시장보고서
상품코드
1845747

세계의 공급망 분석 시장 : 배포 모델, 서비스, 용도, 컴포넌트, 지역 범위, 예측

Global Supply Chain Analytics Market By Deployment Model, Service, Application, Component, Geographic Scope And Forecast

발행일: | 리서치사: Verified Market Research | 페이지 정보: 영문 202 Pages | 배송안내 : 2-3일 (영업일 기준)

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

공급망 분석 시장 규모와 예측

공급망 분석 시장 규모는 2024년에 69억 5,000만 달러로 평가되며, 2026년 2032년의 예측 기간 중 19.20%의 CAGR로 성장하며, 2032년까지 251억 달러에 달할 것으로 예측됩니다.

공급망 분석 시장은 광범위한 비즈니스 인텔리전스 및 데이터 분석 산업의 한 분야입니다. 공급망의 모든 부분에서 데이터를 수집, 분석, 해석하기 위한 기술, 소프트웨어, 서비스의 활용에 의해 정의됩니다. 주요 목표는 이 원시 데이터를 실용적인 인사이트으로 전환하여 기업이 데이터베이스 의사결정을 더 잘 내릴 수 있도록 하는 것입니다.

다음은 이 시장을 정의하는 주요 구성 요소에 대한 분석이다. :

이 시장의 핵심은 공급망 데이터를 분석할 수 있는 툴와 방법을 제공하는 것입니다. 여기에는 다음이 포함됩니다.

서술적 분석 : 과거 데이터를 요약하고 과거 성과를 명확하게 파악하여 '무슨 일이 일어났는가'라는 질문에 대한 답변을 제시합니다.

진단적 분석 : 문제의 근본 원인을 이해하기 위해 데이터의 패턴과 상관관계를 파악하여 '왜 이런 일이 일어났는가'라는 질문에 답합니다.

예측 분석 : 통계 모델과 머신러닝을 사용하여 수요 및 잠재적 혼란과 같은 미래 결과를 예측함으로써 '어떤 일이 일어날 것인가'라는 질문에 답합니다.

처방적 분석 : 예측 분석에서 얻은 인사이트를 통해 구체적이고 최적의 행동 방침을 추천함으로써 '무엇을 해야 하는가'에 대한 질문에 답합니다.

인지 분석 : AI와 머신러닝을 활용하여 방대하고 복잡한 데이터세트를 처리하고, 인간과 같은 추론을 모방하여 의사결정을 자동화하는 보다 진보된 형태.

세계 공급망 분석 시장 성장 촉진요인

공급망 분석 시장은 비즈니스 니즈와 기술 발전의 완벽한 폭풍으로 인해 호황을 누리고 있습니다. 점점 더 복잡해지는 세계 환경에서 기업은 효율성, 회복력, 수익성 향상을 목표로 하고 있으며, 데이터베이스 인사이트를 통해 업무를 최적화하기 위해 데이터베이스 인사이트에 주목하고 있습니다. 이 시장이 급성장하고 있는 배경에는 다음과 같은 요인이 있습니다.

공급망의 복잡성: 오늘날공급망은 전 세계에 퍼져있는 방대하고 복잡한 네트워크가 되었습니다. 세계화, 다층적 공급업체에 대한 의존도, 지역적 범위의 확대 등의 요인으로 인해 기존의 관리 방식으로는 대응할 수 없는 복잡성이 발생하고 있습니다. 애널리틱스는 다양한 소스의 데이터를 분석하여 원자재에서 최종 소비자까지 상품의 흐름을 이해하는 툴을 제공하고, 상호 연결된 이 미로를 관리하는 데 필수적인 역할을 합니다. 이러한 인사이트가 없으면 기업은 큰 비효율과 업무 관리의 부족을 초래할 위험이 있습니다.

실시간 가시성 요구: 빠르게 변화하는 시장에서 기업은 공급망에 대한 스냅숏 이상의 것을 필요로 합니다. 실시간 가시성에 대한 요구는 애널리틱스의 채택을 촉진하고 있습니다. 기업은 재고를 추적하고, 배송을 모니터링하고, 주문 상황을 수시로 확인함으로써 혼란을 신속하게 파악하고 대응하기를 원합니다. 이러한 정확한 정보에 대한 요구는 IoT 센서, RFID 태그, GPS 추적과 같은 기술을 통해 촉진되며, 공급망 분석 플랫폼이 이러한 필수적인 투명성을 제공하기 위해 사용하는 데이터를 생성합니다.

첨단 기술 채택: AI, 머신러닝(ML), 빅데이터와 같은 정교한 기술의 등장은 공급망 분석 시장의 주요 촉매제 역할을 하고 있습니다. 이러한 기술들은 분석을 단순한 보고에서 강력한 예측 및 처방적 인사이트으로 전환하고 있습니다. AI를 활용한 플랫폼은 방대한 데이터세트를 분석하여 수요를 정확하게 예측하고, 장비의 유지보수 필요성을 예측하며, 물류 경로를 실시간으로 최적화할 수 있습니다. 이를 통해 기업은 사전 예방적 의사결정을 통해 비용 절감, 효율성 향상, 선제적 대응을 할 수 있습니다.

업무 효율화와 비용 절감의 필요성: 경쟁이 치열한 비즈니스 환경에서는 비용 절감에 대한 압박이 끊이지 않습니다. 공급망 분석은 조달, 창고, 운송 등의 프로세스에서 비효율을 식별하고 제거함으로써 이 문제를 직접적으로 해결합니다. 운송비에서 재고 회전율에 이르기까지 모든 데이터를 분석함으로써 분석은 기업이 병목 현상과 낭비되는 영역을 찾아내는 데 도움이 됩니다. 이러한 데이터베이스 접근 방식을 통해 재고 수준을 최적화하고, 운반 비용을 최소화하며, 비용이 많이 드는 재고 소진을 방지하고, 수익성 개선에 직접적으로 기여합니다.

리스크 관리와 회복력 최근 전 세계에서 발생한 사건들은 전통적인 공급망의 취약성을 부각시키고 있습니다. 자연재해, 지정학적 문제, 공급업체의 고장으로 인해 운영이 중단될 수 있습니다. 애널리틱스는 리스크 관리와 회복탄력성을 위한 중요한 계층을 제공합니다. 분석 플랫폼은 과거 데이터와 실시간 피드를 활용하여 다양한 시나리오를 모델링하고, 잠재적인 혼란을 조기에 경고하고, 그 영향을 완화하기 위한 대체 전략을 추천할 수 있습니다. 이 기능은 기업이 보다 견고하고 적응력이 뛰어난 공급망 네트워크를 구축하는 데 도움이 됩니다.

