½ÃÀ庸°í¼­
»óǰÄÚµå
1797973

¼¼°èÀÇ ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º ½ÃÀå ¿¹Ãø(-2032³â) : À¯Çüº°, ºñÁî´Ï½º ¸ðµ¨º°, Ç÷§Æûº°, °áÁ¦ ¸ðµåº°, ±â¼úº°, ÃÖÁ¾ »ç¿ëÀÚº°, Áö¿ªº° ºÐ¼®

Hyperlocal Services Market Forecasts to 2032 - Global Analysis By Type, Business Model, Platform, Payment Mode, Technology, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º ½ÃÀåÀº 2025³â 1,665¾ï ´Þ·¯¸¦ Â÷ÁöÇϸç, ¿¹Ãø ±â°£ µ¿¾È CAGR 10.4%·Î ¼ºÀåÇÏ¿© 2032³â±îÁö 3,328¾ï ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º´Â Á¦ÇÑµÈ ¸íÈ®ÇÑ Áö¿ª ³» °í°´ÀÇ ¿ä±¸¿¡ ¸Â´Â ºñÁî´Ï½º ¸ðµ¨ÀÔ´Ï´Ù. ÇöÁö °ø±Þ¾÷üÀÇ ³×Æ®¿öÅ©¿Í °ß°íÇÑ µðÁöÅÐ Ç÷§ÆûÀ» Ȱ¿ëÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¼­ºñ½º´Â Á¦Ç° ¹× ¼­ºñ½ºÀÇ ½Å¼ÓÇÑ ¹è´ÞÀ» ÃËÁøÇϸç ÀϹÝÀûÀ¸·Î ¸î ½Ã°£ À̳»¿¡ ¹è´ÞµË´Ï´Ù. ÁÖ¿ä ¸ñÀûÀº ¼ÒºñÀÚ¿Í ÀÌ¿ô »ç¾÷ÀÚ¸¦ ¿¬°áÇÏ¿© Æí¸®¼º, ¼Óµµ, È¿À²¼ºÀ» Á¦°øÇÏ¿© Áö¿ª °æÁ¦¸¦ Áö¿øÇÏ°í ½Ä·áǰ, ½Äǰ, ÀǾàǰ µîÀÇ »óǰ¿¡ ´ëÇÑ ±ä±ÞÇÑ ¿ä±¸¸¦ ÃæÁ·½ÃŰ´Â °ÍÀÔ´Ï´Ù.

International Journal of Scientific Development and Research¿¡ µû¸£¸é, ÀεµÀÇ ÄÚÀÓ¹ÙÅ丣 ¼Ò¸Å¾÷ü¸¦ ´ë»óÀ¸·Î ½Ç½ÃÇÑ ¼³¹®Á¶»ç¿¡¼­ ÇÏÀÌÆÛ·ÎÄà Àü·«ÀÇ Á߿伺ÀÌ ³ô¾ÆÁö°í ÀÖÀ½ÀÌ µ¸º¸¿´½À´Ï´Ù. Á¶»ç °á°ú¿¡ µû¸£¸é, Á¶»ç ´ë»óÀÌ µÈ Á¡Æ÷ÀÇ »ó´çÇÑ ºñÀ²ÀÌ ÇÏÀÌÆÛ·ÎÄà Á¢±Ù¹ýÀ» äÅÃÇÏ´Â °ÍÀÌ ¿Â¶óÀÎ ¼îÇÎ Ç÷§Æû°ú ±âÁ¸ÀÇ ½ÇÁ¦ Á¡Æ÷ »çÀÌ¿¡ Á¸ÀçÇÏ´Â °ÝÂ÷¸¦ ¸Þ¿ì´Â µ¥ ¸Å¿ì È¿°úÀûÀ̶ó°í »ý°¢Çϰí ÀÖÀ½À» º¸¿©ÁÖ¾ú½À´Ï´Ù.

