시장보고서
상품코드
1864043

망간 시장 : 용도별, 제품 유형별, 순도 등급별, 기술별, 형태별 - 세계 예측(2025-2032년)

Manganese Market by Application, Product Type, Purity Grade, Technology, Form - Global Forecast 2025-2032

발행일: | 리서치사: 360iResearch | 페이지 정보: 영문 197 Pages | 배송안내 : 1-2일 (영업일 기준)

    
    
    




■ 보고서에 따라 최신 정보로 업데이트하여 보내드립니다. 배송일정은 문의해 주시기 바랍니다.

망간 시장은 2032년까지 CAGR 6.27%로 480억 9,000만 달러 규모로 성장할 것으로 예측되고 있습니다.

주요 시장 통계
기준연도 2024 295억 5,000만 달러
추정연도 2025 314억 1,000만 달러
예측연도 2032 480억 9,000만 달러
CAGR(%) 6.27%

망간을 제철, 배터리 기술, 공급망 보안의 접점에 위치시키는 권위 있는 맥락적 개요를 통해 전략적 요구를 명확히

망간은 전통적 중공업과 가속화되는 에너지 전환의 교차점에서 매우 중요한 위치를 차지하고 있습니다. 역사적으로 철강의 합금 원소로서 필수적이었던 망간은 현재 전기화학 에너지 저장, 특수화학제품, 농업용 미량영양소 등 중요한 분야의 기반이 되고 있습니다. 지속적인 인프라 수요, 운송의 전동화, 업스트림 공급의 안전성 확보를 위한 정책 강화와 맞물려 이 금속은 단순한 범용 원료에서 다양한 산업에 영향을 미치는 전략적 자원으로 격상되었습니다.

수요, 공급, 정책, 기술의 변화로 전 세계 망간 밸류체인과 투자 우선순위가 재편되고 있는 가운데, 미래를 내다보는 종합 분석

망간 산업 환경은 전체 밸류체인의 경쟁력과 투자 우선순위를 재구성하는 형태로 변화하고 있습니다. 수요 측면의 변화가 가장 두드러진 원동력입니다. 전기자동차의 보급 확대에 따라 배터리용 망간 화합물 조달 수요가 가속화되고 불순물 프로파일 및 재료 수명주기 인증에 대한 감시가 강화되고 있습니다. 동시에 공급 측면의 진화는 에너지 소비를 줄이고 저급 광석 및 2차 재활용 원료 등 사용 가능한 원료의 범위를 확대하는 습식 야금 처리 기술의 발전에 의해 형성되고 있습니다.

2025년 미국의 관세 조정이 망간 관련 부문 전반공급망, 조달 행동, 전략적 자본 배분에 어떤 변화를 가져왔는지 종합적으로 살펴봅니다.

2025년 미국이 망간 및 망간 파생 제품에 영향을 미치는 관세 제도를 조정한 조치는 세계 무역 흐름과 국내 산업 경제에 다층적인 영향을 미쳤습니다. 특정 수입품에 대한 관세 인상은 영향을 받는 제품 카테고리의 착륙 비용을 상승시켜 구매자가 공급업체 포트폴리오를 재평가하고 대체 공급처를 조기에 선정하도록 유도했습니다. 제품 등급과 가공 경로에 따라 관세 적용이 불균등하게 적용될 경우 가격 격차가 확대되고, 조달팀은 단가 최적화보다 공급 연속성을 우선시하는 경향이 강해졌습니다.

용도, 제품 유형, 순도 등급, 기술, 재료 형태를 연결하는 다차원적 세분화 분석을 통해 가치와 위험이 집중되는 영역을 명확히

망간 시장 시장 역학을 이해하려면 최종 용도, 제품 유형, 순도 요구 사항, 가공 기술, 재료 형태가 어떻게 교차하고 가치를 창출하는지 자세히 분석해야 합니다. 용도별로 분석하면, 이 금속 수요 프로파일은 농업, 배터리 음극, 화학제품, 철강 제조에 이르기까지 다양합니다. 배터리용 음극은 리튬이온 배터리와 아연 망간 배터리의 화학 성분으로 세분화되며, 철강 제조는 합금강, 탄소강, 스테인리스강으로 분류됩니다. 각 응용 분야는 불순물 허용치, 입자 형태 및 공급 신뢰성에 대해 서로 다른 요구 사항을 부과하며, 이는 생산자의 제품 라인 우선순위 및 자본 투자 결정에 영향을 미칩니다.