규제와 지속가능성에 대한 압력: 규제에 대한 요구가 높아지고 지속가능성을 추구하는 것도 시장을 주도하고 있습니다. 기업은 추적성, 윤리적 조달, 환경 영향에 대한 규제 준수를 입증해야 할 필요성이 대두되고 있습니다. 공급망 분석은 이산화탄소 배출량부터 원재료의 원산지까지 이러한 지표를 추적하고 보고할 수 있는 툴을 제공합니다. 이러한 투명성은 규제 요건을 충족시킬 뿐만 아니라 기업의 사회적 책임을 우선시하는 소비자와 투자자들에게도 어필할 수 있습니다.

E-Commerce/옴니채널 리테일의 성장: E-Commerce의 폭발적인 성장은 소비자의 기대치를 근본적으로 변화시키고, 복잡한 물류 문제를 야기하고 있습니다. 고객들은 현재 신속하고, 무료이며, 정확한 배송을 요구하고 있으며, 대부분 1-2일 이내에 배송을 요구하고 있습니다. 이러한 수요에 대응하기 위해 기업은 공급망 분석을 활용하여 풀필먼트 최적화, 여러 채널에 걸친 재고 관리, 가장 효율적인 라스트 마일 배송 경로를 계획하는 등의 작업을 수행하고 있습니다. 애널리틱스는 옴니채널 리테일의 복잡한 물류를 움직이는 엔진이며, 고객에게 원활한 경험을 보장합니다.

클라우드/SaaS 배포: 클라우드 기반 및 SaaS(Software as a Service) 배포 모델로의 전환은 공급망 분석에 대한 접근을 민주화했습니다. 이전에는 고가의 On-Premise 시스템이 많은 기업, 특히 중소기업(SME)의 장벽이 되었습니다. 클라우드와 SaaS 모델은 보다 확장 가능하고, 저렴하며, 유연한 선택권을 제공합니다. 클라우드 및 SaaS 모델은 보다 확장 가능하고 저렴하며 유연한 대안을 제공하고, 대규모 자본 지출 없이도 빠른 도입이 가능하므로 보다 많은 기업이 강력한 분석 툴을 사용할 수 있게 되어 시장 성장을 가속화할 수 있습니다.

세계 공급망 분석 시장 성장 억제요인

높은 도입 비용, 레거시 시스템과의 복잡한 통합, 숙련된 인력 부족 등이 공급망 분석(SCA) 시장의 주요 억제요인으로 작용하고 있습니다. 또한 데이터 품질과 보안에 대한 우려, 변화에 대한 조직의 저항도 큰 장벽으로 작용하고 있습니다.

높은 도입 비용: 공급망 분석(SCA) 도입에 필요한 초기 투자비용은 특히 중소기업(SME)에 큰 장벽이 되고 있습니다. 이는 단순히 소프트웨어 자체의 비용뿐만 아니라 하드웨어, 시스템 통합, 데이터 마이그레이션, 직원에 대한 종합적인 교육 등에도 많은 비용이 소요됩니다. 또한 이러한 강력하고 복잡한 툴을 기업의 고유한 업무 요구와 특정 비즈니스 규칙에 맞게 맞춤화하면 상당한 비용이 발생하므로 많은 기업에서 총소유비용이 엄청나게 높아질 수 있습니다. 이러한 상황을 타개하기 위해서는 단계적 도입을 검토할 필요가 있습니다. 소규모 클라우드 기반 솔루션부터 도입함으로써 진입장벽을 낮추고, 대규모로 확장하기 전에 명확한 투자수익률(ROI)을 확인할 수 있습니다.

복잡한 통합 및 레거시 시스템: 많은 기업, 특히 전통적 산업의 기업은 기존 ERP(통합 기간 업무 시스템), SCM(공급망 관리) 및 기타 레거시 시스템의 패치워크에 의존하고 있습니다. 최신 첨단 공급망 분석 플랫폼을 이러한 이질적이고 오래된 시스템에 통합하는 것은 복잡하고, 시간이 많이 걸리며, 비용이 많이 드는 작업입니다. 데이터 사일로화, 일관성 없는 데이터 형식, 상호운용성 부족 등의 문제가 있으며, 원활한 정보 흐름을 방해하는 요인이 될 수 있습니다. 이를 해결하기 위한 효과적인 전략은 서비스형 데이터 통합 플랫폼(IPAAS)을 활용하는 것입니다. IPAAS는 기존 인프라를 완전히 정비하지 않고도 서로 다른 시스템을 연결하고 데이터 흐름을 간소화하는 미들웨어 역할을 합니다.

데이터 품질, 가용성, 관리 문제: 공급망 분석 솔루션의 효율성은 사용하는 데이터의 품질과 직결됩니다. 불완전하고, 일관성이 없고, 오류가 발생하기 쉬운 불량 데이터는 분석 결과에 대한 신뢰를 떨어뜨리고, 잘못된 의사결정을 초래할 수 있습니다. 또한 사일로화된 데이터와 중요한 정보에 대한 접근이 제한되어 있으며, 종합적이고 정확한 예측 모델을 만드는 데 어려움을 겪고 있습니다. 이를 위해 기업은 강력한 데이터 거버넌스 프레임워크에 투자하고, 마스터 데이터 관리(MDM)를 도입하여 단일 진실 소스를 생성하고, 자동화된 데이터 정화 및 검증 툴을 활용해야 합니다. 또한 데이터 중심의 기업 문화를 구축하는 것도 필수적이며, 데이터의 정확성과 관리는 IT 부서만의 문제가 아니라 모든 사람의 책임입니다.

숙련된 인력 부족: 공급망에 대한 깊은 지식과 고급 분석, 데이터 사이언스, AI 기술을 겸비한 전문가가 전 세계에서 부족하다는 점이 큰 걸림돌로 작용하고 있습니다. 이러한 인력 부족은 기업이 복잡한 시스템을 도입하는 것뿐만 아니라, 인사이트를 제대로 해석하고 의미 있는 변화를 추진하는 데 어려움을 겪고 있습니다. 대기업은 이런 인재를 모을 수 있는 자원이 있을 수 있지만, 중소기업은 종종 어려움을 겪습니다. 해결책으로는 비즈니스에 대한 이해도가 높은 기존 직원의 역량 강화 및 재교육, AI 및 머신러닝을 활용한 분석 업무의 일부 자동화, 이러한 전문 기술을 서비스 형태로 제공하는 제3의 분석 프로바이더와의 파트너십 등이 있습니다. 파트너십을 맺는 것 등입니다.

