½ÃÀ庸°í¼­
»óǰÄÚµå
1818054

¼¼°èÀÇ µðÁöÅÐ ¾Ö±×Å×Å© ½ÃÀå ¿¹Ãø(-2032³â) : ±¸¼º¿ä¼Òº°, ³óÀå ±Ô¸ðº°, Àü°³ ¸ðµ¨º°, ±â¼úº°, ¿ëµµº°, ÃÖÁ¾ ¿ëµµº°, Áö¿ªº° ºÐ¼®

Digital AgTech Market Forecasts to 2032 - Global Analysis By Component (Hardware, Software, Services and Other Components), Farm, Deployment Model, Technology, Application, End User and By Geography

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Stratistics Market Research Consulting | ÆäÀÌÁö Á¤º¸: ¿µ¹® 200+ Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

Stratistics MRC¿¡ µû¸£¸é ¼¼°èÀÇ µðÁöÅÐ ¾Ö±×Å×Å© ½ÃÀåÀº 2025³â¿¡ 77¾ï 9,000¸¸ ´Þ·¯¸¦ Â÷ÁöÇϰí, ¿¹Ãø ±â°£ µ¿¾È CAGR 10.4%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 155¾ï 7,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù.

µðÁöÅÐ ¾Ö±×Å×Å©´Â AI, IoT, ºí·ÏüÀÎ, µ¥ÀÌÅÍ ºÐ¼® µî ÷´Ü µðÁöÅÐ ±â¼úÀ» ³ó¾÷ °¡Ä¡»ç½½ Àü¹Ý¿¡ ÅëÇÕÇÏ¿© »ý»ê¼º, Áö¼Ó°¡´É¼º, ÀÇ»ç°áÁ¤À» °­È­ÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ´Â Á¤¹Ð³ó¾÷ µµ±¸, ÀÚµ¿È­ Àåºñ, Áö¸®Àû °ø°£ ¸ÅÇÎ, Åä¾ç, ³¯¾¾, ÀÛ¹°ÀÇ °Ç°­À» ¸ð´ÏÅ͸µÇÏ´Â ½º¸¶Æ® ¼¾¼­¸¦ Æ÷ÇÔÇÕ´Ï´Ù. ³óÀå ¹Û¿¡¼­´Â ÃßÀû¼º, °ø±Þ¸Á Åõ¸í¼º, ³ó¾÷ Ä¿¸Ó½º Ç÷§ÆûÀ» Áö¿øÇÕ´Ï´Ù. µðÁöÅÐ ¾Ö±×Å×Å©´Â µ¥ÀÌÅÍ ±â¹Ý ³ó¾÷À» °¡´ÉÇÏ°Ô Çϰí, Çö´ë ³ó¾÷ ½Ã½ºÅÛÀÇ ¼öÀͼº°ú ȸº¹·ÂÀ» Çâ»ó½ÃŰ¸é¼­ ÀÚ¿ø Ȱ¿ëÀ» ÃÖÀûÈ­ÇÕ´Ï´Ù.

AgriEngineering(MDPI, 2025)¿¡ µû¸£¸é, ³ó¾÷ÀÇ µðÁöÅÐ ¸®ÅÍ·¯½Ã ¹× ±â¼ú µµÀÔÀº Àü ¼¼°èÀûÀ¸·Î °¡¼ÓÈ­µÇ°í ÀÖÀ¸¸ç, °ËÅäµÈ ¿¬±¸ÀÇ 65% ÀÌ»óÀÌ AI, IoT, À§¼º ±â¹Ý ¸ð´ÏÅ͸µ ½Ã½ºÅÛ°ú °°Àº µðÁöÅÐ ¾Ö±×Å×Å© µµ±¸ÀÇ µµÀÔ ÈÄ »ý»ê¼º°ú ÀÚ¿ø È¿À²¼ºÀÌ ÃøÁ¤ÇÒ ¼ö ÀÖÀ» Á¤µµ·Î °³¼±µÇ¾ú´Ù°í º¸°íÇϰí ÀÖ½À´Ï´Ù.

