zeiss AG
    • Disco Corporation
    • EV Group by Charge Enterprises Inc.
    • FutureFab, Inc.
    • Hamamatsu Photonics KK
    • Hitachi, Ltd.
    • JEOL Ltd.
    • KLA Corporation by Vanguard Group Inc.
    • Lam Research Corporation
    • Modutek Corporation
    • Nikon Corporation
    • Nordson Corporation
    • Nova Ltd.
    • Onto Innovation Inc.
    • S-Cubed
    • Screen Holdings Co., Ltd.
    • TE Connectivity Ltd.
    • Teradyne, Inc.
    • Thermo Fisher Scientific Inc.
    • Tokyo Electron Limited
    • Tokyo Seimitsu Co., Ltd.
    • Toray Industries, Inc.
    • Veeco Instruments Inc.

제18장 리서치 AI

제19장 리서치 통계

제20장 리서치 컨택

제21장 리서치 기사

제22장 부록

SHW 25.09.22

The Semiconductor Manufacturing Equipment Market was valued at USD 134.69 billion in 2024 and is projected to grow to USD 144.47 billion in 2025, with a CAGR of 7.51%, reaching USD 208.08 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 134.69 billion
Estimated Year [2025] USD 144.47 billion
Forecast Year [2030] USD 208.08 billion
CAGR (%) 7.51%

Setting the Stage for Semiconductor Equipment Evolution by Highlighting Market Dynamics Technological Progress and Strategic Imperatives

The accelerating pace of innovation in semiconductor manufacturing has reshaped the competitive landscape, demanding unprecedented agility and foresight. As digital transformation, electrification, and next-generation connectivity drive demand for advanced chips, manufacturers are compelled to adopt cutting-edge equipment that enables higher yields, finer geometries, and enhanced reliability. Emerging end markets such as automotive electrification, artificial intelligence, and 5G infrastructure have intensified pressure on fabrication facilities to optimize throughput and minimize defects. Transitioning from planar architectures to three-dimensional integration and heterogeneous system packaging underscores the critical role of deposition, etching, ion implantation, and lithography technologies in achieving performance targets.

Against this backdrop, industry stakeholders seek clarity on how evolving process nodes, supply chain realignment, and policy imperatives converge to influence equipment investments. Forward-looking executives require a strategic framework to evaluate the potential of atomic layer deposition and extreme ultraviolet lithography, while balancing capital intensity with time-to-market imperatives. This introduction unpacks the interconnected forces shaping equipment demand and establishes a foundation for exploring transformative shifts, tariff impacts, segmentation nuances, regional dynamics, and actionable recommendations that follow in this summary.

Examining Pivotal Transformations in Semiconductor Tooling Infrastructure Driven by Innovation Convergence and Sustainability Pressures

Semiconductor manufacturing equipment has entered an era of rapid transformation driven by the convergence of technological breakthroughs and sustainability priorities. Advanced packaging techniques such as 2.5D and 3D integration are redefining performance benchmarks, prompting suppliers to innovate deposition and testing tools tailored for complex interposers and through-silicon vias. Meanwhile, the emergence of extreme ultraviolet lithography has progressed from experimental adoption to production-scale readiness, altering the balance between cost and resolution at the sub-10-nanometer frontier.

Concurrently, global sustainability initiatives have escalated expectations for energy efficiency, water conservation, and chemical usage across fabs. Suppliers and fabs alike are responding with modular tool architectures optimized for reduced carbon footprints and advanced diagnostics that minimize process waste. At the same time, digital twins and predictive analytics have permeated equipment offerings, enabling real-time process control and downtime reduction. These shifts underscore a fundamental redefinition of equipment value propositions - from standalone capital goods to integrated intelligent systems that advance both economic and environmental objectives.

Assessing the Compounding Effects of United States Tariff Policies on Global Semiconductor Equipment Supply Chains and Strategic Sourcing Decisions

The imposition and evolution of United States tariffs on semiconductor manufacturing equipment have exerted a compounding influence on global supply chains and sourcing strategies. As new duties take effect in 2025, equipment providers and chipmakers face elevated landed costs, prompting reevaluation of procurement practices. This environment is catalyzing nearshoring initiatives, with leading foundries and integrated device manufacturers exploring regional partnerships to mitigate exposure to tariff volatility.

In response, strategic stockpiling of critical components has become increasingly common, ensuring continuity of high-volume production despite policy uncertainty. Negotiations around transfer pricing and waiver applications have intensified as companies seek relief while balancing compliance obligations. Meanwhile, the rising cost basis has spurred consolidation among smaller equipment vendors, reshaping competitive dynamics. The net result is a recalibrated global ecosystem in which resilience, flexibility, and policy foresight are inseparable from long-term equipment procurement and capital expenditure planning.