데이터 보안 및 프라이버시: 공급업체 정보, 고객 수요 예측, 고유 업무 내용 등 기밀성이 높은 비즈니스 데이터를 취급하는 것은 심각한 데이터 보안 위험을 초래합니다. 데이터 유출의 위협은 기업, 공급업체, 고객 모두에게 큰 우려 사항입니다. 또한 GDPR(EU 개인정보보호규정) 및 다양한 지역의 개인정보 보호 규정과 같이 점점 더 엄격해지는 데이터 보호법을 준수하는 것은 복잡성과 비용을 증가시킵니다. 이러한 위험을 줄이기 위해서는 엔드투엔드 암호화, 다단계 인증, 제로 트러스트 보안 모델과 같은 강력한 보안 대책을 도입해야 합니다. 정기적으로 위험 평가를 시행하고, 모든 제3자 파트너가 엄격한 보안 프로토콜을 준수하도록 하는 것도 매우 중요합니다.

조직의 저항과 문화적 장벽: 최고의 기술이 있더라도 조직은 변화에 대한 저항으로 인해 SCA의 이점을 충분히 누리지 못할 수 있습니다. 특히 경험이나 직관에 기반한 의사결정에 익숙한 직원들은 데이터베이스 인사이트를 신뢰하는 것을 주저할 수 있습니다. 또한 애널리틱스의 잠재적 ROI와 이점에 대한 인식과 이해가 부족하여 투자가 부족할 수도 있습니다. 이러한 상황을 타개하기 위해서는 경영진의 동의를 얻는 것부터 시작하여 강력한 변화관리 전략이 필요합니다. 프로젝트 목표에 대해 투명하게 소통하고, 빠른 성과를 보여주며, 주요 이해관계자를 처음부터 프로세스에 참여시킴으로써 데이터베이스 의사결정을 평가하고 수용하는 기업 문화를 조성할 수 있습니다.

표준화 부족: 데이터 형식, 측정 기준, 보고에 대한 업계 전반의 일관된 표준이 없기 때문에 특히 공급업체, 파트너, 고객 등 광범위한 네트워크에 걸쳐 데이터를 비교하고 통합하는 것은 매우 어렵습니다. 공통의 프레임워크가 없다면, 공급망을 엔드 투 엔드(end-to-end)로 가시화하기 위한 조직 전반의 분석 모델 구축은 큰 장애물이 될 수 있습니다. 가능한 해결책은 조직이 업계 전반의 표준 채택을 지지하거나 최소한 사내 데이터 거버넌스 정책을 수립하고 API(Application Programming Interfaces)를 사용하여 파트너와 데이터를 교환하는 표준화된 방법을 구축하는 것입니다.

구조화된 프로세스의 불확실성: 기업에 따라서는 공급망 프로세스가 명확하게 정의되어 있지 않거나 성숙하지 않은 경우가 있습니다. 이러한 구조화된 기반이 부족하다면, 분석 구상이 기대했던 대로 또는 실용적인 인사이트를 제공하지 못할 수 있습니다. 주요 비즈니스 프로세스, 의사결정 포인트, 성과지표(KPI)가 모호한 경우, 현실을 정확하게 반영할 수 있는 모델을 구축하기 어렵습니다. 이 문제를 해결하기 위해 조직은 먼저 프로세스 재구축과 현재 공급망 업무의 매핑에 초점을 맞추어야 합니다. 프로세스를 명확하게 정의하고 표준화함으로써 효과적이고 가치 있는 공급망 분석 역량을 구축할 수 있는 탄탄한 기반을 마련할 수 있습니다.

목차

제1장 서론

  • 시장의 정의
  • 시장 세분화
  • 조사 스케줄
  • 전제조건
  • 한계

제2장 조사 방법

  • 데이터 마이닝
  • 2차 조사
  • 1차 조사
  • 전문가 조언
  • 퀄리티 체크
  • 최종 리뷰
  • 데이터 삼각측량
  • 보텀업 어프로치
  • 톱다운 어프로치
  • 조사의 흐름
  • 데이터 배포 모델

제3장 개요

  • 시장 개요
  • 세계의 공급망 애널리틱스 시장 지역별 분석
  • 세계의 공급망 애널리틱스 시장 : 배포 모델별
  • 세계의 공급망 애널리틱스 시장 : 서비스별
  • 세계의 공급망 애널리틱스 시장 : 컴포넌트별
  • 세계의 공급망 애널리틱스 시장 : 용도별
  • 향후 시장 기회
  • 세계 시장 내역
  • 제품 라이프라인

제4장 시장 전망

  • 세계의 공급망 애널리틱스 시장 전망
  • 시장 성장 촉진요인
    • 세계의 스마트폰 사용자의 증가, 인터넷 접속, 클라우드 기반 솔루션 이용의 증가
    • 빅데이터와 공급망 관리의 통합
    • 기업 및 정부에 의한 사물인터넷의 잠재적 이점
  • 시장 성장 억제요인
    • 중소기업용 공급망 분석의 높은 도입 비용
    • 데이터 보안과 프라이버시에 관한 우려
  • 시장 기회
    • 신흥 국가에서의 수요 증가
    • 클라우드 기반 공급망 분석의 채택 확대
  • COVID-19가 공급망 애널리틱스 시장에 미치는 영향
  • 공급망 애널리틱스의 Porter's Five Forces 분석

제5장 배포 모델별 시장

  • 개요
  • 온프레미스
  • 클라우드 기반

제6장 서비스별 시장

  • 개요
  • 전문 서비스
  • 매니지드·서비스

제7장 컴포넌트별 시장

  • 개요
  • 세일즈 & 오퍼레이션 플래닝
  • 제조 애널리틱스
  • 운송·물류 분석
  • 기타

제8장 애플리케이션별 시장

  • 개요
  • 헬스케어 & 생명과학
  • 제조업
  • 자동차
  • 소매·소비재
  • 하이테크 제품
  • 항공우주·방위
  • 기타

제9장 지역별 시장

  • 개요
  • 북미
    • 미국
    • 캐나다
    • 멕시코
  • 유럽
    • 독일
    • 영국
    • 프랑스
    • 기타 유럽
  • 아시아태평양
    • 중국
    • 일본
    • 인도
    • 기타 아시아태평양
    • 중동 및 아프리카
    • 라틴아메리카 125