아메리카, 유럽, 중동 및 아프리카, 아시아태평양의 차별화된 전략적 우선순위를 파악할 수 있는 지역별 인텔리전스 통합을 통해 투자 및 조달 선택에 대한 의사결정을 지원

지역별로 망간 수급 동향은 크게 다르며, 시장 진출기업의 전략적 우선순위를 결정하게 될 것입니다. 미국 대륙에서는 국내 제조업, 인프라 투자 사이클, 발전 중인 배터리 공급망 구축으로 인해 가공 망간 제품 및 이차 가공 시설에 대한 지역적 기회가 창출되고 있습니다. 한편, 무역 조치에 대한 민감성으로 인해 기업은 관세 리스크를 최소화할 수 있는 통합적인 공급 솔루션을 고려해야 합니다. 이 지역의 물류 능력과 대규모 철강 및 자동차 클러스터와의 근접성은 중간 가공 및 품질 보증 인프라에 대한 투자에 있으며, 매력적인 지역입니다.

산업 구조에 대한 심층 분석을 통해 기존 규모, 기술 차별화, 수직적 통합, 지속가능성 노력이 경쟁 우위를 결정하는 메커니즘을 밝힙니다.

망간 분야의 경쟁 동향은 기존 야금업체, 특수화학업체, 통합형 광산업체, 그리고 배터리 등급 소재에 특화된 신흥 가공업체가 혼재된 구조를 반영하고 있습니다. 기존 생산업체들은 규모, 물류, 장기적인 고객 관계에서 우위를 유지하는 반면, 신규 진입 업체들은 습식 야금 공정에 대한 집중 투자, 틈새 고순도 능력, 저탄소 가공 공정으로 차별화를 꾀하고 있습니다. 전체 밸류체인에서 전략적 포지셔닝은 재료의 원산지 증명, 불순물 프로파일 관리, 제조업체의 지속가능성 및 추적 가능성 요구 사항에 따라 공급 계약을 제공하는 능력에 점점 더 의존하고 있습니다.

리더가 공급 탄력성을 강화하고, 정책 리스크를 줄이며, 통합과 지속가능성 혁신을 통해 가치를 창출할 수 있는 실행 가능한 현실적인 전략 방안

업계 리더는 단기적인 비즈니스 연속성과 장기적인 전략적 포지셔닝을 동시에 달성할 수 있는 적극적인 전략을 채택해야 합니다. 기업은 원료 공급원 다변화를 우선시하고, 원료 품질 및 규제 환경 변화에 따라 수용액 야금법과 화공 야금법의 원료 처리 경로를 신속하게 전환할 수 있는 유연한 가공 옵션을 추구해야 합니다. 재활용 망간 자원의 통합과 회수율 향상은 무역 정책 변동에 대한 노출을 줄이고 지속가능성을 위한 노력을 지원할 것입니다.

본 조사의 기초가 되는 조사방법에 대해 투명하게 설명해 드리겠습니다. 주요 이해관계자와의 대화, 기술 문헌, 무역 데이터 삼각측량(트라이앵글레이션)을 결합한 혼합 방식을 채택하여 확고한 지식의 질을 보장

본 분석의 기반이 되는 조사는 업계 임원, 기술 전문가, 공급망 관리자를 대상으로 한 1차 인터뷰와 2차 기술 문헌, 규제 당국 제출 서류, 무역 데이터를 통합한 결과입니다. 1차 참여에서는 조달 우선순위, 가공 기술 채택, 최근 무역 조치가 사업 운영에 미치는 영향에 초점을 맞추었습니다. 2차 자료는 기술 동향 검증, 가공 공정의 상호 확인, 지역 무역 흐름 및 정책 방향의 변화에 대한 보고서 내용을 지원하는 데 활용되었습니다.