Revealing Critical Insights from Equipment Type Packaging Dimension Applications and Distribution Channels Shaping Semiconductor Manufacturing Markets

Disaggregating the semiconductor tooling market across equipment type reveals distinct growth trajectories for back-end and front-end segments. Within back-end, assembly and packaging equipment is evolving to support dense five-micron interconnects and wafer-level packaging, while testing equipment adapts to ever-diversifying application requirements. On the front-end, deposition tools encompassing atomic layer deposition, chemical vapor deposition, and physical vapor deposition are advancing film uniformity and thickness control, and etching systems are enabling sharper pattern profiles. Ion implantation systems drive dopant precision, whereas lithography platforms span deep ultraviolet, e-beam, and extreme ultraviolet to accommodate each roadmap milestone. Wafer cleaning equipment further underpins defect control, assuring yield consistency at advanced nodes.

Beyond tool classification, the segmentation by packaging dimension includes planar two-dimensional substrates through to complex three-dimensional stacks and intermediate 2.5D architectures, each influencing tool configuration and throughput optimization. Application industry breakdown spans aerospace and defense to telecommunications, demonstrating that end use dictates equipment customization, process parameters, and reliability thresholds. End-user segmentation among foundries, integrated device manufacturers, and outsourced semiconductor providers underscores diverging capital-intensity profiles and service models. Distribution channels differentiate direct OEM engagements from third-party distribution partnerships, impacting lead times and support structures. Finally, application types such as discrete, logic, memory, and microprocessor units reflect specialized tool requirements and process flows tied to each device category.

Understanding Regional Dynamics and Growth Drivers across Americas Europe Middle East Africa and Asia Pacific Semiconductor Equipment Markets

The Americas region is characterized by a robust ecosystem of advanced research universities and design houses driving local demand for cutting-edge equipment. Incentive programs and public-private partnerships have accelerated capacity expansions, particularly in leading fabrication hubs. Meanwhile, Europe, the Middle East, and Africa present a tapestry of mature automotive centers and emerging digital infrastructure initiatives. Governments have prioritized semiconductor sovereignty, catalyzing strategic investments in advanced packaging and assembly capabilities to reduce external dependencies. Regulatory frameworks emphasizing environmental compliance further shape tool specifications and vendor selection processes across EMEA.

In the Asia-Pacific region, the densest concentration of wafer fabs and assembly plants underscores its status as the primary battleground for equipment vendors. Incentivized by national technology roadmaps, countries across East and Southeast Asia have unveiled multi-billion-dollar fabrication projects, intensifying competition for capacity and fostering collaborative research programs. This dynamic environment rewards suppliers that can scale output while maintaining rigorous quality standards. Transitional pressures toward onshore production in critical markets are generating new greenfield opportunities, especially for equipment that supports next-generation nodes and heterogeneous integration.

Highlighting Market Leading Corporations Pioneering Innovation Strategic Alliances and Competitive Positioning in Semiconductor Manufacturing Ecosystem

Leading corporations have pursued a blend of organic innovation and strategic alliances to secure competitive advantage in the semiconductor equipment arena. Technology pioneers continue to expand their patent portfolios, focusing heavily on extreme ultraviolet lithography and atomic layer deposition to sustain roadmap progress. At the same time, collaborative partnerships with materials science firms have accelerated the introduction of novel chemistries and photoresists that elevate pattern fidelity.

Mergers and acquisitions have reconfigured the supplier landscape, enabling large equipment vendors to integrate complementary capabilities in metrology, inspection, and robotics. Meanwhile, nimble mid-tier firms have carved out specialized niches in advanced packaging and wafer cleaning, leveraging deep process expertise to capture share from legacy incumbents. To maintain differentiation, companies are deploying digital platforms that offer predictive maintenance, remote diagnostics, and yield analytics as value-added services. This shift toward systems-level integration is emerging as a key determinant of customer loyalty and long-term revenue growth.

Actionable Strategic Recommendations Empowering Industry Leaders to Navigate Technological Disruptions Trade Challenges and Sustainability Imperatives

Industry leaders should prioritize investment in extreme ultraviolet lithography capabilities and adjacent metrology tools to ensure alignment with the sub-10-nanometer roadmap. Concurrently, diversifying the supply chain by engaging multiple equipment vendors across geographies will mitigate exposure to tariff fluctuations and geopolitical risks. Establishing collaborative technology development partnerships with materials and software providers can accelerate time to production, especially for advanced packaging and heterogeneous integration.