제10장 경쟁 구도

  • 개요
  • 주요 개발 전략
  • 기업의 시장 순위 분석

제11장 기업 개요

  • IBM CORPORATION
  • ORACLE CORPORATION
  • SAP SE
  • BIRST, INC.(INFOR, INC.)
  • SAS INSTITUTE INC.
  • TABLEAU SOFTWARE, LLC
  • MICROSTRATEGY INCORPORATED
  • CAPGEMINI
  • GENPACT
  • KINAXIS
KSA 25.10.30

Supply Chain Analytics Market Size And Forecast

Supply Chain Analytics Market size was valued at USD 6.95 Billion in 2024 and is projected to reach USD 25.1 Billion by 2032, growing at a CAGR of 19.20% during the forecast period 2026 2032.

The Supply Chain Analytics market is a segment of the broader business intelligence and data analytics industry. It is defined by the use of technologies, software, and services to collect, analyze, and interpret data from all parts of a supply chain. The primary goal is to transform this raw data into actionable insights that enable businesses to make better, data driven decisions.

Here is a breakdown of the key components that define this market:

At its heart, the market is about providing tools and methods for analyzing supply chain data. This includes:

Descriptive Analytics: Answering the question, "What happened?" by summarizing historical data and providing a clear view of past performance.

Diagnostic Analytics: Answering the question, "Why did it happen?" by identifying patterns and correlations in the data to understand the root causes of issues.

Predictive Analytics: Answering the question, "What will happen?" by using statistical models and machine learning to forecast future outcomes, such as demand or potential disruptions.

Prescriptive Analytics: Answering the question, "What should we do?" by using insights from predictive analytics to recommend specific, optimal courses of action.

Cognitive Analytics: A more advanced form that leverages AI and machine learning to process massive, complex datasets and automate decision making, mimicking human like reasoning.

Global Supply Chain Analytics Market Drivers

The Supply Chain Analytics market is booming, driven by a perfect storm of business needs and technological advancements. As companies strive for greater efficiency, resilience, and profitability in an increasingly complex global landscape, they're turning to data driven insights to optimize their operations. The factors below are key to this market's rapid growth.

Increasing Complexity of Supply Chain: Today's supply chains are vast, intricate networks spanning the globe. Factors like globalization, reliance on multi tier suppliers, and a wider geographic footprint have created a level of complexity that traditional management methods can't handle. Analytics become essential for managing this labyrinth of interconnected parts, providing the tools to analyze data from diverse sources and make sense of the flow of goods from raw material to end consumer. Without these insights, businesses risk major inefficiencies and a lack of control over their operations.

Demand for Real Time Visibility: In a fast paced market, companies need more than just a snapshot of their supply chain; they need a live, high definition view. The demand for real time visibility is pushing the adoption of analytics. Businesses want to track inventory, monitor shipments, and check order status as they happen to quickly identify and respond to disruptions. This need for constant, accurate information is facilitated by technologies like IoT sensors, RFID tags, and GPS tracking, which generate the data that supply chain analytics platforms use to provide this essential transparency

Adoption of Advanced Technologies: The rise of sophisticated technologies like AI, machine learning (ML), and big data is a major catalyst for the supply chain analytics market. These technologies are moving analytics beyond simple reporting to powerful predictive and prescriptive insights. AI driven platforms can analyze massive datasets to accurately forecast demand, anticipate maintenance needs for equipment, and optimize logistics routes in real time. This allows for proactive decision making, helping companies reduce costs, improve efficiency, and stay ahead of the curve.

Need for Operational Efficiency and Cost Reduction: In a competitive business environment, the pressure to reduce costs is constant. Supply chain analytics directly addresses this by identifying and eliminating inefficiencies in processes like procurement, warehousing, and transportation. By analyzing data on everything from transportation spend to inventory turnover, analytics helps businesses pinpoint bottlenecks and areas of waste. This data driven approach allows for the optimization of inventory levels to minimize carrying costs and avoid costly stockouts, directly contributing to a healthier bottom line.

Risk Management and Resilienc: Recent global events have highlighted the fragility of traditional supply chains. Natural disasters, geopolitical issues, and supplier failures can bring operations to a halt. Analytics provides a crucial layer of risk management and resilience. By leveraging historical data and real time feeds, analytics platforms can model different scenarios, provide early warnings of potential disruptions, and recommend alternative strategies to mitigate their impact. This capability helps companies build more robust and adaptable supply chain networks.

Regulatory and Sustainability Pressures: Growing regulatory demands and a push for greater sustainability are also driving the market. Companies are under increasing pressure to demonstrate compliance with regulations around traceability, ethical sourcing, and environmental impact. Supply chain analytics provides the tools to track and report on these metrics, from carbon emissions to the origins of raw materials. This transparency not only helps meet regulatory requirements but also appeals to consumers and investors who are increasingly prioritizing corporate social responsibilit.

Growth of E commerce / Omni channel Retailing: The explosive growth of e commerce has fundamentally reshaped consumer expectations, creating complex logistical challenges. Customers now expect fast, free, and accurate delivery, often within a day or two. To meet this demand, businesses are using supply chain analytics to optimize fulfillment , manage inventory across multiple channels, and plan the most efficient last mile delivery routes. Analytics is the engine that powers the intricate logistics of omni channel retail, ensuring a seamless experience for the customer.

Cloud / SaaS Deployment: The shift to cloud based and Software as a Service (SaaS) deployment models has democratized access to supply chain analytics. Previously, expensive on premise systems were a barrier for many businesses, especially small and medium sized enterprises (SMEs). Cloud and SaaS models offer a more scalable, affordable, and flexible alternative. They eliminate the need for significant capital expenditure and allow for faster deployment, making powerful analytics tools accessible to a wider range of businesses and accelerating market growth.

Global Supply Chain Analytics Market Restraints

High implementation costs, complex integration with legacy systems, and a shortage of skilled talent are among the primary restraints for the Supply Chain Analytics (SCA) market. Data quality and security concerns, as well as organizational resistance to change, also act as significant barriers.