ÇÕ¸®ÀûÀÎ °¡°ÝÀÇ ½º¸¶Æ®Æù º¸±Þ°ú À¯ºñÄõÅͽº ÀÎÅÍ³Ý ¿¬°á¼º

ÇÕ¸®ÀûÀÎ °¡°ÝÀÇ ½º¸¶Æ®ÆùÀÇ º¸±Þ°ú °í¼Ó ÀÎÅͳÝÀÇ º¸±ÞÀº ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º ½ÃÀåÀ» °ßÀÎÇÏ´Â ¸Å¿ì Áß¿äÇÑ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ±âº» ÀÎÇÁ¶ó ¿ªÇÒÀ» ÇÏ¸ç ¼ÒºñÀÚ, ÇöÁö »óÁ¡ ¹× ¹è¼Û ÆÄÆ®³Ê °£ÀÇ ¿øÈ°ÇÑ ¿¬°áÀ» °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ¼Õ ¾ÈÀÇ ±â±â¿Í ÀÎÅÍ³Ý ¿¬°áÀ» ÅëÇØ °í°´Àº Áö¿ª »óǰÀ» ½±°Ô ã¾Æº¸°í ÁÖ¹®ÇÏ°í ½Ç½Ã°£À¸·Î ¹è¼ÛÀ» ÃßÀûÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ µðÁöÅÐ ½ÃÇÁÆ®´Â ÇÏÀÌÆÛ·ÎÄà ¸ðµ¨ÀÇ ÇÙ½ÉÀÎ ÆíÀǼº°ú ¿É¼ÇÀ» ¼ÒºñÀÚ¿¡°Ô Á¦°øÇÕ´Ï´Ù.

Á¶Á÷µÇÁö ¾ÊÀº ³ëµ¿·Â¿¡ ´ëÇÑ ÀÇÁ¸

ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º ½ÃÀå¿¡ ´ëÇÑ Áß¿äÇÑ °úÁ¦´Â ´ë±Ô¸ð, Á¾Á¾ Á¶Á÷È­µÇÁö ¾ÊÀº ÇÁ¸®·£¼­ ±â¹Ý ³ëµ¿·Â¿¡ Å©°Ô ÀÇÁ¸ÇÑ´Ù´Â °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀÇÁ¸¼ºÀº Àϰü¼º ¾ø´Â ¼­ºñ½º ǰÁú, ³ôÀº ÀÌÁ÷·ü, Ç¥ÁØÈ­µÈ ±³À°ÀÇ ºÎÁ·À¸·Î À̾îÁú ¼ö ÀÖ½À´Ï´Ù. Áö¹è, À߸øµÈ ÁÖ¹® ó¸®, ¹è¼Û ÆÄÆ®³ÊÀÇ Àü¹® ÀǽÄÀÌ ºÎÁ·ÇÑ Çൿ µîÀÇ ¹®Á¦´Â °í°´ ¸¸Á·µµ ¹× ºê·£µå Æò°¡¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ÁÙ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ À¯µ¿ÀûÀÌ°í °ø½ÄÀûÀÎ °í¿ëü°è°¡ ¾ø±â ¶§¹®¿¡ ³ëµ¿ÀïÀdzª ³ëµ¿·Â ºÎÁ·À¸·Î À̾îÁú °¡´É¼ºµµ ÀÖ¾î ¼­ºñ½ºÀÇ ¿¬¼Ó¼º°ú ¼öÀͼºÀÌ Å©°Ô ¼Õ»óµÇ¾î ½ÃÀåÀÇ ¾ÈÁ¤¼ºÀ» Å©°Ô ÀúÇØÇÏ´Â ¿äÀÎÀÌ µË´Ï´Ù.