진화하는 망간 밸류체인 전반에서 경쟁 우위를 확보하기 위해서는 유연성, 품질관리, 지속가능성이 필수적이라는 점을 강조하는 결론적 통합

기술 혁신, 진화하는 최종 용도 요건, 정책적 개입의 복합적인 요인이 망간 밸류체인에서 가치를 창출하고 획득하는 방법을 재구성하고 있습니다. 생산자와 구매자 모두 원료의 다양화, 가공의 유연성, 입증 가능한 지속가능성 증명을 중시하는 다각적인 접근방식을 채택해야 합니다. 배터리 등급 재료의 중요성이 증가하고 응용 분야별 순도 요건이 복잡해짐에 따라 품질관리와 추적성은 더 이상 부수적인 운영 과제가 아닌 핵심적인 상업적 차별화 요소로 자리 잡았습니다.

목차

제1장 서문

제2장 조사 방법

제3장 개요

제4장 시장 개요

제5장 시장 인사이트

제6장 미국 관세의 누적 영향 2025

제7장 AI의 누적 영향 2025

제8장 망간 시장 : 용도별

  • 농업
  • 배터리용 캐소드
    • 리튬이온
    • 아연 망간
  • 화학제품
  • 철강 제조
    • 합금강
    • 탄소강
    • 스테인리스강

제9장 망간 시장 : 제품 유형별

  • 전해 이산화망간
    • 배터리용 등급
    • 산업용 등급
  • 페로알로이
    • 고탄소
    • 저탄소
    • 중탄소
  • 망간 탄산염
  • 황산망간

제10장 망간 시장 : 순도 등급별

  • 배터리 등급
    • CE(Consumer Electronics) 등급
    • EV 등급
  • 고순도
  • 표준 등급
  • 테크니컬 등급

제11장 망간 시장 : 기술별

  • 습식 야금
    • 전해 환원
    • 침출
  • 고온야금
    • 배소
    • 제련

제12장 망간 시장 : 형태별

  • 과립
  • 덩어리
  • 펠릿
  • 분말
  • 슬러리

제13장 망간 시장 : 지역별

  • 아메리카
    • 북미
    • 라틴아메리카
  • 유럽, 중동 및 아프리카
    • 유럽
    • 중동
    • 아프리카
  • 아시아태평양

제14장 망간 시장 : 그룹별

  • ASEAN
  • GCC
  • EU
  • BRICS
  • G7
  • NATO

제15장 망간 시장 : 국가별

  • 미국
  • 캐나다
  • 멕시코
  • 브라질
  • 영국
  • 독일
  • 프랑스
  • 러시아
  • 이탈리아
  • 스페인
  • 중국
  • 인도
  • 일본
  • 호주
  • 한국

제16장 경쟁 구도

  • 시장 점유율 분석, 2024
  • FPNV 포지셔닝 매트릭스, 2024
  • 경쟁 분석
    • South32 Limited
    • MOIL Limited
    • Tshipi e Ntle Manganese Mining(Pty) Ltd
    • Assmang(Pty) Ltd
    • Eramet S.A.
    • Vale S.A.
    • Jupiter Mines Limited
    • OM Holdings Limited
    • Yunnan Manganese Industry Co., Ltd.
    • China Minmetals Corporation
KSA

The Manganese Market is projected to grow by USD 48.09 billion at a CAGR of 6.27% by 2032.

KEY MARKET STATISTICS
Base Year [2024] USD 29.55 billion
Estimated Year [2025] USD 31.41 billion
Forecast Year [2032] USD 48.09 billion
CAGR (%) 6.27%

An authoritative contextual overview that places manganese at the nexus of steelmaking, battery technology, and supply chain security to frame strategic imperatives

Manganese occupies a pivotal position at the intersection of traditional heavy industry and the accelerating energy transition. Historically indispensable as an alloying element for steel, manganese now also underpins critical pathways in electrochemical energy storage, specialty chemicals, and agricultural micronutrients. The confluence of sustained infrastructure demand, the electrification of transport, and intensifying policy focus on secure upstream supply has elevated the metal from a commoditized input to a strategic commodity with broad industrial implications.

