½ÃÀ庸°í¼­
»óǰÄÚµå
1791946

µ¥ÀÌÅÍ Çö´ëÈ­¸¦ À§ÇÑ AI Ȱ¿ë

Using AI for Data Modernization

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: IDC | ÆäÀÌÁö Á¤º¸: ¿µ¹® 11 Pages | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÀÌ IDC °üÁ¡¿¡¼­´Â µ¥ÀÌÅÍ Çö´ëÈ­¸¦ À§ÇÑ AIÀÇ È°¿ë¿¡ ´ëÇØ ¼³¸íÇÕ´Ï´Ù. ·¹°Å½Ã µ¥ÀÌÅÍ °ü¸®´Â ¸¹Àº Á¶Á÷ÀÌ Á÷¸éÇÑ °úÁ¦ÀÔ´Ï´Ù. Áö±Ý±îÁö´Â µ¥ÀÌÅÍÀÇ ¾ç, µ¥ÀÌÅÍÀÇ ¼­·Î ´Ù¸¥ À§Ä¡, µ¥ÀÌÅÍÀÇ ÄÜÅÙÃ÷, ǰÁú, À¯¿ë¼º, À¯È¿¼º¿¡ ´ëÇÑ Á¤º¸°¡ ºÎÁ·ÇÏ¿© Àû±ØÀûÀÎ µ¥ÀÌÅÍ °ü¸®°¡ ¾î·Á¿ü½À´Ï´Ù. ÀÌÁ¦ Á¶Á÷Àº GenAI¿Í ¿¡ÀÌÀüÆ® AIÀÇ ±â´ÉÀ» »ç¿ëÇÏ¿© ·¹°Å½Ã µ¥ÀÌÅÍ °ü¸®ÀÇ ´ëºÎºÐÀÇ ¹®Á¦¸¦ ±Øº¹Çϰí ÇØ´ç µ¥ÀÌÅ͸¦ Çö´ëÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ Çö´ëÈ­ ÇÁ·Î¼¼½º¸¦ Á÷Á¢ Áö¿øÇÏ´Â Á¦°ø¾÷ü¿Í µµ±¸°¡ Á¡Á¡ ´õ ¸¹¾ÆÁö°í ÀÖ½À´Ï´Ù. ±â¼ú°ú µµ±¸´Â ÁøÈ­Çϰí ÀÖÀ¸¸ç Áö¼ÓÀûÀÎ µ¥ÀÌÅÍ °ü¸®¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù. IDCÀÇ IT ÀÓ¿ø ÇÁ·Î±×·¥(IEP) °âÀÓ ¿¬±¸ °í¹®ÀÎ ´Ï¿¤ ´ÏÄݶóÀ̼¾Àº "GenAI¿Í ¿¡ÀÌÀüÆ® AI´Â ·¹°Å½Ã µ¥ÀÌÅ͸¦ °Ë»ö, Æò°¡, ºÐ·ù ¹× °ü¸®ÇÏ´Â ÀÛ¾÷À» ÈξÀ ½±°Ô ¸¸µé¾î ÁÝ´Ï´Ù. µ¥ÀÌÅÍ Ç°Áú, µ¥ÀÌÅÍ À¯È¿¼º, À§Çè °¨¼Ò¸¦ °³¼±ÇØ¾ß ÇÒ Çʿ伺À» °í·ÁÇÒ ¶§ Á¶Á÷Àº °èȹ°ú ±â¼ú ·Îµå¸Ê¿¡ µ¥ÀÌÅÍ Çö´ëÈ­¸¦ Ãß°¡ÇØ¾ß ÇÕ´Ï´Ù. ¹÷Â÷°í ¶§·Î´Â ¾ÐµµÀûÀÎ ÇÁ·ÎÁ§Æ®¿´´ø µ¥ÀÌÅÍ Çö´ëÈ­°¡ ÀÌÁ¦ ¼Õ¿¡ ÀâÈú µíÀÌ °¡±î¿öÁ³½À´Ï´Ù."¶ó°í ¸»Çß½À´Ï´Ù.

ÁÖ¿ä ¿ä¾à

»óȲ °³¿ä

  • µ¥ÀÌÅÍ Çö´ëÈ­ÀÇ Çʿ伺
  • µ¥ÀÌÅÍ Çö´ëÈ­ Èĺ¸ ƯÁ¤°ú Æò°¡
  • µ¥ÀÌÅÍ Çö´ëÈ­¿¡ ¼ö¹ÝÇÏ´Â °úÁ¦
    • »ç·Ê ¿¬±¸
  • GenAI¿Í AI ¿¡ÀÌÀüÆ®¸¦ Ȱ¿ëÇÏ¿© µ¥ÀÌÅ͸¦ Çö´ëÈ­

±â¼ú ±¸¸ÅÀÚ¸¦ À§ÇÑ ¾îµå¹ÙÀ̽º

  • ±â¼ú ¼±ÅÃ
    • ¼±ÅÃÀÇ ÆøÀ» ³ÐÈ÷°í ÆÄÀÏ·µ ÇÁ·ÎÁ§Æ® ¼öÇà
    • Çö´ëÈ­ ·Îµå¸Ê ¼±ÅÃ, ±¸Çö, ÃøÁ¤, °³¼± ¹× ±¸Ãà
  • ÇÊ¿äÇÑ °æ¿ì µ¥ÀÌÅÍ °Å¹ö³Í½º¿¡ ¿¬°á

Âü°í ÀÚ·á

  • °ü·Ã Á¶»ç
  • ¿ä¾à
LSH 25.08.25

This IDC Perspective discusses the use of AI for data modernization. The management of legacy data is a challenge for many organizations. Historically, the volume of data, the disparate locations of the data, and poor information about the content, quality, usefulness, and validity of the data have discouraged active data management. Organizations can now use the capabilities of GenAI and agentic AI to overcome a majority of the challenges of legacy data management and modernize that data. There is a growing number of providers and tools that directly support the data modernization process. The technology and tools are evolving and can play a significant role in ongoing data management."GenAI and agentic AI make the task of discovering, assessing, classifying, and managing legacy data much easier. Given the need for improved data quality, data validity, and risk reduction, organizations should add data modernization in their plans and technology road maps," says Niel Nickolaisen, adjunct research advisor for IDC's IT Executive Programs (IEP). "What has been a daunting and sometimes overwhelming project is now within reach."

Executive Snapshot

Situation Overview

  • The Case for Data Modernization
  • Identifying and Assessing Data Modernization Candidates
  • The Challenges Associated with Data Modernization
    • Case Study
  • Taking Advantage of GenAI and AI Agents to Modernize Data

Advice for the Technology Buyer

  • Technology Selection
    • Winnow the Choices and Conduct a Pilot Project
    • Select, Implement, Measure, Refine, and Build a Modernization Road Map
  • If Needed, Link to Data Governance

Learn More

  • Related Research
  • Synopsis
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