Tier 2, Tier 3 µµ½Ã·Î ÁøÃâ

°¡Ã³ºÐ ¼ÒµæÀÌ Áõ°¡ÇÏ°í ½º¸¶Æ®ÆùÀ̳ª ÀÎÅͳÝÀÇ º¸±ÞÀÌ ÁøÇàµÇ°í ÀÖ´Â °ÍÀÌ Æ¯Â¡ÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Áö¿ª ÁֹεéÀÌ µðÁöÅÐ ¼­ºñ½º¿¡ Àͼ÷ÇØÁö¸é¼­ ´ëµµ½Ã±Ç°ú °°Àº ¼öÁØÀÇ ÆíÀǼº°ú ¿Âµð¸Çµå Ç®ÇÊ¸ÕÆ®¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ÇÏÀÌÆÛ·ÎÄà ±â¾÷Àº ÀÌ·¯ÇÑ ½Å½ÃÀå¿¡ ÁøÀÔÇÔÀ¸·Î½á ¼±ÇàÀÚ ÀÌÀÍÀ» ¾òÀ» ¼ö ÀÖÀ» »Ó¸¸ ¾Æ´Ï¶ó Áö¿ª °æÁ¦³ª ºñÁî´Ï½ºÀÇ µðÁöÅÐÈ­¸¦ Áö¿øÇÏ°í °æÀïÀÌ ÀûÀº º¸´Ù Á¾ÇÕÀûÀÌ°í °ß°íÇÑ ½ÃÀå »ýŰ踦 À°¼ºÇÒ ¼ö ÀÖ½À´Ï´Ù.

±âÁ¸ ÀüÀÚ»ó°Å·¡ ´ë±â¾÷°úÀÇ Ä¡¿­ÇÑ °æÀï

±âÁ¸ÀÇ ´ë±â¾÷Àº dzºÎÇÑ ÀڱݷÂ, ºê·£µå ÀÎÁöµµ, °í±Þ ¹°·ù ³×Æ®¿öÅ©¸¦ Ȱ¿ëÇÏ¿© ÇÏÀÌÆÛ·ÎÄà ¿µ¿ªÀ¸·ÎÀÇ ÁøÃâÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. ÀڱݷÂÀÖ´Â ±â¾÷Àº ¼Ò±Ô¸ð ÇÏÀÌÆÛ·ÎÄà ½ÅÈï ±â¾÷À» ½±°Ô ÀμöÇϰí, Àû±ØÀûÀÎ °¡°Ý Àü·«À» °³¹ßÇϰí, ½ÃÀå Á¡À¯À²À» ¾ò±â À§ÇØ ¸¶ÄÉÆÃ¿¡ ¸¹Àº ÅõÀÚ¸¦ ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ã·´Ü °æÀïÀº ¼Ò±Ô¸ðÀÇ µ¶¸³ÀûÀÎ ÇÏÀÌÆÛ·ÎÄà Ç÷§ÆûÀÌ »ýÁ¸ÇÏ°í ¼öÀͼºÀ» ´Þ¼ºÇϱ⠾î·Á¿ö ½ÃÀå ¼ºÀåÀ» ¹æÇØÇÕ´Ï´Ù.

COVID-19ÀÇ ¿µÇâ:

COVID-19ÀÇ ´ëÀ¯ÇàÀº ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º ½ÃÀå¿¡ º¯È­¸¦ °¡Á®¿À°í ¼ÒºñÀÚ ÇൿÀ» ±Ùº»ÀûÀ¸·Î ¹Ù²Ù°í ¼ºÀåÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. ¶ô´Ù¿îÀ̳ª »çȸÀû °Å¸®¸¦ µÎ´Â ±Ô¹üÀÌ ºÎ°úµÇ¾î, ƯÈ÷ ½Ä·áǰÀ̳ª ÀǾàǰ µîÀÇ Çʼöǰ¿¡ ´ëÇØ¼­, ºñÁ¢ÃËÇü ¼­ºñ½º³ª ÀçÅà ¼­ºñ½º¿¡ÀÇ Àü·Ê¾ø´Â ¼ö¿ä°¡ ž½À´Ï´Ù. ÇÏÀÌÆÛ·ÎÄà Ç÷§ÆûÀº ¸¹Àº ¼ÒºñÀڵ鿡°Ô Áß¿äÇÑ ¶óÀÌÇÁ¶óÀÎÀÌ µÇ¾î, »óǰÀ» ¾ÈÀüÇÏ°í Æí¸®ÇÏ°Ô Á¶´ÞÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿äÀÇ ±ÞÁõÀ¸·Î ½Å±¸¸¦ ºÒ¹®ÇÏ°í ¸¹Àº ±â¾÷µéÀÌ ±Þ¼ÓÈ÷ »ç¾÷À» È®´ëÇϰí À§±â¿¡ óÇÑ ¼¼°èÀÇ ¿ä±¸¿¡ ºÎÀÀÇϱâ À§ÇÑ ±â¼ú Çõ½ÅÀ» °­¿äÇß½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ½Ä·áǰ ¹è´Þ ºÎ¹®ÀÌ ÃÖ´ë°¡ µÉ Àü¸Á