Adopting digital twins and advanced analytics platforms will enable predictive maintenance strategies that reduce unplanned downtime and maximize asset utilization. At the same time, embedding sustainability targets into equipment selection-such as energy-efficient wafer cleaning and end-to-end water recycling-can align capital investments with corporate environmental commitments. Finally, upskilling the workforce through specialized training programs focused on AI-driven process control and equipment automation will empower operators to extract maximum value from next-generation tools.

Unveiling the Rigorous Analytical Framework Research Methodology and Data Validation Approaches Underpinning Market Intelligence Findings

The research methodology underpinning these insights integrates primary and secondary data collection with rigorous validation protocols. Primary research comprised structured interviews with key decision makers across fabs, integrated device manufacturers, and equipment vendors, providing direct perspectives on procurement strategies, technology adoption timelines, and tariff management practices. Secondary sources included technical papers, patent filings, corporate investor presentations, and policy announcements, ensuring a comprehensive understanding of market dynamics.

Quantitative analysis involved cross-referencing tool shipments and capacity expansion plans to identify emerging demand patterns. Qualitative triangulation with expert consultations and on-site facility visits refined scenario assumptions. Throughout the process, data integrity was maintained via iterative reviews, discrepancy analysis, and sensitivity assessments. This robust framework delivers confident, actionable intelligence designed to guide strategic decision-making in the face of rapid technological and regulatory change.

Synthesizing Core Insights and Strategic Outcomes Illuminating Future Pathways and Industry Evolution in Semiconductor Manufacturing Equipment

The synthesis of strategic, technological, and policy insights reveals a semiconductor equipment market in the midst of profound transformation. Ongoing shifts toward advanced packaging, extreme ultraviolet lithography, and digital process control are redefining vendor value propositions and buyer expectations. Tariff-driven supply chain realignment underscores the importance of regional diversification and risk mitigation strategies. Meanwhile, segmentation analysis highlights that equipment demand is increasingly specialized, with each tool category and application domain exhibiting its own growth drivers.

Taken together, these findings underscore the necessity for agile planning, collaborative innovation models, and sustainability integration. The evolution of regional ecosystems-from the Americas' incentivized expansions to Asia-Pacific's high-capacity clusters and EMEA's sovereignty initiatives-requires nuanced market entry approaches. By internalizing these lessons and embracing the recommended strategies, industry participants will be well positioned to capture opportunities at the vanguard of semiconductor manufacturing equipment progress.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

  • 4.1. Introduction
  • 4.2. Market Sizing & Forecasting

5. Market Dynamics

  • 5.1. Integration of 3D heterogeneous packaging equipment transforming system-in-package architectures
  • 5.2. Regional foundry capacity build-out driven by government incentives for advanced node sovereignty
  • 5.3. Collaboration on next-generation high-NA EUV tool development to overcome lithography limitations
  • 5.4. Investment in sustainable semiconductor equipment focused on water recycling and chemical waste reduction
  • 5.5. Expansion of fab automation with autonomous material handling robots reducing downtime and contamination
  • 5.6. Implementation of closed-loop metrology and AI-driven defect detection across advanced nodes
  • 5.7. Deployment of advanced sensor fusion and machine learning for real-time process control in fabs
  • 5.8. Rapid adoption of high-numerical-aperture EUV lithography enabling sub-3nm node production
  • 5.9. Scaling investment in SiC and GaN epitaxy tools to meet surging power device demand for EVs
  • 5.10. Development of wafer-level fan-out and chip-scale packaging systems for mobile and IoT applications

6. Market Insights

  • 6.1. Porter's Five Forces Analysis
  • 6.2. PESTLE Analysis

7. Cumulative Impact of United States Tariffs 2025

8. Semiconductor Manufacturing Equipment Market, by Equipment Type

  • 8.1. Introduction
  • 8.2. Back-end
    • 8.2.1. Assembly & Packaging Equipment
    • 8.2.2. Testing Equipment
  • 8.3. Front-end
    • 8.3.1. Deposition Equipment
      • 8.3.1.1. Atomic Layer Deposition (ALD)
      • 8.3.1.2. Chemical Vapor Deposition (CVD)
      • 8.3.1.3. Physical Vapor Deposition (PVD)
    • 8.3.2. Etching Equipment
    • 8.3.3. Ion Implantation Equipment
    • 8.3.4. Lithography Equipment
      • 8.3.4.1. Deep Ultraviolet (DUV) Lithography
      • 8.3.4.2. E-Beam Lithography
      • 8.3.4.3. Extreme Ultraviolet (EUV) Lithography
    • 8.3.5. Wafer Cleaning Equipment

