|   | 
										시장보고서
									 
											
												상품코드
											
										 
											1776749
										 세계의 해상 풍력에너지 시장 예측(-2032년) : 컴퍼넌트별, 기초 유형별, 수심별, 터빈 용량별, 소유자별, 용도별, 지역별 분석Offshore Wind Energy Market Forecasts to 2032 - Global Analysis By Component (Turbine, Substructure, Electrical Infrastructure, and Other Components), Foundation Type, Water Depth, Turbine Capacity, Ownership, Application and By Geography | ||||||
Stratistics MRC에 따르면 세계의 해상 풍력에너지 시장은 2025년 472억 달러를 차지하며 예측기간 중 CAGR 20.6%로 확대되어 2032년까지 1,751억 4,000만 달러에 이를 전망입니다.
해상 풍력에너지는 육상보다 풍속이 강하고 안정한 수역, 일반적으로 바다와 큰 호수에 설치된 풍력 터빈을 이용한 발전입니다. 이 터빈은 바람의 운동 에너지를 전력으로 변환하여 재생 가능한 에너지원을 제공합니다. 해상 풍력에너지소는 온실 가스 배출량을 줄이고 에너지 다양화를 지원하며 지속 가능하고 저탄소 전력 시스템으로의 세계 전환에 기여합니다.
NREL에 따르면 2024년 5월 현재 전 세계 174MW의 해상 풍력에너지가 가동 중입니다.
증가하는 에너지 안보에 대한 우려
각국이 수입화석연료에 대한 의존을 줄이려고 하는 가운데, 해상 풍력은 안정된 재생가능한 대체수단을 제공합니다. 또한, 해상 풍력에너지소는 탈탄소화 목표에 공헌해, 세계의 넷 제로 공약과 일치합니다.
복잡한 설치 및 물류
대형 터빈 부품을 수송하고 해상에서 조립하기 위해서는 특수한 선박과 설비가 필요합니다. 또한 예측 불가능한 기상 조건에 따라 건설 스케줄이 늦어져 조업 리스크가 높아질 가능성도 있습니다.
송전망 인프라 확대
대규모 해상 풍력에너지를 국내 송전망에 통합하기 위해서는 송전 시스템의 업그레이드가 필수적입니다. 또한, 변동하는 풍력 발전을 보다 효율적으로 관리하기 위해서, 스마트 그리드 기술이 도입되고 있습니다.
환경과 해양생태계에 대한 우려
터빈의 건설과 운전은 해양 생물의 서식지와 이동 패턴을 혼란시킬 수 있습니다. 그 결과 규제 검토와 환경 영향 평가가 더욱 까다로워지고 있습니다.
COVID-19의 영향
COVID-19의 대유행은 당초 해상 풍력발전 공급체인을 혼란시켜 프로젝트의 스케줄을 늦추었습니다. 하지만 이 위기는 또한 회복력 있는 분산형 에너지 시스템의 중요성을 부각시켰습니다.
예측 기간 동안 부동 부문이 최대가 될 전망
부유식 부문은 수심이 깊은 곳에서 풍력 자원을 사용할 수 있기 때문에 예측 기간 동안 최대 시장 점유율을 차지할 것으로 예측됩니다. 이 지역에 펼쳐질 수 있는 이 유연성은 특히 대륙붕이 가파른 나라들에게는 해양 풍력 개발을 위한 광대한 새로운 지역을 열어 줍니다.
예측 기간 동안 CAGR이 가장 높은 것은 발전 분야입니다.
예측 기간 동안 깨끗한 전력 수요가 증가함에 따라 발전 분야가 가장 높은 성장률을 보일 것으로 예측됩니다. 이 분야는 고정 가격 임베디드 제도, 경매, 세금 우대 조치 등 강력한 정책 지원의 혜택을 받고 있습니다.
예측기간 중 광대한 해안선과 강력한 정책지원으로 아시아태평양이 최대 시장 점유율을 차지할 것으로 예측됩니다. 정부의 경매, 보조금, 장기 에너지 계획이 프로젝트 개발을 가속화하고 있습니다.