This introduction situates manganese within contemporary value chains by connecting upstream resource profiles and processing technologies to downstream performance requirements. It emphasizes that stakeholders must navigate evolving purity requirements, diverse product formulations, and complex trade dynamics while responding to technological innovation in extraction and refining. By framing the market through these lenses, the analysis that follows highlights where commercial leverage exists, where operational resilience is required, and how near-term strategic choices will shape competitive positions across the supply chain.

A forward-looking synthesis of demand, supply, policy, and technological shifts that are reordering manganese value chains and investment priorities globally

The landscape for manganese is shifting in ways that will reconfigure competitive dynamics and investment priorities across the value chain. Demand-side transformation is the most visible driver: rising traction for electric vehicles has accelerated sourcing of battery-grade manganese compounds and driven heightened scrutiny of impurity profiles and material lifecycle credentials. Concurrently, supply-side evolution is being shaped by technological improvements in hydrometallurgical processing that lower energy intensity and expand the range of viable feedstocks, including lower-grade ores and secondary recycling streams.

Policy and trade interventions are another transformational force. Governments are increasingly prioritizing domestic processing capacity and critical minerals strategies, which has stimulated localized investments and created new regulatory frameworks for environmental performance and permitting. Financial markets and capital providers are exerting pressure for demonstrable sustainability metrics, prompting producers to invest in emissions reduction and water stewardship. These shifts, taken together, create a more complex decision environment for producers, traders, and end users, where long-term contracts, blended sourcing strategies, and technology adoption will determine who captures value in an increasingly segmented market.

A comprehensive examination of how 2025 United States tariff adjustments have reshaped supply chains, procurement behavior, and strategic capital allocation across manganese sectors

Actions taken by the United States in 2025 to adjust tariff regimes affecting manganese and manganese-derived products have produced layered consequences for global trade flows and domestic industry economics. Increased duties on select imports have raised landed costs for affected product categories, incentivizing buyers to reassess supplier portfolios and to accelerate qualification of alternative sources. Where tariffs apply unevenly across product grades and processing routes, they have amplified price dispersion and encouraged procurement teams to prioritize supply continuity over unit-cost optimization.

The cumulative impact has manifested across several operational vectors. Steelmakers facing higher costs for ferroalloys have re-examined heat chemistries and material yields, while battery manufacturers have sought to secure long-term offtake arrangements for battery-grade materials that meet stringent impurity and consistency specifications. Tariff-induced margin pressure has also catalyzed nearshoring efforts and investment in domestic intermediate processing capacity, particularly where local regulations and incentives support capital formation. At the same time, trade partners have pursued reciprocal measures and supply diversification, redirecting flows toward markets with lower trade barriers. In the logistics domain, elevated complexity around customs classification and compliance has increased administrative burden, favoring integrated trading houses and vertically integrated producers who can internalize trade management and absorb regulatory friction more efficiently.

Importantly, the tariff landscape has accelerated non-tariff responses as well. Firms have intensified focus on recycling and secondary processing to reduce exposure to tariffed imports, and some buyers have shifted product specifications toward formulations less affected by duties. Financial stakeholders have adjusted underwriting approaches for projects that remain highly dependent on tariffed inputs, factoring in heightened policy risk and potential for rapid cost shifts. Collectively, these dynamics underscore how trade policy changes in 2025 have not only affected immediate cost lines but also reshaped strategic sourcing, capital allocation, and technological pathways for industry participants.