High Implementation Costs: The initial investment required to adopt Supply Chain Analytics (SCA) is a major barrier, especially for small and medium sized enterprises (SMEs). This isn't just about the cost of the software itself; it includes significant expenses for hardware, system integration, data migration, and comprehensive training for staff. Furthermore, tailoring these powerful, complex tools to a company's unique operational needs and specific business rules can add substantial costs, making the total cost of ownership prohibitive for many. To overcome this, organizations should consider a phased implementation, starting with a small scale, cloud based solution that offers a lower entry point and allows them to demonstrate a clear return on investment (ROI) before committing to a larger rollout.

Integration Complexity and Legacy Systems: Many companies, particularly those in traditional industries, rely on a patchwork of existing ERP (Enterprise Resource Planning), SCM (Supply Chain Management), and other legacy systems. Integrating modern, advanced Supply Chain Analytics platforms with these disparate and often outdated systems is a complex, time consuming, and expensive endeavor. Challenges include data silos, inconsistent data formats, and a lack of interoperability, which can severely hamper a smooth flow of information. An effective strategy to address this is using a data integration platform as a service (iPaaS), which can act as a middleware to connect different systems and streamline data flows without a complete overhaul of the existing infrastructure.

Data Quality, Availability, and Management Issues: The effectiveness of any Supply Chain Analytics solution is directly tied to the quality of the data it uses. Poor data which can be incomplete, inconsistent, or error prone erodes trust in the analytics outputs and leads to flawed decision making. Siloed data and limited access to critical information also prevent the creation of comprehensive and accurate predictive models. To tackle this, businesses must invest in robust data governance frameworks, implement Master Data Management (MDM) to create a single source of truth, and leverage automated data cleansing and validation tools. Building a data driven culture is also essential, where data accuracy and management are everyone's responsibility, not just an IT concern.

Shortage of Skilled Talent: A significant restraint is the global shortage of professionals who possess the dual expertise of deep supply chain knowledge and advanced analytics, data science, or AI skills. This talent gap makes it difficult for companies to not only implement these complex systems but also to properly interpret the insights and drive meaningful change. While large enterprises may have the resources to attract this talent, SMEs often struggle. Possible solutions include upskilling and reskilling existing employees with a strong understanding of the business, leveraging AI and machine learning to automate some analytics tasks, and forming partnerships with third party analytics providers who offer these specialized skills as a service.

Data Security & Privacy: The handling of sensitive business data including supplier information, customer demand forecasts, and proprietary operational details creates significant data security risks. The threat of data breaches is a major concern for companies, suppliers, and customers alike. Additionally, compliance with increasingly strict data protection laws, such as GDPR and various regional privacy regulations, adds layers of complexity and cost. Mitigating these risks requires implementing robust security measures like end to end encryption, multi factor authentication, and a zero trust security model. Regularly conducting risk assessments and ensuring that all third party partners adhere to strict security protocols are also crucial.

Organizational Resistance & Cultural Barriers: Even with the best technology, an organization can fail to realize the full benefits of SCA due to resistance to change. Employees, particularly those accustomed to making decisions based on experience or intuition, may be hesitant to trust data driven insights. There may also be a lack of awareness or understanding about the potential ROI and benefits of analytics, leading to underinvestment. Overcoming this requires a strong change management strategy, starting with securing executive buy in. Transparent communication about the project's goals, showcasing quick wins, and involving key stakeholders in the process from the beginning can foster a culture that values and embraces data driven decision making.

Lack of Standardization: The absence of consistent standards across the industry for data formats, metrics, and reporting makes it incredibly challenging to compare and integrate data, especially across an extended network of suppliers, partners, and customers. Without common frameworks, building cross organizational analytics models to gain end to end supply chain visibility becomes a significant hurdle. A potential solution is for organizations to champion the adoption of industry wide standards or, at a minimum, establish internal data governance policies and use APIs (Application Programming Interfaces) to create a standardized way to exchange data with their partners

Uncertainty in Structured Processes: In some companies, supply chain processes aren't clearly defined or mature. This lack of a structured foundation means that analytics initiatives may not deliver the expected or actionable insights. When key business processes, decision points, and performance indicators (KPIs) are fuzzy, it's difficult to build models that can accurately reflect reality. To address this, organizations must first focus on process re engineering and mapping out their current supply chain operations. By clearly defining and standardizing their processes, they can create a solid foundation on which to build effective and value generating Supply Chain Analytics capabilities.

Global Supply Chain Analytics Market Segmentation Analysis

The Global Supply Chain Analytics Market is Segmented on the basis of Deployment Model, Service, Application, and, Geography.

Supply Chain Analytics Market, By Deployment Model

On premise

Cloud based

Based on Deployment Model, the Supply Chain Analytics Market is segmented into On premise and Cloud based. At VMR, we observe that the Cloud based subsegment is the undisputed market leader and is projected to hold a majority market share of over 62% in 2024, with a robust CAGR exceeding 27% through 2030. This dominance is driven by several key factors, including the overarching trend of digitalization and the widespread adoption of AI and ML technologies in supply chain management. The inherent scalability, flexibility, and cost effectiveness of cloud solutions make them particularly appealing to both large enterprises and, increasingly, Small and Medium sized Enterprises (SMEs). Regionally, the demand for cloud based solutions is skyrocketing in the Asia Pacific region, which is the fastest growing market, propelled by rapid industrialization, burgeoning e commerce sectors, and government initiatives promoting digital transformation.

Key industries, such as retail and e commerce, manufacturing, and healthcare, heavily rely on cloud based analytics to gain real time visibility, optimize inventory, and enhance demand forecasting to meet evolving consumer expectations. The On premise subsegment, while secondary, retains a significant market presence, particularly among large organizations that prioritize data security, strict regulatory compliance, and a high degree of control over their IT infrastructure. This model is favored in sectors like government and defense and certain parts of the financial industry where sensitive data management is paramount. While its market share is declining relative to the cloud, on premise solutions continue to find a niche by offering tailored, customizable solutions for complex, legacy systems. The future of this market is poised for continued growth as organizations seek to leverage data backed insights to build more resilient, transparent, and sustainable supply chains.

Supply Chain Analytics Market, By Service

Managed Services

Professional Services

Based on Service, the Supply Chain Analytics Market is segmented into Managed Services and Professional Services. At VMR, we observe that the Professional Services subsegment is the dominant force, projected to hold a commanding market share of approximately 60% in 2024. This dominance is underpinned by a growing need for specialized expertise in implementing, integrating, and customizing complex supply chain analytics solutions. As global supply chains become more intricate, driven by factors such as e commerce growth and the integration of IoT and AI, businesses require expert guidance to design and deploy systems that align with their specific operational needs. Professional services providers, often major consulting firms, offer a broad range of project based support, including strategy consulting, system integration, and staff training.

