시장보고서
상품코드
1738586

세계의 물류 및 공급망 분야 AI 시장 규모 : 제공 제품별, 용도별, 최종사용자별, 지역 범위별 및 예측

Global AI In Logistics And Supply Chain Market Size By Offering (Hardware, Software), By Application (Supply Chain Planning, Warehouse Management), By End-User (Automotive, Retail, Food And Beverages), By Geographic Scope And Forecast

발행일: | 리서치사: Verified Market Research | 페이지 정보: 영문 202 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

물류 및 공급망 분야 AI 시장 규모 및 전망

물류 및 공급망 분야의 AI 시장 규모는 2024년 44억 5,064만 달러로 평가되었고, 2026-2032년 46.50%의 연평균 복합 성장률(CAGR)로 성장하여 2032년에는 650억 3,934만 달러에 달할 것으로 예측됩니다.

물류 및 공급망에서의 AI는 머신러닝, 예측 분석, 자동화 등 인공지능 기술을 공급망의 다양한 수준에서 상품, 서비스, 정보 관리에 적용하는 것으로, AI는 다양한 출처의 방대한 데이터를 평가하고, 경로를 최적화하고, 재고를 관리하고, 수요를 예측하여 의사결정을 개선합니다. 수요를 예측하여 의사결정을 개선합니다. 응용 분야로는 운송용 자율주행차와 드론, 고객 지원을 위한 AI 탑재 챗봇, 생산성 향상을 위한 자동 창고 업무 등이 있습니다. 이 기술은 물류 산업에서 정확성을 높이고, 비용을 낮추며, 인적 오류를 줄일 수 있습니다.

전자상거래, 제조, 소매업 등의 산업에서 보다 유연하고 신속한 공급망에 대한 수요가 증가함에 따라 물류 및 공급망 관리 분야의 AI는 빠르게 성장하고 있으며, AI의 발전과 함께 공급망 가시성 향상, 실시간 추적, 예측적 자산 유지보수 등의 잠재적 응용 분야가 증가하고 있습니다. 유지보수 등 잠재적인 응용이 포함됩니다.

자원 최적화를 통해 위험과 지연을 줄이고 지속가능성을 높이는 AI의 능력은 전 세계 물류 네트워크를 변화시키는 데 중요한 역할을 할 것으로 보입니다. 이 산업에서 AI 탑재 솔루션 시장은 물류 업무에서 IoT, 빅데이터, 로보틱스의 활용이 확대됨에 따라 빠르게 성장할 것으로 예측됩니다.

세계의 물류 및 공급망 분야 AI 시장 역학

세계 물류 및 공급망에서 AI 시장을 형성하는 주요 시장 역학은 다음과 같습니다.

주요 시장 성장 촉진요인

전자상거래 도입 증가: 전자상거래의 급속한 성장으로 2021년 미국 전자상거래 매출은 2020년 대비 14.2% 증가한 8,708억 달러에 달할 것으로 예상되며, 보다 효율적인 물류 및 공급망 관리에 대한 요구가 증가하고 있습니다. 이러한 급증은 대량 주문 관리, 적시 배송 보장, 반품 처리와 같은 복잡한 문제를 야기하고 있으며, AI는 경로 최적화, 창고 자동화, 수요 예측을 통해 이러한 어려움을 해결하고 보다 효율적인 운영과 고객 만족도를 높일 수 있도록 돕고 있습니다.

공급망 가시성 및 투명성에 대한 수요 증가: 공급망 가시성 및 투명성에 대한 요구가 증가하는 배경에는 혼란에 대처할 필요성이 있으며, Business Continuity Institute는 2021년 69%의 기업이 적어도 한 번 이상 공급망 중단을 경험할 것으로 예측했습니다. 공급망 혼란을 경험하게 될 것으로 예측했습니다. 기업과 소비자 모두 원활한 운영, 신속한 문제 해결, 안정적인 배송을 위해 실시간 추적을 요구하고 있으며, AI는 가시성을 개선하고, 위험을 줄이며, 공급망 전반의 복원력을 강화하는 데 필요한 예측 기술과 실시간 데이터 분석을 제공합니다. 을 제공합니다.