9. Semiconductor Manufacturing Equipment Market, by Packaging Dimension

  • 9.1. Introduction
  • 9.2. 2.5D
  • 9.3. 2D
  • 9.4. 3D

10. Semiconductor Manufacturing Equipment Market, by Application Industry

  • 10.1. Introduction
  • 10.2. Aerospace & Defense
  • 10.3. Automotive
  • 10.4. Consumer Electronics
  • 10.5. Healthcare
  • 10.6. Telecommunications

11. Semiconductor Manufacturing Equipment Market, by End-user

  • 11.1. Introduction
  • 11.2. Foundries
  • 11.3. Integrated Device Manufacturers (IDMs)
  • 11.4. Outsourced Semiconductor Assembly and Test Providers (OSATs)

12. Semiconductor Manufacturing Equipment Market, by Distribution

  • 12.1. Introduction
  • 12.2. Direct Sales
  • 12.3. Distributor Sales

13. Semiconductor Manufacturing Equipment Market, by Applications

  • 13.1. Introduction
  • 13.2. Discrete
  • 13.3. Logic
  • 13.4. Memory
  • 13.5. Microprocessor Units (MPU)

14. Americas Semiconductor Manufacturing Equipment Market

  • 14.1. Introduction
  • 14.2. United States
  • 14.3. Canada
  • 14.4. Mexico
  • 14.5. Brazil
  • 14.6. Argentina

15. Europe, Middle East & Africa Semiconductor Manufacturing Equipment Market

  • 15.1. Introduction
  • 15.2. United Kingdom
  • 15.3. Germany
  • 15.4. France
  • 15.5. Russia
  • 15.6. Italy
  • 15.7. Spain
  • 15.8. United Arab Emirates
  • 15.9. Saudi Arabia
  • 15.10. South Africa
  • 15.11. Denmark
  • 15.12. Netherlands
  • 15.13. Qatar
  • 15.14. Finland
  • 15.15. Sweden
  • 15.16. Nigeria
  • 15.17. Egypt
  • 15.18. Turkey
  • 15.19. Israel
  • 15.20. Norway
  • 15.21. Poland
  • 15.22. Switzerland

16. Asia-Pacific Semiconductor Manufacturing Equipment Market

  • 16.1. Introduction
  • 16.2. China
  • 16.3. India
  • 16.4. Japan
  • 16.5. Australia
  • 16.6. South Korea
  • 16.7. Indonesia
  • 16.8. Thailand
  • 16.9. Philippines
  • 16.10. Malaysia
  • 16.11. Singapore
  • 16.12. Vietnam
  • 16.13. Taiwan

17. Competitive Landscape

  • 17.1. Market Share Analysis, 2024
  • 17.2. FPNV Positioning Matrix, 2024
  • 17.3. Competitive Analysis
    • 17.3.1. Advantest Corporation
    • 17.3.2. Analog Devices, Inc.
    • 17.3.3. Aixtron Group
    • 17.3.4. Applied Materials, Inc.
    • 17.3.5. ASML Holding N.V.
    • 17.3.6. Atlas Copco AB
    • 17.3.7. Bruker Corporation
    • 17.3.8. Camtek Ltd.
    • 17.3.9. Canon Inc.
    • 17.3.10. Carl Zeiss AG
    • 17.3.11. Disco Corporation
    • 17.3.12. EV Group by Charge Enterprises Inc.
    • 17.3.13. FutureFab, Inc.
    • 17.3.14. Hamamatsu Photonics K.K.
    • 17.3.15. Hitachi, Ltd.
    • 17.3.16. JEOL Ltd.
    • 17.3.17. KLA Corporation by Vanguard Group Inc.
    • 17.3.18. Lam Research Corporation
    • 17.3.19. Modutek Corporation
    • 17.3.20. Nikon Corporation
    • 17.3.21. Nordson Corporation
    • 17.3.22. Nova Ltd.
    • 17.3.23. Onto Innovation Inc.
    • 17.3.24. S-Cubed
    • 17.3.25. Screen Holdings Co., Ltd.
    • 17.3.26. TE Connectivity Ltd.
    • 17.3.27. Teradyne, Inc.
    • 17.3.28. Thermo Fisher Scientific Inc.
    • 17.3.29. Tokyo Electron Limited
    • 17.3.30. Tokyo Seimitsu Co., Ltd.
    • 17.3.31. Toray Industries, Inc.
    • 17.3.32. Veeco Instruments Inc.

18. ResearchAI

19. ResearchStatistics

20. ResearchContacts

21. ResearchArticles

22. Appendix

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제