The demand for these services is particularly strong in North America, which leads the market in technology adoption and investment in advanced analytics. Key industries like retail and e commerce, manufacturing, and healthcare heavily rely on these services to overcome the skills gap and ensure a seamless transition to a data driven supply chain. The Managed Services subsegment, while currently smaller, is a critical and rapidly expanding area, expected to grow at a high CAGR due to its cost effectiveness and proactive approach. This model offers continuous, subscription based support, including 24/7 monitoring, maintenance, and security, allowing companies to offload the burden of day to day IT management and focus on their core competencies. The rise of cloud based solutions and the need for ongoing operational excellence are key drivers for this subsegment's growth, making it a compelling option for SMEs who may lack the in house resources for a dedicated IT team. Together, these service segments provide a comprehensive ecosystem that empowers businesses to leverage analytics for enhanced efficiency, resilience, and profitability.

Supply Chain Analytics Market, By Application

Healthcare and life sciences

Manufacturing

Automotive

Retail and Consumer Packaged Goods

High Technology Products

Aerospace and Defense

Based on Application, the Supply Chain Analytics Market is segmented into Retail and Consumer Packaged Goods (CPG), Healthcare and life sciences, Manufacturing, Automotive, High Technology Products, and Aerospace and Defense. At VMR, we find that the Retail and Consumer Packaged Goods subsegment is the dominant force, holding a significant market share of approximately 25% in 2024. The sector's dominance is driven by the dynamic and consumer centric nature of its operations, where the need for real time visibility and agile decision making is paramount. Key drivers include the exponential growth of e commerce, the push for omnichannel fulfillment, and the increasing demand for supply chain sustainability. Retailers and CPG companies, particularly in North America and Asia Pacific, leverage analytics to optimize everything from demand forecasting and inventory management to last mile delivery. The ability to analyze consumer purchasing behavior and market trends helps them reduce stockouts, minimize waste, and enhance customer satisfaction in a highly competitive landscape.

The Manufacturing subsegment is the second most dominant, playing a critical role in the market's overall growth. This sector is a major adopter of supply chain analytics to improve operational efficiency, manage complex global networks, and transition to Industry 4.0 standards. Manufacturing companies use these solutions for predictive maintenance, production planning, and quality control, leveraging insights from IoT sensors and production data. The segment's growth is particularly strong in Asia Pacific, fueled by the region's position as a global manufacturing hub. The remaining segments, including Healthcare and Life Sciences, Automotive, High Technology Products, and Aerospace and Defense, represent specialized, high value applications. While their market shares are smaller, they are crucial for ensuring compliance, managing complex global logistics, and securing sensitive supply chains against disruptions. These sectors are characterized by their stringent regulatory requirements and high stakes operations, making analytics a vital tool for risk management and operational excellence.

Supply Chain Analytics Market, By Component

Sales & Operation Planning

Manufacturing Analytics

Transportation & Logistics

Based on Component, the Supply Chain Analytics Market is segmented into Sales & Operation Planning, Manufacturing Analytics, and Transportation & Logistics. At VMR, we observe that the Sales & Operation Planning (S&OP) subsegment is dominant, having commanded a significant market share, with some reports citing a 28% revenue share in 2022 and a robust CAGR of 13.9% from 2025 to 2033, driven by a post pandemic shift toward resilience and real time decision making. The dominance of S&OP is propelled by key market drivers, including the widespread adoption of AI driven demand forecasting (increasing by 40% in the U.S.) and the rise of cloud based planning solutions, which enable greater agility and collaboration across departments. Regionally, North America leads this segment, holding approximately 40% of the market share due to its advanced technological infrastructure and early adoption of digital transformation strategies in key end user industries like manufacturing, retail, and BFSI, where it helps optimize inventory, manage risk, and streamline production.

Following closely, the Transportation & Logistics subsegment holds a remarkable market share due to the rising need for analytical tools to streamline logistical operations in a cost effective manner. Its growth is fueled by the rapid expansion of e commerce, the increasing demand for last mile delivery, and the adoption of technologies like IoT for real time tracking and route optimization. Major players in this segment are also focused on sustainability initiatives, such as the adoption of electric vehicles, and are leveraging analytics to reduce fuel consumption and carbon emissions. Lastly, the Manufacturing Analytics subsegment plays a supporting but crucial role by focusing on optimizing production and quality control. This niche is experiencing solid growth as manufacturers use analytics for predictive maintenance, demand forecasting, and inventory optimization to identify and resolve production bottlenecks, ensuring a more efficient and responsive supply chain.

Supply Chain Analytics Market, By Geography

North America

Europe

Asia Pacific

South America

Middle East & Africa

The global supply chain analytics market is a dynamic and rapidly evolving sector driven by the increasing complexity of global supply chains, the rise of e commerce, and the growing need for real time data and enhanced visibility. Businesses across all industries are leveraging supply chain analytics to optimize operations, reduce costs, mitigate risks, and improve decision making. The geographical distribution of this market is shaped by regional economic maturity, technological adoption rates, and specific industry demands. While North America holds a dominant market share, the Asia Pacific region is experiencing the fastest growth, and other regions are demonstrating unique trends and drivers.

United States Supply Chain Analytics Market

The United States is the leading market for supply chain analytics, holding the largest market share globally. This dominance is attributed to several key factors. The region has a highly developed and technologically advanced industrial landscape, with a strong focus on data driven decision making. The sheer scale and complexity of supply chains, particularly in retail, e commerce, and manufacturing, necessitate sophisticated analytics solutions.

Dynamics and Key Growth Drivers: The market is primarily driven by the need for end to end supply chain visibility and transparency. The robust e commerce sector, in particular, demands real time tracking, inventory optimization, and efficient logistics to meet customer expectations. The adoption of advanced technologies like Artificial Intelligence (AI) and Machine Learning (ML) is a major growth driver, enabling more accurate demand forecasting, predictive maintenance, and process automation. The presence of major technology players and the high investment in digital transformation initiatives further fuel market expansion.

Current Trends: A key trend is the increasing use of cloud based solutions, which offer scalability, flexibility, and cost effectiveness, making advanced analytics accessible to a wider range of businesses, including small and medium sized enterprises (SMEs). There is also a growing emphasis on predictive and prescriptive analytics to not only understand past performance but also to anticipate future disruptions and recommend optimal actions. The focus on sustainability and ethical sourcing is also becoming a significant factor, with businesses using analytics to track carbon footprints and ensure compliance.