비용 절감과 업무 효율화의 필요성: CSCMP에 따르면 미국 기업의 물류 지출은 2020년 1조 6,300억 달러에 달하고, GDP의 7.4%를 차지할 것으로 예측됩니다. 기업들은 프로세스 최적화, 인건비 절감, 업무 간소화를 위해 인공지능(AI)에 대한 의존도를 높이고 있으며, AI는 자동화, 예측 분석, 재고 관리를 통해 효율성을 높여 경쟁 시장에서 우수한 서비스 수준을 유지하면서 비용을 절감할 수 있도록 돕습니다.

주요 과제

고품질 데이터에 대한 접근 제한: AI는 정확한 예측과 의사결정을 내리기 위해 고품질의 잘 정리된 데이터에 의존합니다. 많은 공급망은 단편적이거나 불충분한 형식의 데이터로 작업하고 있기 때문에 AI의 성능이 떨어집니다. 실시간의 깨끗한 데이터에 대한 접근이 제한적이기 때문에 기업이 AI의 보증을 충분히 활용하기 어렵고, 업무 최적화에 있어 AI의 효율성이 떨어집니다.

규제 및 컴플라이언스 과제: 물류 분야의 AI는 지역과 산업마다 다른 복잡한 규제 환경 속에서 운영되고 있습니다. 데이터 프라이버시, 노동법, 환경 요건 등 많은 규제를 준수하는 것은 어려운 일입니다. 기업은 AI 시스템이 수많은 규제 프레임워크를 준수하는지 확인해야 하며, 이는 배포를 방해하고 운영 비용을 증가시킬 수 있습니다.

데이터 프라이버시 및 보안 문제: AI 시스템은 대량의 데이터에 의존하기 때문에 프라이버시 및 보안은 큰 관심사입니다. 기업이 공급망 전반에 걸쳐 기밀 정보를 교환하게 되면 데이터 유출의 위험이 높아집니다. 보다 엄격한 데이터 표준과 고객의 개인정보 보호에 대한 기대가 높아짐에 따라 기업은 데이터를 보호해야 하지만, 이로 인해 AI 도입이 지연되고 컴플라이언스 비용이 상승하고 있습니다.

주요 동향

수요 예측을 위한 예측 분석 : AI를 활용한 예측 분석은 공급망 전반 수요 예측에 필수적인 도구가 되고 있으며, AI는 과거 데이터와 외부 요인을 조사하여 기업이 수요 변동을 보다 정확하게 예측하고, 재고 부족과 과잉 재고를 방지할 수 있도록 돕습니다. 이러한 추세의 배경에는 실시간으로 개발에 대응하고 고객 만족도를 높이고 낭비를 줄이는 보다 민첩한 공급망에 대한 요구가 있습니다.

AI를 통한 라스트마일 배송 최적화: AI는 경로 최적화, 연료 사용량 감소, 배송 시간 단축을 통해 라스트마일 배송에 변화를 가져오고 있으며, 이커머스의 등장과 빠르고 비용 효율적인 배송에 대한 소비자의 기대에 따라 기업들은 배송 프로세스의 마지막 단계인 효율성을 높이기 위해 인공지능을 활용하게 되었습니다. 이러한 추세는 물류 비용을 줄이면서 배송 속도와 정확성을 향상시켜야 할 필요성이 높아진 데 따른 것입니다.

AI 기반 리스크 관리 및 혼란 완화: AI는 공급망 중단, 자연재해, 지정학적 사건 등의 위험을 예측하고 완화하기 위해 빠르게 활용되고 있으며, AI는 여러 데이터 소스를 분석하여 미래의 중단을 예측하고 불의의 사태에 대비할 수 있도록 돕고 있습니다. 이러한 추세는 공급망의 복잡성과 국제화의 진전에 의해 촉진되고 있으며, 원활한 운영을 보장하기 위한 사전 예방적 리스크 관리 기술이 요구되고 있습니다.

AI와 사물인터넷(IoT)의 통합: AI와 사물인터넷(IoT)의 통합은 보다 스마트하고 연결된 물류 시스템을 가능하게 함으로써 공급망 자동화를 향상시키고, IoT 센서가 트럭, 창고, 제품에서 실시간 데이터를 수집하고, AI가 이 정보를 분석하여 운영을 최적화합니다. AI가 이 정보를 분석하여 운영을 최적화합니다. 이러한 추세는 자체 모니터링과 지속적인 개선이 가능한 보다 스마트하고 효율적인 공급 네트워크에 대한 요구가 동기가 되고 있습니다.