½Ä·áǰ ¹è´Þ ºÐ¾ß´Â º»ÁúÀûÀΠƯ¼º°ú ³ôÀº ºóµµ ¼ö¿ä·Î ÀÎÇØ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ½Ä·áǰÀº °¢ °¡Á¤¿¡ ´ëÇÑ ºñÀç·®ÀûÀ̰í Á¤±âÀûÀÎ ¼îÇÎÀ̱⠶§¹®¿¡ ÀÌ·¯ÇÑ Á¦Ç°ÀÇ ÁÖ¹®Çü ¹è´ÞÀº ±âº»ÀûÀ̰í ÇʼöÀûÀÎ ¼­ºñ½ºÀÔ´Ï´Ù. ½Ä·áǰÀ» Çö°ü ¾ÕÀ¸·Î Á÷Á¢ ¹è´ÞÇØÁÖ´Â Æí¸®ÇÔÀº ¼ÒºñÀÚÀÇ ½Ã°£°ú ³ë·ÂÀ» Å©°Ô Àý¾àÇÏ°í ¹Ù»Û µµ½Ã Áö¿ªÀÇ »ç¶÷µé¿¡°Ô °­ÇÏ°Ô ¿ï¸®´Â °¡Ä¡ Á¦¾ÈÀÔ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¸ÖƼ ¼­ºñ½º ¾î±×¸®°ÔÀÌÅÍ ¸ðµ¨ÀÇ CAGRÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¸ÖƼ ¼­ºñ½º ¾î±×¸®°ÔÀÌÅÍ ¸ðµ¨ ºÎ¹®ÀÌ °¡Àå ³ôÀº ¼ºÀå·üÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Â ÀÌÀ¯´Â ½Äǰ ¹è´Þ, ½Ä·áǰ Åùè, Ȩ ¼­ºñ½º µî ´Ù¾çÇÑ ¼­ºñ½º¸¦ ´ÜÀÏ Ç÷§Æû¿¡ ÅëÇÕÇÏ¿© ŸÀÇ ÃßÁ¾À» ºÒÇãÇÏ´Â ÆíÀǼº°ú °í°´ÀÇ °ß°í¼ºÀ» Á¦°øÇϱ⠶§¹®ÀÔ´Ï´Ù. ±¤¹üÀ§ÇÑ ÇÏÀÌÆÛ·ÎÄà ¿ä±¸¿¡ ¿ø ½ºÅé ¼óÀ» Á¦°øÇÔÀ¸·Î½á ÀÌ·¯ÇÑ Ç÷§ÆûÀº ´õ¿í ÅëÇÕµÈ °¡Ä¡ ÀÖ´Â »ç¿ëÀÚ °æÇèÀ» âÃâÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¸ðµ¨À» »ç¿ëÇÏ¸é ±â¾÷Àº ±âÁ¸ °í°´ ±â¹Ý ¹× µô¸®¹ö¸® ³×Æ®¿öÅ©¸¦ Ȱ¿ëÇÏ¿© »õ·Î¿î ¼­ºñ½º¸¦ ±³Â÷ ¼¿·Î ¸¸µé ¼ö ÀÖ¾î °í°´ ȹµæ ºñ¿ëÀ» Å©°Ô ÁÙÀÌ°í »ç¿ëÀÚ 1ÀÎ´ç ¼öÀÍÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù.