Europe Supply Chain Analytics Market

The European supply chain analytics market is a strong contender, poised for promising growth. The region's market dynamics are influenced by its focus on regulatory compliance, sustainability, and technological integration.

Dynamics and Key Growth Drivers: A major driver in Europe is the imperative to improve operational efficiency and reduce costs, particularly in mature industries like manufacturing and logistics. The European Green Deal and other sustainability initiatives are pushing companies to adopt analytics for responsible sourcing, waste reduction, and carbon footprint tracking. The increasing digital transformation of SMEs and investments in 4G and 5G networks are accelerating the adoption of cloud based and Internet of Things (IoT) driven solutions. The complexity of cross border trade within the European Union also creates a high demand for robust and transparent supply chain management tools.

Current Trends: The market is seeing a strong move toward "digital supply networks" that connect physical product flows with data, enabling greater agility and resilience. There is a growing focus on integrating technologies like AI, blockchain, and IoT to enhance transparency and traceability. The manufacturing sector is a significant user of supply chain analytics, leveraging it to ensure timely delivery and product availability. Data security and privacy concerns are also a key trend, leading some companies to prefer on premise solutions while others embrace cloud models with robust security protocols.

Asia-Pacific Supply Chain Analytics Market

The Asia-Pacific region is projected to be the fastest growing market for supply chain analytics. This growth is driven by rapid industrialization, a booming e commerce sector, and increasing awareness of the benefits of analytics.

Dynamics and Key Growth Drivers: The market is propelled by the rapid growth of e commerce, particularly in countries like China and India, which is creating a massive demand for efficient logistics and last mile delivery solutions. The increasing number of SMEs in developing economies and their growing expenditure on technology to compete in the global market are also significant drivers. Furthermore, the region's position as a global manufacturing hub necessitates sophisticated tools for managing complex production and distribution networks.

Current Trends: A key trend is the aggressive adoption of advanced analytics to improve forecasting accuracy, supply chain optimization, and waste minimization. The integration of big data and cloud based platforms is a major enabler, allowing companies to manage and analyze vast amounts of data in real time. The emphasis on cost reduction and operational efficiency is particularly strong in this region, with businesses leveraging analytics to streamline processes and gain a competitive edge.

Latin America Supply Chain Analytics Market

The Latin American market for supply chain analytics is experiencing steady growth, influenced by regional trade complexity and digital transformation.

Dynamics and Key Growth Drivers: The increasing complexity of regional trade and the growing demand for efficient logistics solutions are key drivers. The significant growth of the e commerce sector in countries like Brazil and Mexico is creating a need for specialized services in inventory management and logistics optimization. The drive for better supply chain visibility is also crucial, as a large number of SMEs in the region play a critical role in the supply chain, necessitating tools that provide real time data and tracking.

Current Trends: The adoption of cloud based solutions is gaining momentum due to their scalability and cost effectiveness, making them attractive for businesses looking to modernize their operations without significant upfront investment. There is a strong trend toward using AI and predictive analytics for demand forecasting and managing supply chain flexibility. Challenges like high implementation costs and data security concerns are being addressed through tailored solutions and a focus on improving cyber resilience.

Middle East & Africa Supply Chain Analytics Market

The Middle East and Africa (MEA) market, while a smaller part of the global market, is showing significant growth potential. The market dynamics are shaped by strategic infrastructure investments and a growing focus on economic diversification.

Dynamics and Key Growth Drivers: The region's strategic location as a global trade hub is a major driver, with countries like the UAE and Saudi Arabia investing heavily in port and logistics infrastructure. Economic diversification away from oil and gas is prompting investments in sectors like retail and manufacturing, which require advanced supply chain solutions. The rise of e commerce and a growing middle class are also fueling demand for efficient and fast logistics services, particularly last mile delivery.

Current Trends: Cloud based solutions are the most popular deployment model, valued for their cost effectiveness and flexibility. There is a growing interest in using analytics to address specific regional challenges, such as the optimization of transportation costs in the oil and gas sector. However, the market faces challenges like political instability, a lack of proper transport infrastructure in some areas, and data security concerns. To overcome these, there is a focus on building smart city initiatives and investing in technologies like AI and blockchain to improve transparency and efficiency.

Key Players

  • The major players in the Supply Chain Analytics Market are:
  • Fujifilm
  • Nikon
  • Go Pro
  • Kodak
  • Canon
  • Sony
  • Honeywell International
  • Robert Bosch GmbH
  • Continental AG
  • Magna Corporation
  • Intel Corporation
  • Panasonic
  • FLIR Systems
  • Olympus Source

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 MARKET DEFINITION
  • 1.2 MARKET SEGMENTATION
  • 1.3 RESEARCH TIMELINES
  • 1.4 ASSUMPTIONS
  • 1.5 LIMITATIONS

2 RESEARCH METHODOLOGY

  • 2.1 DATA MINING
  • 2.2 SECONDARY RESEARCH
  • 2.3 PRIMARY RESEARCH
  • 2.4 SUBJECT MATTER EXPERT ADVICE
  • 2.5 QUALITY CHECK
  • 2.6 FINAL REVIEW
  • 2.7 DATA TRIANGULATION
  • 2.8 BOTTOM-UP APPROACH
  • 2.9 TOP DOWN APPROACH
  • 2.1 RESEARCH FLOW
  • 2.11 DATA DEPLOYMENT MODEL

3 EXECUTIVE SUMMARY

  • 3.1 MARKET OVERVIEW
  • 3.2 GLOBAL SUPPLY CHAIN ANALYTICS MARKET GEOGRAPHICAL ANALYSIS (CAGR %)
  • 3.3 GLOBAL SUPPLY CHAIN ANALYTICS MARKET, BY DEPLOYMENT MODEL (USD MILLION)
  • 3.4 GLOBAL SUPPLY CHAIN ANALYTICS MARKET, BY SERVICE (USD MILLION)
  • 3.5 GLOBAL SUPPLY CHAIN ANALYTICS MARKET, BY COMPONENT (USD MILLION)
  • 3.6 GLOBAL SUPPLY CHAIN ANALYTICS MARKET, BY APPLICATION (USD MILLION)
  • 3.7 FUTURE MARKET OPPORTUNITIES
  • 3.8 GLOBAL MARKET SPLIT
  • 3.9 PRODUCT LIFE LINE