목차

제1장 세계의 물류 및 공급망 분야 AI 시장 채택

  • 시장 개요
  • 조사 범위
  • 전제조건

제2장 주요 요약

제3장 VERIFIED MARKET RESEARCH의 조사 방법

  • 데이터 마이닝
  • 밸리데이션
  • 1차 자료
  • 데이터 소스 리스트

제4장 세계의 물류 및 공급망 분야 AI 시장 전망

  • 개요
  • 시장 역학
    • 성장 촉진요인
    • 성장 억제요인
    • 기회
  • Porter's Five Forces 모델
  • 밸류체인 분석

제5장 세계의 물류 및 공급망 분야 AI 시장 : 제공 제품별

  • 개요
  • 하드웨어
  • 소프트웨어

제6장 세계의 물류 및 공급망 분야 AI 시장 : 용도별

  • 개요
  • 공급망 플래닝
  • 창고 관리
  • 수요 예측
  • 재고 관리

제7장 세계의 물류 및 공급망 분야 AI 시장 : 최종사용자별

  • 개요
  • 자동차
  • 소매
  • 식품 및 음료
  • 헬스케어
  • 제조업

제8장 세계의 물류 및 공급망 분야 AI 시장 : 지역별

  • 개요
  • 북미
    • 미국
    • 캐나다
    • 멕시코
  • 유럽
    • 독일
    • 영국
    • 프랑스
    • 기타 유럽
  • 아시아태평양
    • 중국
    • 일본
    • 인도
    • 기타 아시아태평양
  • 기타
    • 중동 및 아프리카
    • 남미

제9장 세계의 물류 및 공급망 분야 AI 시장 경쟁 구도

  • 개요
  • 기업의 시장 순위
  • 주요 개발 전략

제10장 기업 개요

  • IBM Corporation
  • Microsoft Corporation
  • Google LLC
  • Amazon.com, Inc.
  • Intel Corporation
  • Nvidia Corporation
  • Oracle Corporation
  • Samsung
  • Lamasoft, Inc.

제11장 부록

  • 관련 조사
LSH 25.06.16

AI In Logistics And Supply Chain Market Size And Forecast

AI In Logistics And Supply Chain Market size was valued at USD 4450.64 Million in 2024 and is projected to reach USD 65039.34 Million by 2032, growing at a CAGR of 46.50% from 2026 to 2032.

AI in logistics and supply chain is the application of artificial intelligence technologies such as machine learning, predictive analytics, and automation to the management of commodities, services, and information at various levels of the supply chain. AI improves decision-making by evaluating massive amounts of data from many sources, optimizing routes, controlling inventories, and forecasting demand. Applications include self-driving cars and drones for transportation, AI-powered chatbots for customer support, and automated warehousing operations for increased productivity. This technology enhances accuracy, lowers costs, and reduces human error in the logistics industry.

AI in logistics and supply chain management is rapidly expanding, driven by the growing demand for more flexible and responsive supply chains in industries such as e-commerce, manufacturing, and retailing. As AI advances, potential applications include improved supply chain visibility, real-time tracking, and predictive asset maintenance.

AI's ability to decrease risks, delays, and boost sustainability through resource optimization will be important in altering global logistics networks. The market for AI-powered solutions in this industry is predicted to expand rapidly, driven by the growing use of IoT, big data, and robotics in logistics operations.

Global AI In Logistics And Supply Chain Market Dynamics

The key market dynamics that are shaping the global AI In Logistics And Supply Chain Market include:

Key Market Drivers:

Increasing E-Commerce Adoption: The rapid growth in e-commerce, with US e-commerce sales expected to reach USD 870.8 Billion in 2021, up 14.2% from 2020, is pushing the demand for more efficient logistics and supply chain management. This spike presents complicated issues such as managing high-order quantities, ensuring timely deliveries, and handling returns. AI can assist address these difficulties by optimizing routes, automating warehouses, and forecasting demand, resulting in more efficient operations and more customer satisfaction.

Rising Demand for Supply Chain Visibility and Transparency: The rising need for supply chain visibility and transparency is driven by the need to manage disruptions, with the Business Continuity Institute projecting that 69% of firms would experience at least one supply chain disruption in 2021. Both organizations and consumers want real-time tracking to ensure smoother operations, faster problem resolution, and more consistent deliveries. AI provides the predictive skills and real-time data analytics required to improve visibility, decrease risks, and strengthen the overall supply chain resilience.