ÃÖ´ë Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¾öû³­ Àα¸ ±â¹Ý, ±Þ¼ÓÇÑ µµ½ÃÈ­, ±Þ¼ºÀåÇÏ´Â µðÁöÅÐ °æÁ¦·Î ÃÖ´ë ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÀÌ Áö¿ª¿¡´Â Áß±¹°ú Àεµ¸¦ ºñ·ÔÇÑ ¼¼°è¿¡¼­ °¡Àå Àα¸°¡ ¸¹Àº ±¹°¡°¡ ´Ù¼ö ÀÖÀ¸¸ç, °¡Ã³ºÐ ¼Òµæ Áõ°¡¿Í ÇÏÀÌÅ×Å©¿¡ Àͼ÷ÇÑ ÀþÀºÃþÀÇ Á¶ÇÕÀÌ ¿Âµð¸Çµå ¼­ºñ½º¿¡ ´ëÇÑ Å« ¼ö¿ä¸¦ °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±â¾÷ÀÌ Á¤½ÅÀÌ ¿Õ¼ºÇϰí ÇÏÀÌÆÛ·ÎÄà Ç÷§ÆûÀ» Ȱ¿ëÇÏ¿© ÆÇ·Î¸¦ È®´ëÇÏ·Á´Â Áß¼Ò±â¾÷ÀÌ ÁýÁßÇϰí ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª:

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº Àα¸ ¿ªÇÐ º¯È­, °æÁ¦ °³¹ß ¹× ±â¼ú µµÀÔÀÇ ¿Ïº®ÇÑ ÆøÇ³À¸·Î ÀÎÇØ °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÆíÀǼº°ú µðÁöÅÐ ¼­ºñ½º¸¦ °­·ÂÇÏ°Ô ¼±È£ÇÏ´Â ´ë±Ô¸ð ¼ºÀåÇÏ´Â Áß°£ÃþÀÌ ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä¸¦ À̲ø°í ÀÖ½À´Ï´Ù. ÀÌ ¼ö¿ä´Â ½º¸¶Æ®Æù°ú ÀÎÅÍ³Ý Á¢¼ÓÀÌ ¼Ò±Ô¸ðÀÇ Tier 2, Tier 3 µµ½Ã±îÁö °è¼Ó È®´ëµÊ¿¡ µû¶ó ´õ¿í È®´ëµÇ°í, ½ÃÀå ±â¾÷¿¡°Ô »õ·Î¿î ÇÁ·ÐƼ¾î°¡ µÇ°í ÀÖ½À´Ï´Ù.

¹«·á ÁÖ¹®À» ¹Þ¾Æ¼­ ¸¸µå´Â ¼­ºñ½º:

ÀÌ º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½ ¹«·á ¸ÂÃã¼³Á¤ ¿É¼Ç Áß Çϳª¸¦ »ç¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

  • ±â¾÷ ÇÁ·ÎÆÄÀÏ
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀû ÇÁ·ÎÆÄÀϸµ(3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ ÀÀÇÑ ÁÖ¿ä±¹ ½ÃÀå Ãß°è, ¿¹Ãø, CAGR(ÁÖ: Ÿ´ç¼º È®Àο¡ µû¸§)
  • °æÀï º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû Á¸Àç, Àü·«Àû Á¦ÈÞ¿¡ ±â¹ÝÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸¿ø
    • ÀüÁ¦Á¶°Ç

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ÃÖÁ¾ »ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
  • ±¸¸ÅÀÚÀÇ Çù»ó·Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷°£ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º ½ÃÀå : À¯Çüº°

  • À½½Ä ÁÖ¹®
  • ½Ä·áǰ ¹è´Þ
  • Ȩ ¼­ºñ½º
  • ÆÛ½º³Î ¼­ºñ½º
  • Àü¹® ¼­ºñ½º
  • ÇコÄÉ¾î ¼­ºñ½º
  • ¹°·ù ¼­ºñ½º
  • ¹Ý·Áµ¿¹° ÄÉ¾î ¼­ºñ½º
  • ±âŸ À¯Çü