4 MARKET OUTLOOK

  • 4.1 GLOBAL SUPPLY CHAIN ANALYTICS MARKET OUTLOOK
  • 4.2 MARKET DRIVER
    • 4.2.1 GROWING GLOBAL SMART PHONE USERS, INTERNET CONNECTIVITY AND INCREASING USE OF CLOUD BASED SOLUTIONS
    • 4.2.2 INTEGRATION OF BIG DATA AND SUPPLY CHAIN MANAGEMENT
    • 4.2.3 POTENTIAL BENEFITS OF INTERNET OF THINGS BY BUSINESSES AND GOVERNMENTS
  • 4.3 MARKET RESTRAINT
    • 4.3.1 HIGH ADOPTION COST OF SUPPLY CHAIN ANALYTICS FOR SMES
    • 4.3.2 DATA SECURITY AND PRIVACY CONCERNS
  • 4.4 MARKET OPPORTUNITY
    • 4.4.1 RISING DEMAND IN DEVELOPING COUNTRIES
    • 4.4.2 GROWING ADOPTION OF CLOUD-BASED SUPPLY CHAIN ANALYTICS
  • 4.5 IMPACT OF COVID - 19 ON SUPPLY CHAIN ANALYTICS MARKET
  • 4.6 PORTER FIVE FORCES ANALYSIS OF SUPPLY CHAIN ANALYTICS

5 MARKET, BY DEPLOYMENT MODEL

  • 5.1 OVERVIEW
  • 5.2 ON-PREMISE
  • 5.3 CLOUD-BASED

6 MARKET, BY SERVICE

  • 6.1 OVERVIEW
  • 6.2 PROFESSIONAL SERVICES
  • 6.3 MANAGED SERVICES

7 MARKET, BY COMPONENT

  • 7.1 OVERVIEW
  • 7.2 SALES & OPERATION PLANNING
  • 7.3 MANUFACTURING ANALYTICS
  • 7.4 TRANSPORTATION & LOGISTICS ANALYTICS
  • 7.5 OTHERS

8 MARKET, BY APPLICATION

  • 8.1 OVERVIEW
  • 8.2 HEALTH CARE & LIFE SCIENCES
  • 8.3 MANUFACTURING
  • 8.4 AUTOMOTIVE
  • 8.5 RETAIL AND CONSUMER PACKAGED GOODS
  • 8.6 HIGH TECHNOLOGY PRODUCTS
  • 8.7 AEROSPACE & DEFENSE
  • 8.8 OTHERS

9 MARKET, BY GEOGRAPHY

  • 9.1 OVERVIEW
  • 9.2 NORTH AMERICA
    • 9.2.1 U.S.
    • 9.2.2 CANADA
    • 9.2.3 MEXICO
  • 9.3 EUROPE
    • 9.3.1 GERMANY
    • 9.3.2 U.K.
    • 9.3.3 FRANCE
    • 9.3.4 REST OF EUROPE
  • 9.4 ASIA PACIFIC
    • 9.4.1 CHINA
    • 9.4.2 JAPAN
    • 9.4.3 INDIA
    • 9.4.4 REST OF AISA-PACIFIC
  • 9.5 ROW
    • 9.5.1 MIDDLE EAST & AFRICA
    • 9.1.2 LATIN AMERICA 125

10 COMPETITIVE LANDSCAPE

  • 10.1 OVERVIEW
  • 10.2 KEY DEVELOPMENT STRATEGIES
  • 10.3 COMPANY MARKET RANKING ANALYSIS,

11 COMPANY PROFILES

  • 11.1 IBM CORPORATION
    • 11.1.1 COMPANY OVERVIEW
    • 11.1.2 COMPANY INSIGHTS
    • 11.1.3 SEGMENT BREAKDOWN
    • 11.1.4 PRODUCT BENCHMARKING
    • 11.1.5 SWOT ANALYSIS
  • 11.2 ORACLE CORPORATION
    • 11.2.1 COMPANY OVERVIEW
    • 11.2.2 COMPANY INSIGHTS
    • 11.2.3 SEGMENT BREAKDOWN
    • 11.2.4 PRODUCT BENCHMARKING
    • 11.2.5 SWOT ANALYSIS
  • 11.3 SAP SE
    • 11.3.1 COMPANY OVERVIEW
    • 11.3.2 COMPANY INSIGHTS
    • 11.3.3 SEGMENT BREAKDOWN
    • 11.3.4 PRODUCT BENCHMARKING
    • 11.3.5 SWOT ANALYSIS
  • 11.4 BIRST, INC. (INFOR, INC.)
    • 11.4.1 COMPANY OVERVIEW
    • 11.4.2 COMPANY INSIGHTS
    • 11.4.3 PRODUCT BENCHMARKING
  • 11.5 SAS INSTITUTE INC.
    • 11.5.1 COMPANY OVERVIEW
    • 11.5.2 . COMPANY INSIGHTS
    • 11.5.3 PRODUCT BENCHMARKING
    • 11.5.4 KEY DEVELOPMENT
  • 11.6 TABLEAU SOFTWARE, LLC
    • 11.6.1 COMPANY OVERVIEW
    • 11.6.2 PRODUCT BENCHMARKING
  • 11.7 MICROSTRATEGY INCORPORATED
    • 11.7.1 COMPANY OVERVIEW
    • 11.7.2 COMPANY INSIGHTS
    • 11.7.3 SEGMENT BREAKDOWN
    • 11.7.4 PRODUCT BENCHMARKING
  • 11.8 CAPGEMINI
    • 11.8.1 COMPANY OVERVIEW
    • 11.8.2 . COMPANY INSIGHTS
    • 11.8.3 SEGMENT BREAKDOWN
    • 11.8.4 PRODUCT BENCHMARKING
  • 11.9 GENPACT
    • 11.9.1 COMPANY OVERVIEW
    • 11.9.2 . COMPANY INSIGHTS
    • 11.9.3 SEGMENT BREAKDOWN
    • 11.9.4 PRODUCT BENCHMARKING
  • 11.10 KINAXIS
    • 11.10.1 COMPANY OVERVIEW
    • 11.10.2 COMPANY INSIGHTS
    • 11.10.3 SEGMENT BREAKDOWN
    • 11.10.4 PRODUCT BENCHMARKING
    • 11.10.5 KEY DEVELOPMENT
샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제