¼¼°è Àα¸ÀÇ ±Þ°ÝÇÑ Áõ°¡¿Í ½Ä»ýȰÀÇ º¯È­

¼¼°è Àα¸ÀÇ ±Þ°ÝÇÑ Áõ°¡´Â ´õ ÀûÀº ÀÚ¿øÀ¸·Î ´õ ¸¹Àº ½Ä·®À» »ý»êÇϵµ·Ï ³ó¾÷ ½Ã½ºÅÛ¿¡ Àü·Ê ¾ø´Â ¾Ð·ÂÀ» °¡Çϰí ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ À¯±â³ó ³ó»ê¹°, ½Ä¹°¼º ½Ä´Ü, ÃßÀû °¡´ÉÇÑ ½Äǰ °ø±Þ¿øÀ¸·ÎÀÇ Àüȯ µî ¼ÒºñÀÚ ¼±È£ÀÇ ÁøÈ­°¡ µðÁöÅÐ ³ó¾÷ ±â¼úÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çϰí ÀÖ½À´Ï´Ù. Á¤¹Ð³ó¾÷, AI ±â¹Ý ÀÛ¹° ¸ðµ¨¸µ, ½º¸¶Æ® °ü°³ ½Ã½ºÅÛÀÌ µµÀÔµÇ¾î ¼öÈ®·®À» ÃÖÀûÈ­ÇÏ°í ³¶ºñ¸¦ ÁÙÀ̱â À§ÇØ µµÀԵǰí ÀÖ½À´Ï´Ù. ½Ä·® ¾Èº¸°¡ Àü·«Àû ¿ì¼±¼øÀ§°¡ µÇ´Â °¡¿îµ¥, µðÁöÅÐ ¾Ö±×Å×Å©´Â Áö¼Ó°¡´ÉÇÑ ³ó¾÷ º¯ÇõÀÇ Ãʼ®À¸·Î ¶°¿À¸£°í ÀÖ½À´Ï´Ù.

µðÁöÅÐ ¸®ÅÍ·¯½Ã ¹× ±â¼ú Áö½ÄÀÇ ºÎÁ·

IoT ±â±â, µ¥ÀÌÅÍ ºÐ¼® Ç÷§Æû, AI ±â¹Ý ÀÇ»ç°áÁ¤ ½Ã½ºÅÛ ÅëÇÕÀÇ º¹À⼺ÀÌ ¿µ¼¼ ³ó°¡ÀÇ Ã¤ÅÃÀ» ¹æÇØÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¾ð¾îÀÇ À庮°ú Áö¿ª ±â¹Ý Áö¿øÀÇ ºÎÁ·Àº È¿°úÀûÀÎ µµÀÔÀ» ´õ¿í ¹æÇØÇϰí ÀÖ½À´Ï´Ù. ƯÈ÷ °³¹ßµµ»ó±¹¿¡¼­´Â µðÁöÅÐ µµ±¸¸¦ Á¢ÇÒ ¼ö ÀÖ´Â ±âȸ°¡ Á¦ÇѵǾî ÀÖ°í, ±³À°ÀÌ ºÎÁ·ÇÏ´Ù´Â Á¡ÀÌ À庮À¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. Ÿ°ÙÆÃµÈ ±³À° ÇÁ·Î±×·¥°ú »ç¿ëÀÚ Ä£È­ÀûÀÎ ÀÎÅÍÆäÀ̽º°¡ ¾ø´Ù¸é, ¾Ö±×Å×Å© Çõ½ÅÀÇ ÀáÀç·ÂÀ» ÃæºÐÈ÷ ¹ßÈÖÇÏÁö ¸øÇϰí, ½ÃÀå ħÅõ¿Í È®À强ÀÌ µÐÈ­µÉ ¼ö ÀÖ½À´Ï´Ù.

ƯȭÇü ¼Ö·ç¼Ç °³¹ß

±â¾÷µéÀº Åä¾ç Á¶°Ç, ±âÈÄ º¯È­, Áö¿ª ³ó¾÷ °üÇàÀ» °í·ÁÇÑ Áö¿ª ƯȭÇü Ç÷§Æû¿¡ ÅõÀÚÇϰí ÀÖ½À´Ï´Ù. AI¸¦ Ȱ¿ëÇÑ ÇØÃæ ¿¹Ãø, ºí·ÏüÀÎÀ» Ȱ¿ëÇÑ °ø±Þ¸Á ÃßÀû¼º, µå·ÐÀ» Ȱ¿ëÇÑ ÀÛ¹° ¸ð´ÏÅ͸µ µîÀÇ Çõ½ÅÀº Æ´»õ½ÃÀå ¿ä±¸»çÇ׿¡ ¸Â°Ô ¸ÂÃãÈ­µÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àü¹®È­´Â ¾÷¹« È¿À²¼ºÀ» ³ôÀÏ »Ó¸¸ ¾Æ´Ï¶ó, ±â¼ú Á¦°ø¾÷ü¿¡ »õ·Î¿î ¼öÀÍ¿øÀ» °¡Á®´ÙÁÝ´Ï´Ù. ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©°¡ µðÁöÅÐ ³ó¾÷À» Áö¿øÇϱâ À§ÇØ ÁøÈ­ÇÔ¿¡ µû¶ó, ½ÃÀåÀº Ÿ°ÙÆÃµÈ Çõ½ÅÀ» ÅëÇØ °­·ÂÇÏ°Ô È®ÀåÇÒ Áغñ°¡ µÇ¾î ÀÖ½À´Ï´Ù.