Á¦6Àå ¼¼°èÀÇ ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º ½ÃÀå : ºñÁî´Ï½º ¸ðµ¨º°

  • ½Ì±Û ¼­ºñ½º ¸ðµ¨
  • ¸ÖƼ ¼­ºñ½º ¾î±×¸®°ÔÀÌÅÍ ¸ðµ¨
  • ¿Âµð¸Çµå vs ±¸µ¶ º£À̽º
  • B2B vs B2C vs C2C

Á¦7Àå ¼¼°è ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º ½ÃÀå : Ç÷§Æûº°

  • À¥ ±â¹Ý
  • ¸ð¹ÙÀÏ ¾Û ±â¹Ý
  • ¾Èµå·ÎÀ̵å
  • iOS
  • ±âŸ Ç÷§Æû

Á¦8Àå ¼¼°èÀÇ ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º ½ÃÀå : °áÁ¦ ¸ðµåº°

  • ¿Â¶óÀÎ °áÁ¦
  • ´ë±Ý »óȯ
  • ±¸µ¶ °áÁ¦

Á¦9Àå ¼¼°è ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º ½ÃÀå : ±â¼úº°

  • AI ¹× ¸Ó½Å·¯´×À» Ȱ¿ëÇÑ ¼­ºñ½º
  • ¼­ºñ½º »óÈ£ÀÛ¿ëÀ» °­È­ÇÏ´Â Áõ°­Çö½Ç(AR)
  • ½Ç½Ã°£ ÃßÀû ¹× IoT ÅëÇÕ
  • ±âŸ ±â¼ú

Á¦10Àå ¼¼°èÀÇ ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º ½ÃÀå : ÃÖÁ¾ »ç¿ëÀÚº°

  • ÁÖÅÃ
  • »ó¾÷
  • ±âŸ ÃÖÁ¾ »ç¿ëÀÚ

Á¦11Àå ¼¼°èÀÇ ÇÏÀÌÆÛ·ÎÄà ¼­ºñ½º ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ ÇÁ·ÎÆÄÀϸµ

  • Blinkit
  • BigBasket
  • Dunzo
  • Swiggy Genie
  • Zomato
  • Zepto
  • Urban Company
  • Blowhorn
  • Shadowfax
  • Delhivery
  • Shiprocket
  • Pickrr
  • Fynd
  • LoadShare
  • XpressBees
  • Porter
  • Rapido
  • Ola Dash
  • Amazon Fresh
  • Flipkart Quick
JHS

According to Stratistics MRC, the Global Hyperlocal Services Market is accounted for $166.5 billion in 2025 and is expected to reach $332.8 billion by 2032 growing at a CAGR of 10.4% during the forecast period. Hyperlocal services are a business model that fulfills the on-demand needs of customers within a limited and well-defined geographical area. By leveraging a network of local vendors and a robust digital platform, these services facilitate the rapid delivery of goods or services, typically within a few hours. The primary objective is to provide convenience, speed, and efficiency by connecting consumers with nearby businesses, thereby supporting the local economy and meeting immediate needs for products like groceries, food, or medicines.

According to International Journal of Scientific Development and Research, a study conducted on retailers in Coimbatore, India, highlighted the growing importance of hyperlocal strategies. The findings indicated that a significant percentage of stores surveyed believed that adopting a hyperlocal approach would be highly effective in bridging the existing gap between online shopping platforms and traditional brick-and-mortar stores.

Market Dynamics:

Driver:

Proliferation of affordable smartphones and ubiquitous internet connectivity

The widespread availability of affordable smartphones and the penetration of high-speed internet have been pivotal in driving the hyperlocal services market. These technologies serve as the fundamental infrastructure, enabling a seamless connection between consumers, local merchants, and delivery partners. With a device in hand and an internet connection, customers can easily browse local offerings, place orders, and track deliveries in real time. This digital shift empowers consumers with convenience and choice, which is at the very heart of the hyperlocal model.