A multidimensional segmentation-driven analysis that connects applications, product types, purity grades, technologies, and material forms to clarify where value and risks concentrate

Understanding manganese market dynamics requires a granular look at how end uses, product types, purity expectations, processing technologies, and material forms intersect to drive value. When analyzed by application, the metal's demand profile spans Agriculture, Battery Cathodes, Chemicals, and Steel Manufacturing, with Battery Cathodes further differentiated into Lithium Ion and Zinc Manganese chemistries, and Steel Manufacturing parsed into Alloy Steel, Carbon Steel, and Stainless Steel. Each of these application lanes imposes distinct requirements on impurity tolerances, particle morphology, and supply reliability, which in turn influence how producers prioritize product lines and capital investments.

Product-type segmentation reveals complementary commercial pathways. Electrolytic Manganese Dioxide is produced and marketed in battery grade and industrial grade variants, with battery-grade material commanding higher processing intensity and traceability standards. Ferroalloys are differentiated by carbon content-high carbon, low carbon, and medium carbon grades-reflecting their primary use cases in steelmaking operations. Manganese Carbonate and Manganese Sulfate serve as intermediates for chemical processing and battery feedstock production, and they require distinct upstream conditioning and quality assurance practices.

Purity-grade distinctions are similarly consequential. Battery Grade manganese targets consumer electronics and EV Grade specifications, both demanding rigorous control of metallic and non-metallic impurities and often requiring certification against industry-specific standards. High Purity, Standard Grade, and Technical Grade further delineate material pathways for specialty chemical applications, fertilizer production, and traditional metallurgical uses. These purity tiers determine the economic premium producers can realize and the technological pathways required to achieve compliance.

Technology-based segmentation highlights divergent capital and operating models. Hydrometallurgical routes, including electrolytic reduction and leaching, enable lower-temperature processing and can enhance recovery from lower-grade ores and secondary streams, whereas pyrometallurgical approaches, such as roasting and smelting, remain important for high-throughput operations and certain alloy feedstocks. The choice between hydrometallurgy and pyrometallurgy influences emissions profiles, energy intensity, and the flexibility to process varied feedstock types.

Form-based segmentation-granules, lump, pellets, powder, and slurry-affects logistics, downstream handling, and in-situ performance in end-use applications. Powder and slurry forms are often preferred for chemical synthesis and electrode manufacturing because of surface chemistry and mixing qualities, while pellets and lumps are optimized for blast-furnace and electric-arc furnace processes due to their physical robustness and flow characteristics. Integrating form considerations with the aforementioned segments provides a multidimensional view that is essential for product development, supply chain engineering, and contract structuring.

A regional intelligence synthesis that reveals differentiated strategic priorities across the Americas, Europe Middle East & Africa, and Asia-Pacific to inform investment and sourcing choices

Regional dynamics in manganese supply and demand vary significantly and will dictate strategic priorities for market participants. In the Americas, domestic manufacturing, infrastructure investment cycles, and nascent battery supply chain development create localized opportunities for processed manganese products and secondary processing facilities, while sensitivity to trade measures encourages firms to consider integrated supply solutions that minimize tariff exposure. This region's logistics capabilities and proximity to large steel and automotive clusters make it a compelling area for investment in intermediate processing and quality-assurance infrastructure.

Europe, the Middle East & Africa present a diverse set of conditions that range from advanced regulatory environments prioritizing decarbonization and circularity to resource-rich jurisdictions seeking value-addition through local beneficiation. Regulatory emphasis on environmental performance and recycled content has catalyzed interest in lower-emissions processing routes and tighter traceability across the value chain. Africa's resource endowment, in particular, offers feedstock potential, but realizing that potential depends on investment in processing, infrastructure, and institutional capacity.

Asia-Pacific remains the preeminent consumption and processing hub for manganese-related products, driven by large-scale steel production, rapid adoption of electric vehicles, and extensive processing capacity. The region's deep logistics networks, concentration of battery manufacturers, and established metallurgical industries create both scale advantages and competitive pressures. At the same time, supply-chain vulnerabilities exposed by policy shifts and trade measures have encouraged greater regional diversification of processing capacity, increased interest in recycling and domestic beneficiation, and accelerating adoption of advanced processing technologies to meet evolving product specifications.