º¥´õ ÀÎŬ·ÎÀú ¹× »óÈ£¿î¿ë¼º ºÎÁ·

³óºÎµéÀº Á¾Á¾ ´Ù¸¥ µµ±¸¿Í ȣȯµÇÁö ¾Ê´Â ƯÁ¤ ¼ÒÇÁÆ®¿þ¾î ¶Ç´Â Çϵå¿þ¾î ¼Ö·ç¼Ç¿¡ ¾ô¸Å¿© À¯¿¬¼ºÀÌ Á¦Çѵǰí Àå±âÀûÀ¸·Î ºñ¿ëÀÌ Áõ°¡ÇÑ´Ù´Â »ç½ÇÀ» ±ú´Ý°Ô µË´Ï´Ù. ÀÌ·¯ÇÑ »óÈ£¿î¿ë¼º ºÎÁ·Àº ³ó¾÷ °¡Ä¡»ç½½ Àü¹ÝÀÇ Çù¾÷À» ÀúÇØÇÏ°í µ¥ÀÌÅÍ °øÀ¯¸¦ °¡·Î¸·´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù. Ç¥ÁØÈ­µÈ ÇÁ·ÎÅäÄݰú °³¹æÇü API°¡ ¾øÀ¸¸é ±â¼ú »çÀÏ·ÎÈ­ÀÇ À§ÇèÀÌ ³ô¾ÆÁ® µðÁöÅÐ ³ó¾÷ ½Ã½ºÅÛÀÇ È®À强°ú º¹¿ø·ÂÀÌ ¾àÈ­µË´Ï´Ù.

COVID-19ÀÇ ¿µÇâ

COVID-19 »çÅ´ µðÁöÅÐ ¾Ö±×Å×Å© ½ÃÀå¿¡ È¥¶õÀ» ¾ß±âÇÏ´Â ¿äÀÎÀÌÀÚ µ¿½Ã¿¡ ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇß½À´Ï´Ù. °ø±Þ¸Á ´ÜÀý°ú ³ëµ¿·Â ºÎÁ·Àº ±âÁ¸ ³ó¾÷ °æ¿µÀÇ Ãë¾àÁ¡À» µå·¯³Â½À´Ï´Ù. ÇÑÆí, ÀÌ À§±â´Â ¿ø°Ý ¸ð´ÏÅ͸µ µµ±¸, ÀÚÀ² ±â°è, µðÁöÅÐ ³óÀå °ü¸® Ç÷§ÆûÀÇ Ã¤ÅÃÀ» °¡¼ÓÈ­Çß½À´Ï´Ù. ³óºÎµéÀº Á¦¾à ¼Ó¿¡¼­ »ý»ê¼ºÀ» À¯ÁöÇϱâ À§ÇØ À§¼º»çÁø, ¿¹Ãø ºÐ¼®, ¸ð¹ÙÀÏ ¾Û¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ³ôÀ̰í ÀÖ½À´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È ¼ÒÇÁÆ®¿þ¾î ºÎ¹®ÀÌ °¡Àå Ŭ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¼ÒÇÁÆ®¿þ¾î ºÎ¹®Àº µ¥ÀÌÅÍ Áý°è, ºÐ¼®, ÀÇ»ç°áÁ¤ Áö¿ø¿¡¼­ ÇÙ½ÉÀûÀÎ ¿ªÇÒÀ» ¼öÇàÇϱ⠶§¹®¿¡ ¿¹Ãø ±â°£ µ¿¾È °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ³óÀå °ü¸® ½Ã½ºÅÛ, ¿¹Ãø ¸ðµ¨¸µ Ç÷§Æû, Ŭ¶ó¿ìµå ±â¹Ý ´ë½Ãº¸µå´Â Çö´ë ³ó¾÷¿¡ ÇʼöÀûÀÎ ¿ä¼Ò·Î ÀÚ¸® Àâ°í ÀÖ½À´Ï´Ù. ÀÌ µµ±¸µéÀº ÀÛ¹°ÀÇ °Ç°­ »óÅÂ, ÀÚ¿ø »ç¿ë·®, ½ÃÀå µ¿ÇâÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ¿© ³óºÎµéÀÌ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼ÇÀÇ È®À强°ú ÀûÀÀ¼ºÀ¸·Î ÀÎÇØ ´ë±Ô¸ð ³ó¾÷ ºñÁî´Ï½º¿¡¼­ ¼Ò±Ô¸ð ³ó°¡ °æ¿µ¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ³ó¾÷ »óȲ¿¡¼­ ¸Å·ÂÀûÀÔ´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Á¤¹Ð³ó¾÷ ºÎ¹®Àº °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿¹Ãø ±â°£ µ¿¾È Á¤¹Ð³ó¾÷ ºÎ¹®Àº ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­Çϸ鼭 »ý»ê¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ´É·ÂÀ¸·Î ÀÎÇØ °¡Àå ³ôÀº ¼ºÀå·üÀ» ±â·ÏÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. GPS À¯µµ Æ®·¢ÅÍ, °¡º¯ ½Ãºñ ½Ã½ºÅÛ, ´ÙÁß ½ºÆåÆ®·³ ¿µ»ó ó¸® µîÀÇ ±â¼úÀº ¹ç ´ÜÀ§ÀÇ °ü¸®¿¡ Çõ¸íÀ» °¡Á®¿À°í ÀÖ½À´Ï´Ù. Á¤¹Ð³ó¾÷Àº ÇöÀå ¸ÂÃãÇü °³ÀÔÀ» °¡´ÉÇϰÔÇÔÀ¸·Î½á ÅõÀÔºñ¿ëÀ» Àý°¨ÇÏ°í ¼öÀ²ÀÇ ÁúÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ÀÌ ºÐ¾ß´Â ÀÛ¹° ¸ðµ¨ °³¼±°ú Àç¹è ÀÏÁ¤ ÃÖÀûÈ­¿¡ Ȱ¿ëµÇ°í ÀÖ´Â AI¿Í ¸Ó½Å·¯´×¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡·Î ÀÎÇÑ ¼öÇý¸¦ ¹Þ°í ÀÖ½À´Ï´Ù.