Restraint:

Reliance on an unorganized workforce

A significant challenge for the hyperlocal services market is its heavy reliance on a large, often unorganized, and freelance-based workforce. This dependency can lead to inconsistent service quality, high attrition rates, and a lack of standardized training. Issues such as late deliveries, incorrect order fulfillment, or unprofessional behavior from delivery partners can directly impact customer satisfaction and brand reputation. The inherent fluidity and lack of formal employment structures can also lead to labor disputes or shortages, which can severely disrupt service continuity and profitability, thereby acting as a major restraint on market stability.

Opportunity:

Expansion into tier-2 and tier-3 cities

These smaller urban centers represent a vast and largely untapped customer base, characterized by rising disposable incomes and increasing smartphone and internet penetration. As residents in these areas become more accustomed to digital services, there is a growing demand for the same level of convenience and on-demand fulfillment that is available in major metropolitan areas. By establishing a presence in these new markets, hyperlocal companies can not only capture a first-mover advantage but also support the digitalization of local economies and businesses, fostering a more inclusive and robust market ecosystem with less competition.

Threat:

Intense competition from established e-commerce giants

Established players are increasingly venturing into the hyperlocal space, leveraging their extensive financial resources, brand recognition, and advanced logistical networks. Companies with deep pockets can easily acquire smaller hyperlocal startups, engage in aggressive pricing strategies, and invest heavily in marketing to capture market share. This high level of competition makes it difficult for smaller, independent hyperlocal platforms to survive and achieve profitability hampering the market growth.

Covid-19 Impact:

The COVID-19 pandemic had a transformative effect on the hyperlocal services market, fundamentally changing consumer behavior and accelerating its growth. The imposition of lockdowns and social distancing norms created an unprecedented demand for contactless and home-based services, particularly for essentials like groceries and medicines. Hyperlocal platforms became a critical lifeline for many consumers, allowing them to procure goods safely and conveniently. This surge in demand forced many businesses, both new and old, to rapidly scale their operations and innovate to meet the needs of a crisis-ridden world.

The grocery delivery segment is expected to be the largest during the forecast period

The grocery delivery segment is expected to account for the largest market share during the forecast period attributed to its essential nature and high-frequency demand. Groceries are a non-discretionary, recurring purchase for every household, making the on-demand delivery of these items a fundamental and indispensable service. The convenience of having groceries delivered directly to the doorstep saves consumers a significant amount of time and effort, a value proposition that resonates strongly with busy urban populations.

The multi-service aggregator model segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the multi-service aggregator model segment is predicted to witness the highest growth rate as it consolidates a variety of services such as food delivery, grocery delivery, and home services onto a single platform, offers unparalleled convenience and customer stickiness. By providing a one-stop-shop for a wide range of hyperlocal needs, these platforms can create a more integrated and valuable user experience. This model allows companies to leverage their existing customer base and delivery network to cross-sell new services, which significantly lowers customer acquisition costs and increases revenue per user.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to its massive population base, rapid urbanization, and a burgeoning digital economy. The region is home to a significant number of the world's most populous countries, including China and India, where a combination of rising disposable incomes and a tech-savvy youth population is driving a huge demand for on-demand services. Moreover, the Asia Pacific region has a strong culture of entrepreneurship and a high concentration of small and medium-sized businesses that are eager to leverage hyperlocal platforms to expand their reach.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by a perfect storm of demographic shifts, economic development, and technological adoption. A large and growing middle class with a strong preference for convenience and digital services is driving the demand for hyperlocal offerings. This demand is further amplified by the ongoing expansion of smartphone and internet access into smaller, tier-2 and tier-3 cities, which represent a new frontier for market players.