A nuanced review of industry structure showing how legacy scale, technological differentiation, vertical integration, and sustainability credentials determine competitive advantage

Competitive dynamics in the manganese sector reflect a mix of legacy metallurgical incumbents, specialty chemical producers, integrated miners, and emerging processors focused on battery-grade materials. Established producers retain advantages in scale, logistics, and long-term customer relationships, while agile entrants differentiate through targeted investments in hydrometallurgical routes, niche purity capabilities, and low-carbon processing footprints. Across the value chain, strategic positioning increasingly hinges on the ability to certify material provenance, control impurity profiles, and offer supply agreements that align with manufacturers' sustainability and traceability requirements.

Downstream integrators and manufacturers are responding by engaging in vertical partnerships, offtake agreements, and equity investments to secure consistent access to higher-grade intermediates. Financial sponsors and development banks are showing selective interest in projects that demonstrate both technical viability and robust environmental, social, and governance frameworks, elevating the importance of permitting track records and community engagement. In procurement and trading, firms that can provide bundled services-such as logistics, quality assurance, and regulatory compliance-are securing preferential placement with large steelmakers and battery manufacturers seeking to reduce supplier complexity and mitigate policy risks.

A pragmatic set of actionable strategic moves for leaders to strengthen supply resilience, reduce policy exposure, and capture value through integration and sustainability innovation

Industry leaders should adopt a proactive strategy that balances short-term operational resilience with long-term strategic positioning. Firms ought to prioritize diversification of feedstock sources and to pursue flexible processing options that permit rapid shifts between hydrometallurgical and pyrometallurgical feed paths as feedstock quality and regulatory conditions change. Integrating recycled manganese streams and increasing recovery rates will help reduce exposure to trade policy volatility and support sustainability commitments.

Strategic commercial actions should include negotiating flexible offtake contracts that embed quality specifications and contingency clauses, investing in traceability systems that satisfy end-user sustainability requirements, and exploring strategic partnerships to share capital and operational risk for upstream and midstream projects. Executives should also evaluate the business case for localized intermediate processing closer to major demand centers to avoid tariff and logistical vulnerabilities, while pursuing capital discipline and staged investment approaches to maintain optionality. Finally, leaders must cultivate regulatory engagement and community relations to accelerate permitting and to signal long-term commitment to environmental and social performance.

A transparent explanation of the mixed-methods research approach combining primary stakeholder engagement, technical literature, and trade data triangulation to ensure robust insight quality

The research underpinning this analysis synthesizes primary interviews with industry executives, technical specialists, and supply-chain managers, combined with secondary technical literature, regulatory filings, and trade data. Primary engagements focused on procurement priorities, processing technology adoption, and the operational impacts of recent trade measures. Secondary sources were used to validate technological trends, to cross-check processing pathways, and to corroborate reported shifts in regional trade flows and policy direction.

Quality assurance for the methodology involved triangulation across multiple respondent types and cross-referencing company disclosures and publicly available technical studies. Scenario analysis was applied to assess the operational and commercial implications of policy shifts, including tariff interventions and regulatory updates. Throughout, the approach emphasized transparency in assumptions and clarity about the limitations of available public data, ensuring that findings are tightly coupled to observable changes in technology, policy, and commercial behavior rather than speculative forecasts.

A conclusive synthesis emphasizing the imperative for flexibility, quality control, and sustainability to secure competitive advantage across evolving manganese value chains

The combined forces of technological change, evolving end-use requirements, and policy interventions are reconfiguring how value is created and captured in manganese value chains. Producers and buyers alike must adopt a multi-vector approach that emphasizes feedstock diversification, processing flexibility, and demonstrable sustainability credentials. The growing importance of battery-grade materials and the nuanced purity requirements across applications mean that quality control and traceability are now core commercial differentiators rather than operational afterthoughts.