°¡Àå Å« Á¡À¯À²À» Â÷ÁöÇÏ´Â Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¹æ´ëÇÑ ³ó¾÷ ±â¹Ý°ú ½Ä·® ¾Èº¸¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î ÀÎÇØ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹, Àεµ, Àεµ³×½Ã¾Æ µîÀÇ ±¹°¡µéÀº Á¤ºÎ º¸Á¶±Ý°ú ¹Î°ü Çù·Â¿¡ ÈûÀÔ¾î ½º¸¶Æ® ³ó¾÷¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº Àα¸°¡ ¸¹°í, ³ó¾÷ ±âÈÄ´ë°¡ ´Ù¾çÇØ ÇöÁöÀÇ ´ÏÁî¿¡ ¸Â´Â µðÁöÅÐ ¼Ö·ç¼ÇÀÌ Åº»ýÇϱâ ÁÁÀº Åä¾çÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ¸ð¹ÙÀÏ ¿¬°á°ú Àú·ÅÇÑ °¡°ÝÀÇ ¼¾¼­°¡ º¸±ÞµÇ¸é¼­ Áß¼Ò±Ô¸ð ³ó°¡ÀÇ µµÀÔÀÌ °¡¼ÓÈ­µÇ°í ÀÖ½À´Ï´Ù.

CAGRÀÌ °¡Àå ³ôÀº Áö¿ª

¿¹Ãø ±â°£ µ¿¾È ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµÇ´Âµ¥, ÀÌ´Â ±Þ¼ÓÇÑ ±â¼ú µµÀÔ°ú ³ó¾÷ °ü·Ã ½ºÅ¸Æ®¾÷ÀÇ È®Àå¿¡ ±âÀÎÇÕ´Ï´Ù. µå·Ð ±â¹Ý ¸ð´ÏÅ͸µ, AI¸¦ Ȱ¿ëÇÑ ÀÛ¹° Áø´Ü, ºí·ÏüÀÎÀ» Ȱ¿ëÇÑ °ø±Þ¸Á µîÀÇ Çõ½ÅÀÌ ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­ Àα⸦ ²ø°í ÀÖ½À´Ï´Ù. ±³À° ÀÌ´Ï¼ÅÆ¼ºê¿Í µðÁöÅÐ ¸®ÅÍ·¯½Ã ÇÁ·Î±×·¥Àº Áö½Ä °ÝÂ÷¸¦ ÇØ¼ÒÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖÀ¸¸ç, À¯¸®ÇÑ Á¤Ã¥ ȯ°æÀº ÇØ¿Ü ÅõÀÚ¸¦ ÃËÁøÇÏ°í µðÁöÅÐ ±â¼úÀÇ ¼ºÀåÀ» ´õ¿í ÃËÁøÇÒ °ÍÀÔ´Ï´Ù.