Need for Cost Reduction and Operational Efficiency: The need for cost reduction and operational efficiency is a fundamental driver in supply chain management, with U.S. company logistics expenditures expected to reach USD 1.63 Trillion in 2020, accounting for 7.4% of GDP, according to the CSCMP. Companies are increasingly depending on artificial intelligence (AI) to optimize processes, cut personnel costs, and streamline operations. AI increases efficiency through automation, predictive analytics, and inventory management, allowing firms to reduce costs while maintaining excellent service levels in a competitive market.

Key Challenges:

Limited Access to Quality Data: AI relies on high-quality, well-organized data to make accurate predictions and decisions. Many supply chains still work with fragmented or poorly formatted data, resulting in inadequate AI performance. Limited access to real-time, clean data makes it difficult for businesses to fully leverage AI's assurance, lowering its efficacy in optimizing operations.

Regulatory and Compliance Challenges: AI in logistics operates in a complicated regulatory environment that varies by region and industry. Adhering to many rules, such as those governing data privacy, labor legislation, and environmental requirements, can be difficult. Companies must verify that their AI systems adhere to numerous regulatory frameworks, which can hinder deployment and increase operational costs.

Data Privacy and Security Concerns: As AI systems rely on massive volumes of data, privacy and security are major concerns. As firms communicate sensitive information throughout the supply chain, the danger of data breaches grows. Stricter data standards and customer privacy expectations require enterprises to secure their data, which slows AI adoption and raises compliance costs.

Key Trends:

Predictive Analytics for Demand Forecasting: AI-powered predictive analytics is becoming an essential tool for anticipating demand throughout supply chains. AI assists businesses in better anticipating demand swings by studying past data and external factors, resulting in fewer stockouts and overstocking. This trend is motivated by the demand for more agile supply chains that can react to market developments in real-time, hence increasing customer satisfaction and lowering waste.

AI-Enhanced Last-Mile Delivery Optimization: AI is transforming last-mile delivery by optimizing routes, lowering fuel usage, and shortening delivery times. With the advent of e-commerce and consumer expectations for speedy, cost-effective shipping, businesses are turning to artificial intelligence to increase efficiency in the final leg of the delivery process. This trend is driven by the growing need to improve delivery speed and accuracy while lowering logistical costs.

AI-Driven Risk Management and Disruption Mitigation: AI is rapidly being utilized to predict and mitigate risks such as supply chain disruptions, natural disasters, and geopolitical incidents. AI may anticipate future interruptions and provide contingency preparations by analyzing multiple data sources. This trend is being driven by the increased complexity and internationalization of supply chains, which requires proactive risk management techniques to ensure smooth operations.

Integration of AI and Internet of Things (IoT): The integration of AI and the Internet of Things (IoT) is improving supply chain automation by enabling smarter and more connected logistics systems. IoT sensors collect real-time data from trucks, warehouses, and products, and AI analyzes this information to optimize operations. This trend is motivated by the desire for smarter, more efficient supply networks that can self-monitor and continuously improve.

Global AI In Logistics And Supply Chain Market Regional Analysis

Here is a more detailed regional analysis of the global AI In Logistics And Supply Chain Market:

North America:

North America is dominant in the AI In Logistics And Supply Chain Market. North America leads in AI adoption in logistics and supply chain management due to its advanced technological infrastructure, strong research and development (R&D) skills, and large number of early adopters. The region's well-established logistics sector, combined with a constant focus on efficiency and innovation, creates ideal conditions for AI solutions to thrive. According to the US Bureau of Labor Statistics, employment in logistics and supply chain management is expected to increase by 30% between 2020 and 2030, owing in part to the growing incorporation of AI technology.

Government support and industry partnerships are speeding up AI deployment in North America. AI-driven logistics optimization has already produced incredible results, with enterprises reporting a 15% cost savings and a 20% improvement in delivery times. The Canadian government's Strategic Innovation Fund, which has committed CAD 950 million (USD 700 Million) for AI research and development from 2023 to 2025, demonstrates the region's leadership in this field. These characteristics - significant investment, strong government support, and tangible advantages - are propelling AI adoption in North America's logistics and supply chain sectors, establishing the region as a global leader in efficiency and competitiveness.