In sum, competitive advantage in the manganese sector will accrue to organizations that can integrate technical capability with strategic supply relationships and who can pivot in response to trade policy and regional demand shifts. Those that invest in lower-emission processing, rigorous quality systems, and resilient logistics will be better positioned to meet the needs of steelmakers, battery manufacturers, and chemical producers while capturing premium opportunities that arise from differentiated, high-quality product offerings.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Surge in electric vehicle battery demand driving global battery-grade manganese sulfate investments
  • 5.2. Growing government regulations on manganese ore mining sustainability in key producing countries
  • 5.3. Innovative hydrometallurgical processes reducing environmental footprint of manganese extraction
  • 5.4. Rising use of manganese in low-carbon steel alloys for advanced construction and infrastructure projects
  • 5.5. Strategic alliances between battery manufacturers and manganese producers to secure supply chains
  • 5.6. Increasing adoption of manganese-rich ferromanganese in renewable energy storage systems
  • 5.7. Volatility in manganese ore prices influenced by geopolitical tensions and export restrictions

6. Cumulative Impact of United States Tariffs 2025

7. Cumulative Impact of Artificial Intelligence 2025

8. Manganese Market, by Application

  • 8.1. Agriculture
  • 8.2. Battery Cathodes
    • 8.2.1. Lithium Ion
    • 8.2.2. Zinc Manganese
  • 8.3. Chemicals
  • 8.4. Steel Manufacturing
    • 8.4.1. Alloy Steel
    • 8.4.2. Carbon Steel
    • 8.4.3. Stainless Steel

9. Manganese Market, by Product Type

  • 9.1. Electrolytic Manganese Dioxide
    • 9.1.1. Battery Grade
    • 9.1.2. Industrial Grade
  • 9.2. Ferroalloys
    • 9.2.1. High Carbon
    • 9.2.2. Low Carbon
    • 9.2.3. Medium Carbon
  • 9.3. Manganese Carbonate
  • 9.4. Manganese Sulfate

10. Manganese Market, by Purity Grade

  • 10.1. Battery Grade
    • 10.1.1. Consumer Electronics Grade
    • 10.1.2. EV Grade
  • 10.2. High Purity
  • 10.3. Standard Grade
  • 10.4. Technical Grade

11. Manganese Market, by Technology

  • 11.1. Hydrometallurgical
    • 11.1.1. Electrolytic Reduction
    • 11.1.2. Leaching
  • 11.2. Pyrometallurgical
    • 11.2.1. Roasting
    • 11.2.2. Smelting

12. Manganese Market, by Form

  • 12.1. Granules
  • 12.2. Lump
  • 12.3. Pellets
  • 12.4. Powder
  • 12.5. Slurry

13. Manganese Market, by Region

  • 13.1. Americas
    • 13.1.1. North America
    • 13.1.2. Latin America
  • 13.2. Europe, Middle East & Africa
    • 13.2.1. Europe
    • 13.2.2. Middle East
    • 13.2.3. Africa
  • 13.3. Asia-Pacific

14. Manganese Market, by Group

  • 14.1. ASEAN
  • 14.2. GCC
  • 14.3. European Union
  • 14.4. BRICS
  • 14.5. G7
  • 14.6. NATO

15. Manganese Market, by Country

  • 15.1. United States
  • 15.2. Canada
  • 15.3. Mexico
  • 15.4. Brazil
  • 15.5. United Kingdom
  • 15.6. Germany
  • 15.7. France
  • 15.8. Russia
  • 15.9. Italy
  • 15.10. Spain
  • 15.11. China
  • 15.12. India
  • 15.13. Japan
  • 15.14. Australia
  • 15.15. South Korea

16. Competitive Landscape

  • 16.1. Market Share Analysis, 2024
  • 16.2. FPNV Positioning Matrix, 2024
  • 16.3. Competitive Analysis
    • 16.3.1. South32 Limited
    • 16.3.2. MOIL Limited
    • 16.3.3. Tshipi e Ntle Manganese Mining (Pty) Ltd
    • 16.3.4. Assmang (Pty) Ltd
    • 16.3.5. Eramet S.A.
    • 16.3.6. Vale S.A.
    • 16.3.7. Jupiter Mines Limited
    • 16.3.8. OM Holdings Limited
    • 16.3.9. Yunnan Manganese Industry Co., Ltd.
    • 16.3.10. China Minmetals Corporation
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제