¹«·á Ä¿½ºÅ͸¶ÀÌ¡ ¼­ºñ½º

º» º¸°í¼­¸¦ ±¸µ¶ÇÏ´Â °í°´Àº ´ÙÀ½°ú °°Àº ¹«·á ¸ÂÃãÈ­ ¿É¼Ç Áß Çϳª¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù:

  • ±â¾÷ ¼Ò°³
    • Ãß°¡ ½ÃÀå ±â¾÷ÀÇ Á¾ÇÕÀûÀÎ ÇÁ·ÎÆÄÀϸµ(ÃÖ´ë 3°³»ç±îÁö)
    • ÁÖ¿ä ±â¾÷ SWOT ºÐ¼®(3°³»ç±îÁö)
  • Áö¿ª ¼¼ºÐÈ­
    • °í°´ÀÇ °ü½É¿¡ µû¸¥ ÁÖ¿ä ±¹°¡º° ½ÃÀå ÃßÁ¤, ¿¹Ãø, CAGR(ÁÖ : Ÿ´ç¼º °ËÅä¿¡ µû¸¥)
  • °æÀï»ç º¥Ä¡¸¶Å·
    • Á¦Ç° Æ÷Æ®Æú¸®¿À, Áö¸®Àû ÀÔÁö, Àü·«Àû Á¦ÈÞ¸¦ ±â¹ÝÀ¸·Î ÇÑ ÁÖ¿ä ±â¾÷ º¥Ä¡¸¶Å·

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼­¹®

  • °³¿ä
  • ÀÌÇØ°ü°èÀÚ
  • Á¶»ç ¹üÀ§
  • Á¶»ç ¹æ¹ý
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • µ¥ÀÌÅÍ ºÐ¼®
    • µ¥ÀÌÅÍ °ËÁõ
    • Á¶»ç Á¢±Ù¹ý
  • Á¶»ç ÀÚ·á
    • 1Â÷ Á¶»ç ÀÚ·á
    • 2Â÷ Á¶»ç Á¤º¸ Ãâó
    • °¡Á¤

Á¦3Àå ½ÃÀå µ¿Ç⠺м®

  • ¼ºÀå ÃËÁø¿äÀÎ
  • ¼ºÀå ¾ïÁ¦¿äÀÎ
  • ±âȸ
  • À§Çù
  • ±â¼ú ºÐ¼®
  • ¿ëµµ ºÐ¼®
  • ÃÖÁ¾»ç¿ëÀÚ ºÐ¼®
  • ½ÅÈï ½ÃÀå
  • COVID-19ÀÇ ¿µÇâ

Á¦4Àå Porter's Five Forces ºÐ¼®

  • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
  • ±¸¸ÅÀÚÀÇ ±³¼··Â
  • ´ëüǰÀÇ À§Çù
  • ½Å±Ô Âü¿©¾÷üÀÇ À§Çù
  • °æÀï ±â¾÷ °£ÀÇ °æÀï °ü°è

Á¦5Àå ¼¼°èÀÇ µðÁöÅÐ ¾Ö±×Å×Å© ½ÃÀå : ±¸¼º¿ä¼Òº°

  • Çϵå¿þ¾î
    • ¼¾¼­
    • GPS/GNSS µð¹ÙÀ̽º
    • µå·Ð
    • ÀÚµ¿È­¡¤Á¦¾î ½Ã½ºÅÛ
    • À¯µµ¡¤Á¶Å¸ ½Ã½ºÅÛ
    • ÇÚµåÇïµå µð¹ÙÀ̽º¡¤µð½ºÇ÷¹ÀÌ
  • ¼ÒÇÁÆ®¿þ¾î
    • ³óÀå °ü¸® ¼ÒÇÁÆ®¿þ¾î(FMS)
    • µ¥ÀÌÅÍ ºÐ¼®¡¤AI Ç÷§Æû
    • °ø±Þ¸Á °ü¸® ¼ÒÇÁÆ®¿þ¾î
    • À繫 °ü¸® ¼ÒÇÁÆ®¿þ¾î
    • Ŭ¶ó¿ìµå Àü°³¡¤¿ÂÇÁ·¹¹Ì½º Àü°³
  • ¼­ºñ½º
    • ½Ã½ºÅÛ ÅëÇÕ¡¤ÄÁ¼³ÆÃ
    • µ¥ÀÌÅÍ ¼öÁý¡¤ºÐ¼® ¼­ºñ½º
    • À¯Áöº¸¼ö¡¤Áö¿ø ¼­ºñ½º
    • Á¢¼Ó ¼­ºñ½º
    • ÀÚ¹® ¼­ºñ½º
  • ±âŸ