Asia Pacific:

The Asia-Pacific area is seeing huge growth in AI adoption for logistics and supply chain applications, making it the world's fastest-growing market. This spike is being driven by strong economic growth, increasing e-commerce, and an urgent need to improve supply chain efficiency across complicated networks. According to the Asian Development Bank (ADB), the region's e-commerce sector is expected to reach $2.8 trillion by 2025, with a compound annual growth rate (CAGR) of 18.5%. This vast expansion in online retail is putting huge pressure on logistical networks, forcing businesses to use AI-powered solutions to handle the increasing complexity and transaction volumes. Countries with substantial logistics sectors, such as China and India, are leading the drive, with China reporting that 72% of its large logistics enterprises had already deployed AI by 2023, and the figure is predicted to exceed 85% by 2026.

The region's emphasis on cost reduction and operational efficiency accelerates AI adoption. AI-driven solutions are already demonstrating substantial benefits across the region, with Japanese enterprises reporting an 18% cost reduction and a 25% increase in inventory turnover by 2023. Investments in AI for logistics are also increasing, with Southeast Asia alone experiencing a 45% year-over-year rise in AI spending in 2023, which is expected to treble by 2026. These reasons - rapid e-commerce growth, pressure on supply chains, government initiatives, and demonstrable efficiency - are propelling Asia-Pacific AI adoption, establishing it as a global leader in innovative logistics solutions.

Global AI In Logistics And Supply Chain Market: Segmentation Analysis

The Global AI In Logistics And Supply Chain Market is Segmented on the basis of Offering, Application, End-User, And Geography.

AI In Logistics And Supply Chain Market, By Offering

  • Hardware
  • Software

Based on Offering, the market is bifurcated into Hardware, and Software. Software is the fastest-growing segment, driven by rising demand for AI-powered solutions like as predictive analytics, route optimization, and warehouse automation. As logistics organizations seek to improve efficiency and cut costs, AI-based software systems are fast gaining popularity. Hardware dominates market share since AI requires powerful computing infrastructure, sensors, and robotics to work well, notably in automated warehouses and transportation systems. Due to the dependency on physical infrastructure, hardware is an essential component of AI logistics integration.

AI In Logistics And Supply Chain Market, By Application

  • Supply Chain Planning
  • Warehouse Management
  • Demand Forecasting
  • Inventory Management

Based on Application, the market is segmented into Supply Chain Planning, Warehouse Management, Demand Forecasting, and Inventory Management. Warehouse management is the most dominating segment, as it includes a wide range of AI applications that improve operational efficiency, such as automated inventory tracking, robotic picking systems, and optimized storage solutions. The use of artificial intelligence in warehouse management is critical for optimizing operations and lowering costs, cementing its place as a vital market area. Demand forecasting is the fastest-growing segment, driven by the requirement for precise forecasts to satisfy consumer expectations and optimize inventory levels. Companies are increasingly using AI algorithms to analyze historical data and market trends, which improves their ability to predict demand fluctuations.

AI In Logistics And Supply Chain Market, By End-User

  • Automotive
  • Retail
  • Food and Beverages
  • Healthcare
  • Manufacturing

Based on End-User, the market is segmented into Automotive, Retail, Food and Beverages, Healthcare, and Manufacturing. The automotive segment is currently dominating, thanks to the industry's emphasis on streamlining production processes, increasing supply chain efficiency, and integrating autonomous car technologies. The automotive industry relies extensively on artificial intelligence (AI) for inventory management, predictive maintenance, and logistical coordination, making it a critical market player. The retail segment is the fastest-growing, driven by e-commerce's spectacular development and the need for real-time inventory tracking, individualized customer experiences, and demand forecasting. Retailers are increasingly using AI-powered solutions to optimize operations, manage complex supply chains, and boost consumer happiness.

Key Players

The "Global AI In Logistics And Supply Chain Market" study report will provide valuable insight with an emphasis on the global market. The major players in the market are IBM Corporation, Microsoft Corporation, Google LLC, Amazon.com, Inc., Intel Corporation, Nvidia Corporation, Oracle Corporation, Samsung, and Lamasoft, Inc. The competitive landscape section also includes key development strategies, market share, and market ranking analysis of the above-mentioned players globally.

Our market analysis also entails a section solely dedicated to such major players wherein our analysts provide an insight into the financial statements of all the major players, along with product benchmarking and SWOT analysis. The competitive landscape section also includes key development strategies, market share, and market ranking analysis of the above-mentioned players globally.

  • AI In Logistics And Supply Chain Market Recent Developments
  • In March 2024, Oracle's new AI-powered supply chain execution capabilities, Oracle Smart Operations, will be available allowing businesses to boost factory output by increasing productivity, improving quality, minimizing downtime, and improving visibility across operations.
  • In November 2023, IBM and Amazon expanded their relationship to assist businesses in implementing generative AI in their supply chains. They intend to provide a virtual assistant to help supply chain professionals optimize operations and cut expenses.