Key players in the market

Some of the key players in Hyperlocal Services Market include Blinkit, BigBasket, Dunzo, Swiggy Genie, Zomato, Zepto, Urban Company, Blowhorn, Shadowfax, Delhivery, Shiprocket, Pickrr, Fynd, LoadShare, XpressBees, Porter, Rapido, Ola Dash, Amazon Fresh, and Flipkart Quick

Key Developments:

In July 2025, Blinkit has firmly established itself with a sprawling network of dark stores facilitating deliveries in 10-20 minutes across over 30 cities. Their product range now includes groceries, electronics, and personal care, enabling strong customer retention and growth in the rapid delivery sector.

In October 2024, BigBasket, owned by Tata, is gearing up to expand into toys, general merchandise, and fashion categories within quick commerce, focusing on product velocity and customer demand criteria to optimize its assortment and compete with Blinkit and Zepto. Their aim is to strengthen their position in the $6 billion quick commerce market projected for FY25.

Types Covered:

  • Food Ordering
  • Grocery Delivery
  • Home Services
  • Personal Services
  • Professional Services
  • Healthcare Services
  • Logistics Service
  • Pet Care Services
  • Other Types

Business Models Covered:

  • Single-Service Model
  • Multi-Service Aggregator Model
  • On-Demand vs Subscription-Based
  • B2B vs B2C vs C2C

Platforms Covered:

  • Web-Based
  • Mobile App-Based
  • Android
  • iOS
  • Other Platforms

Payment Modes Covered:

  • Online Payments
  • Cash on Delivery
  • Subscription Payments

Technologies Covered:

  • AI & Machine Learning Enabled Services
  • Augmented Reality (AR) for Enhanced Service Interaction
  • Real-Time Tracking & IoT Integration
  • Other Technologies

End Users Covered:

  • Residential
  • Commercial
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Hyperlocal Services Market, By Type

  • 5.1 Introduction
  • 5.2 Food Ordering
  • 5.3 Grocery Delivery
  • 5.4 Home Services
  • 5.5 Personal Services
  • 5.6 Professional Services
  • 5.7 Healthcare Services
  • 5.8 Logistics Service
  • 5.9 Pet Care Services
  • 5.10 Other Types

6 Global Hyperlocal Services Market, By Business Model

  • 6.1 Introduction
  • 6.2 Single-Service Model
  • 6.3 Multi-Service Aggregator Model
  • 6.4 On-Demand vs Subscription-Based
  • 6.5 B2B vs B2C vs C2C

7 Global Hyperlocal Services Market, By Platform

  • 7.1 Introduction
  • 7.2 Web-Based
  • 7.3 Mobile App-Based
  • 7.4 Android
  • 7.5 iOS
  • 7.6 Other Platforms

8 Global Hyperlocal Services Market, By Payment Mode

  • 8.1 Introduction
  • 8.2 Online Payments
  • 8.3 Cash on Delivery
  • 8.4 Subscription Payments

9 Global Hyperlocal Services Market, By Technology

  • 9.1 Introduction
  • 9.2 AI & Machine Learning Enabled Services
  • 9.3 Augmented Reality (AR) for Enhanced Service Interaction
  • 9.4 Real-Time Tracking & IoT Integration
  • 9.5 Other Technologies

10 Global Hyperlocal Services Market, By End User

  • 10.1 Introduction
  • 10.2 Residential
  • 10.3 Commercial
  • 10.4 Other End Users

11 Global Hyperlocal Services Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Blinkit
  • 13.2 BigBasket
  • 13.3 Dunzo
  • 13.4 Swiggy Genie
  • 13.5 Zomato
  • 13.6 Zepto
  • 13.7 Urban Company
  • 13.8 Blowhorn
  • 13.9 Shadowfax
  • 13.10 Delhivery
  • 13.11 Shiprocket
  • 13.12 Pickrr
  • 13.13 Fynd
  • 13.14 LoadShare
  • 13.15 XpressBees
  • 13.16 Porter
  • 13.17 Rapido
  • 13.18 Ola Dash
  • 13.19 Amazon Fresh
  • 13.20 Flipkart Quick
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