Á¦6Àå ¼¼°èÀÇ µðÁöÅÐ ¾Ö±×Å×Å© ½ÃÀå : ³óÀå ±Ô¸ðº°

  • ´ë±Ô¸ð ³óÀå
  • Áß¼Ò±Ô¸ð ³óÀå

Á¦7Àå ¼¼°èÀÇ µðÁöÅÐ ¾Ö±×Å×Å© ½ÃÀå : Àü°³ ¸ðµ¨º°

  • Ŭ¶ó¿ìµå ±â¹Ý ¼Ö·ç¼Ç
  • ¿ÂÇÁ·¹¹Ì½º
  • ÇÏÀ̺긮µå ¸ðµ¨

Á¦8Àå ¼¼°èÀÇ µðÁöÅÐ ¾Ö±×Å×Å© ½ÃÀå : ±â¼úº°

  • Á¤¹Ð³ó¾÷
  • IoT(»ç¹°ÀÎÅͳÝ)
  • ÀΰøÁö´É(AI)¡¤¸Ó½Å·¯´×(ML)
  • ºòµ¥ÀÌÅÍ ºÐ¼®
  • ³ó¾÷À» À§ÇÑ ºí·ÏüÀÎ
  • ±âŸ

Á¦9Àå ¼¼°èÀÇ µðÁöÅÐ ¾Ö±×Å×Å© ½ÃÀå : ¿ëµµº°

  • Á¤¹Ð³ó¾÷¡¤³óÀå °ü¸®
  • °¡Ãà ¸ð´ÏÅ͸µ
  • °ø±Þ¸Á °ü¸®
  • À繫 °ü¸®
  • ±âŸ

Á¦10Àå ¼¼°èÀÇ µðÁöÅÐ ¾Ö±×Å×Å© ½ÃÀå : ÃÖÁ¾ ¿ëµµº°

  • ÁÙÀÛ¹°
  • ¿ø¿¹
  • Ư»êÀÛ¹°
  • º¸È£ ³ó¾÷
  • ¸ñÃÊÁö
  • ±âŸ

Á¦11Àå ¼¼°èÀÇ µðÁöÅÐ ¾Ö±×Å×Å© ½ÃÀå : Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÀÌÅ»¸®¾Æ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • ÀϺ»
    • Áß±¹
    • Àεµ
    • È£ÁÖ
    • ´ºÁú·£µå
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì
    • ¾Æ¸£ÇîÆ¼³ª
    • ºê¶óÁú
    • Ä¥·¹
    • ±âŸ ³²¹Ì
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ¾Æ¶ø¿¡¹Ì¸®Æ®
    • īŸ¸£
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå ÁÖ¿ä ¹ßÀü

  • °è¾à, ÆÄÆ®³Ê½Ê, Çù¾÷, ÇÕÀÛÅõÀÚ
  • Àμö¿Í ÇÕº´
  • ½ÅÁ¦Ç° ¹ß¸Å
  • »ç¾÷ È®´ë
  • ±âŸ ÁÖ¿ä Àü·«

Á¦13Àå ±â¾÷ °³¿ä

  • Trimble Inc.
  • Taranis
  • Stellapps
  • Solinftec
  • Ninjacart
  • Monarch Tractor
  • John Deere
  • Indigo Ag
  • Fasal
  • FarmLogs
  • FarmERP
  • Ecorobotix SA
  • DeHaat
  • Cropin
  • Cargill
  • Carbon Robotics
  • Bayer AG
  • Agworld
  • AgroStar
  • Aerobotics
KSM 25.10.02

According to Stratistics MRC, the Global Digital AgTech Market is accounted for $7.79 billion in 2025 and is expected to reach $15.57 billion by 2032 growing at a CAGR of 10.4% during the forecast period. Digital AgTech is the integration of advanced digital technologies such as AI, IoT, blockchain, and data analytics across the agricultural value chain to enhance productivity, sustainability, and decision-making. It encompasses precision farming tools, automated equipment, geospatial mapping, and smart sensors that monitor soil, weather, and crop health. Beyond the farm, it supports traceability, supply chain transparency, and agri-commerce platforms. Digital AgTech enables data-driven agriculture, optimizing resource use while improving profitability and resilience in modern farming systems

According to AgriEngineering (MDPI, 2025), digital literacy and technology adoption in agriculture are accelerating globally, with over 65% of reviewed studies reporting measurable improvements in productivity and resource efficiency following the implementation of Digital AgTech tools such as AI, IoT, and satellite-based monitoring systems.