TABLE OF CONTENTS

1 INTRODUCTION OF GLOBAL AI IN LOGISTICS AND SUPPLY CHAIN MARKET

  • 1.1 Overview of the Market
  • 1.2 Scope of Report
  • 1.3 Assumptions

2 EXECUTIVE SUMMARY

3 RESEARCH METHODOLOGY OF VERIFIED MARKET RESEARCH

  • 3.1 Data Mining
  • 3.2 Validation
  • 3.3 Primary Interviews
  • 3.4 List of Data Sources

4 GLOBAL AI IN LOGISTICS AND SUPPLY CHAIN MARKET OUTLOOK

  • 4.1 Overview
  • 4.2 Market Dynamics
    • 4.2.1 Drivers
    • 4.2.2 Restraints
    • 4.2.3 Opportunities
  • 4.3 Porters Five Force Model
  • 4.4. Value Chain Analysis

5 GLOBAL AI IN LOGISTICS AND SUPPLY CHAIN MARKET, BY OFFERING

  • 5.1 Overview
  • 5.2 Hardware
  • 5.3 Software

6 GLOBAL AI IN LOGISTICS AND SUPPLY CHAIN MARKET, BY APPLICATION

  • 6.1 Overview
  • 6.2 Supply Chain Planning
  • 6.3 Warehouse Management
  • 6.4 Demand Forecasting
  • 6.5 Inventory Management

7 GLOBAL AI IN LOGISTICS AND SUPPLY CHAIN MARKET, BY END-USER

  • 7.1 Overview
  • 7.2 Automotive
  • 7.3 Retail
  • 7.4 Food and Beverages
  • 7.5 Healthcare
  • 7.6 Manufacturing

8 GLOBAL AI IN LOGISTICS AND SUPPLY CHAIN MARKET, BY GEOGRAPHY

  • 8.1 Overview
  • 8.2 North America
    • 8.2.1 U.S.
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 U.K.
    • 8.3.3 France
    • 8.3.4 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 China
    • 8.4.2 Japan
    • 8.4.3 India
    • 8.4.4 Rest of Asia Pacific
  • 8.5 Rest of the World
    • 8.5.1 Middle East and Africa
    • 8.5.2 South America

9 GLOBAL AI IN LOGISTICS AND SUPPLY CHAIN MARKET COMPETITIVE LANDSCAPE

  • 9.1 Overview
  • 9.2 Company Market Ranking
  • 9.3 Key Development Strategies

10 COMPANY PROFILES

  • 10.1 IBM Corporation
    • 10.1.1 Overview
    • 10.1.2 Financial Performance
    • 10.1.3 Product Outlook
    • 10.1.4 Key Developments
  • 10.2 Microsoft Corporation
    • 10.2.1 Overview
    • 10.2.2 Financial Performance
    • 10.2.3 Product Outlook
    • 10.2.4 Key Developments
  • 10.3 Google LLC
    • 10.3.1 Overview
    • 10.3.2 Financial Performance
    • 10.3.3 Product Outlook
    • 10.3.4 Key Developments
  • 10.4 Amazon.com, Inc.
    • 10.4.1 Overview
    • 10.4.2 Financial Performance
    • 10.4.3 Product Outlook
    • 10.4.4 Key Developments
  • 10.5 Intel Corporation
    • 10.5.1 Overview
    • 10.5.2 Financial Performance
    • 10.5.3 Product Outlook
    • 10.5.4 Key Developments
  • 10.6 Nvidia Corporation
    • 10.6.1 Overview
    • 10.6.2 Financial Performance
    • 10.6.3 Product Outlook
    • 10.6.4 Key Developments
  • 10.7 Oracle Corporation
    • 10.7.1 Overview
    • 10.7.2 Financial Performance
    • 10.7.3 Product Outlook
    • 10.7.4 Key Developments
  • 10.8 Samsung
    • 10.8.1 Overview
    • 10.8.2 Financial Performance
    • 10.8.3 Product Outlook
    • 10.8.4 Key Developments
  • 10.9 Lamasoft, Inc.
    • 10.9.1 Overview
    • 10.9.2 Financial Performance
    • 10.9.3 Product Outlook
    • 10.9.4 Key Developments

11 APPENDIX

  • 11.1 Related Research
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제