Market Dynamics:

Driver:

Rapidly growing global population and changing dietary habits

The escalating global population is placing unprecedented pressure on agricultural systems to produce more food with fewer resources. Simultaneously, evolving consumer preferences such as the shift toward organic produce, plant-based diets, and traceable food sources are accelerating the adoption of digital agriculture technologies. Precision farming, AI-driven crop modeling, and smart irrigation systems are being deployed to optimize yield and reduce waste. As food security becomes a strategic priority, digital AgTech is emerging as a cornerstone of sustainable agricultural transformation.

Restraint:

Lack of digital literacy and technical knowledge

The complexity of integrating IoT devices, data analytics platforms, and AI-based decision systems can deter adoption among smallholder farmers. Moreover, language barriers and lack of localized support further hinder effective implementation especially in developing regions face barriers due to limited exposure to digital tools and insufficient training. Without targeted education programs and user-friendly interfaces, the full potential of AgTech innovations may remain untapped, slowing market penetration and scalability.

Opportunity:

Development of specialized solutions

Companies are investing in region-specific platforms that account for soil conditions, climate variability, and local farming practices. Innovations such as AI-powered pest prediction, blockchain-based supply chain traceability, and drone-assisted crop monitoring are being customized to meet niche requirements. This specialization not only enhances operational efficiency but also opens new revenue streams for technology providers. As regulatory frameworks evolve to support digital agriculture, the market is poised for robust expansion through targeted innovation.

Threat:

Vendor lock-in and lack of interoperability

Farmers often find themselves locked into specific software or hardware solutions that are incompatible with other tools, limiting flexibility and increasing long-term costs. This lack of interoperability stifles collaboration across the agricultural value chain and impedes data sharing. Without standardized protocols and open APIs, the risk of technological silos grows, undermining the scalability and resilience of digital farming systems.

Covid-19 Impact:

The COVID-19 pandemic acted as both a disruptor and a catalyst for the Digital AgTech market. On one hand, supply chain interruptions and labor shortages exposed vulnerabilities in traditional farming operations. On the other, the crisis accelerated the adoption of remote monitoring tools, autonomous machinery, and digital farm management platforms. Farmers increasingly relied on satellite imagery, predictive analytics, and mobile apps to maintain productivity amid restrictions.

The software segment is expected to be the largest during the forecast period

The software segment is expected to account for the largest market share during the forecast period due to its central role in data aggregation, analytics, and decision support. Farm management systems, predictive modeling platforms, and cloud-based dashboards are becoming indispensable for modern agriculture. These tools enable real-time monitoring of crop health, resource usage, and market trends, empowering farmers to make informed decisions. The scalability and adaptability of software solutions make them attractive across diverse farming contexts, from large-scale agribusinesses to smallholder operations.

The precision farming segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the precision farming segment is predicted to witness the highest growth rate driven by its ability to enhance productivity while minimizing environmental impact. Technologies such as GPS-guided tractors, variable rate application systems, and multispectral imaging are revolutionizing field-level management. By enabling site-specific interventions, precision agriculture reduces input costs and improves yield quality. The segment is also benefiting from increased investment in AI and machine learning, which are being used to refine crop models and optimize planting schedules.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market sharefueled by its vast agricultural base and rising demand for food security. Countries like China, India, and Indonesia are investing heavily in smart farming initiatives, supported by government subsidies and public-private partnerships. The region's large population and diverse agro-climatic zones create a fertile ground for digital solutions tailored to local needs. Additionally, the proliferation of mobile connectivity and affordable sensors is accelerating adoption among small and medium-scale farmers.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR attributed to rapid technological adoption and expanding agritech startups. Innovations in drone-based surveillance, AI-driven crop diagnostics, and blockchain-enabled supply chains are gaining traction across Asia Pacific. Educational initiatives and digital literacy programs are helping bridge the knowledge gap, while favorable policy environments are encouraging foreign investment will further propel the growth of digital technologies.

Key players in the market

Some of the key players in Digital AgTech Market include Trimble Inc., Taranis, Stellapps, Solinftec, Ninjacart, Monarch Tractor, John Deere, Indigo Ag, Fasal, FarmLogs, FarmERP, Ecorobotix SA, DeHaat, Cropin, Cargill, Carbon Robotics, Bayer AG, Agworld, AgroStar and Aerobotics.

Key Developments:

In May 2025, Trimble introduced "Trimble Materials," a solution in its Construction One suite that spans purchasing, inventory, and accounts payable-intended to help contractors gain control of material costs. It connects field, office, warehouse teams and suppliers for centralized tracking of material orders, inventory, and invoices.

In January 2025, Deere unveiled several machines including an autonomous 9RX tractor, a 5ML orchard sprayer, an articulated dump truck, and an electric mower using its second-generation autonomy kit with more sensors, AI, vision, etc. These models span agriculture, construction, and landscaping, aiming to address labor shortages and increase efficiency via automation.

Components Covered:

  • Hardware
  • Software
  • Services
  • Other Components

Farms Covered:

  • Large Farms
  • Small & Medium-Sized Farms

Deployment Models Covered:

  • Cloud-based Solutions
  • On-Premises
  • Hybrid Models

Technologies Covered:

  • Precision Farming
  • IoT (Internet of Things)
  • Artificial Intelligence (AI) & Machine Learning (ML)
  • Big Data Analytics
  • Blockchain for Agriculture
  • Other Technologies

Applications Covered:

  • Precision Farming & Farm Management
  • Livestock Monitoring
  • Supply Chain Management
  • Financial Management
  • Other Applications

End Users Covered:

  • Row crops
  • Horticulture
  • Specialty Crops
  • Protected Agriculture
  • Pasture
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Digital AgTech Market, By Component

  • 5.1 Introduction
  • 5.2 Hardware
    • 5.2.1 Sensors
    • 5.2.2 GPS/GNSS Devices
    • 5.2.3 Drones
    • 5.2.4 Automation & Control Systems
    • 5.2.5 Guidance & Steering Systems
    • 5.2.6 Handheld Devices & Displays
  • 5.3 Software
    • 5.3.1 Farm Management Software (FMS)
    • 5.3.2 Data Analytics & AI Platforms
    • 5.3.3 Supply Chain Management Software
    • 5.3.4 Financial Management Software
    • 5.3.5 On-Cloud vs. On-Premise Deployment
  • 5.4 Services
    • 5.4.1 System Integration & Consulting
    • 5.4.2 Data Collection & Analytical Services
    • 5.4.3 Maintenance & Support Services
    • 5.4.4 Connectivity Services
    • 5.4.5 Advisory Services
  • 5.5 Other Components

6 Global Digital AgTech Market, By Farm

  • 6.1 Introduction
  • 6.2 Large Farms
  • 6.3 Small & Medium-Sized Farms

7 Global Digital AgTech Market, By Deployment Model

  • 7.1 Introduction
  • 7.2 Cloud-based Solutions
  • 7.3 On-Premises
  • 7.4 Hybrid Models

8 Global Digital AgTech Market, By Technology

  • 8.1 Introduction
  • 8.2 Precision Farming
  • 8.3 IoT (Internet of Things)
  • 8.4 Artificial Intelligence (AI) & Machine Learning (ML)
  • 8.5 Big Data Analytics
  • 8.6 Blockchain for Agriculture
  • 8.7 Other Technologies

9 Global Digital AgTech Market, By Application

  • 9.1 Introduction
  • 9.2 Precision Farming & Farm Management
  • 9.3 Livestock Monitoring
  • 9.4 Supply Chain Management
  • 9.5 Financial Management
  • 9.6 Other Applications

10 Global Digital AgTech Market, By End User

  • 10.1 Introduction
  • 10.2 Row crops
  • 10.3 Horticulture
  • 10.4 Specialty Crops
  • 10.5 Protected Agriculture
  • 10.6 Pasture
  • 10.7 Other End Users

11 Global Digital AgTech Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Trimble Inc.
  • 13.2 Taranis
  • 13.3 Stellapps
  • 13.4 Solinftec
  • 13.5 Ninjacart
  • 13.6 Monarch Tractor
  • 13.7 John Deere
  • 13.8 Indigo Ag
  • 13.9 Fasal
  • 13.10 FarmLogs
  • 13.11 FarmERP
  • 13.12 Ecorobotix SA
  • 13.13 DeHaat
  • 13.14 Cropin
  • 13.15 Cargill
  • 13.16 Carbon Robotics
  • 13.17 Bayer AG
  • 13.18 Agworld
  • 13.19 AgroStar
  • 13.20 Aerobotics
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