예측 기간 동안 북미가 가장 높은 CAGR을 나타낼 것으로 예상되며, 이는 유리한 규제 프레임 워크와 야심적인 청정 에너지 목표 때문입니다. 리스 입찰과 세금 공제를 포함한 연방 및 주 수준의 이니셔티브가 주요 개발자를 유치하고 있습니다.
According to Stratistics MRC, the Global Offshore Wind Energy Market is accounted for $47.20 billion in 2025 and is expected to reach $175.14 billion by 2032 growing at a CAGR of 20.6% during the forecast period.Offshore wind energy is the generation of electricity using wind turbines located in bodies of water, typically in oceans or large lakes, where wind speeds are stronger and more consistent than on land. These turbines convert wind kinetic energy into electrical power, offering a clean, renewable source of energy. Offshore wind farms help reduce greenhouse gas emissions, support energy diversification, and contribute to the global transition toward sustainable and low-carbon power systems.
According to NREL, as of May 2024, there are 174 MW of offshore wind power in operation globally.
Rising energy security concerns
As countries seek to reduce reliance on imported fossil fuels, offshore wind offers a stable and renewable alternative. Governments are increasingly prioritizing offshore wind in national energy strategies to enhance grid resilience. The consistent and high-speed wind conditions offshore make it a reliable source of power generation. Additionally, offshore wind farms contribute to decarbonization goals, aligning with global net-zero commitments. This rising focus on energy security is accelerating investments in offshore wind infrastructure.
Complex installation and logistics
Transporting large turbine components and assembling them at sea requires specialized vessels and equipment. The high cost and technical expertise needed for deep-water installations can deter new entrants. Maintenance operations are also more difficult and expensive compared to onshore wind farms. Furthermore, unpredictable weather conditions can delay construction timelines and increase operational risks. These logistical hurdles continue to restrain the rapid deployment of offshore wind energy.
Expansion of grid infrastructure
Upgrading transmission systems is essential to integrate large-scale offshore wind power into national grids. Governments are investing in subsea cables and interconnectors to support long-distance energy transfer. Enhanced grid connectivity enables better load balancing and reduces curtailment of renewable energy. Additionally, smart grid technologies are being deployed to manage variable wind power more efficiently. These developments are unlocking new offshore wind zones and boosting investor confidence.
Environmental and marine ecosystem concerns
The construction and operation of turbines can disrupt habitats and migration patterns of marine species. Underwater noise from pile driving may affect marine mammals and fish behaviour. There are also concerns about seabed disturbance and changes in sediment transport. Regulatory scrutiny and environmental impact assessments are becoming more stringent as a result. These ecological concerns could delay project approvals and increase compliance costs for developers.
Covid-19 Impact
The COVID-19 pandemic initially disrupted offshore wind supply chains and delayed project timelines. Lockdowns and travel restrictions hindered the movement of personnel and equipment to offshore sites. However, the crisis also highlighted the importance of resilient and decentralized energy systems. Governments responded by including offshore wind in post-pandemic green recovery plans. As a result, the offshore wind sector has rebounded strongly and continues to gain momentum.
The floating segment is expected to be the largest during the forecast period
The floating segment is expected to account for the largest market share during the forecast period, due to its ability to harness wind resources in deep-water locations. Unlike fixed-bottom turbines, floating platforms can be deployed in regions with greater wind speeds and fewer spatial constraints. This flexibility opens up vast new areas for offshore wind development, especially for countries with steep continental shelves. Technological advancements are improving the stability and cost-efficiency of floating systems.
The power generation segment is expected to have the highest CAGR during the forecast period
Over the forecast period, the power generation segment is predicted to witness the highest growth rate, due tothe increasing demand for clean electricity. Offshore wind farms are being scaled up to meet national renewable energy targets and reduce carbon emissions. The sector benefits from strong policy support, including feed-in tariffs, auctions, and tax incentives. Technological improvements in turbine efficiency and capacity are enhancing energy output.
During the forecast period, the Asia Pacific region is expected to hold the largest market sharedue toits vast coastline and strong policy support. Countries like China, Japan, South Korea, and Taiwan are aggressively expanding their offshore wind capacity. Government-backed auctions, subsidies, and long-term energy plans are accelerating project development. The region also benefits from a robust manufacturing base and growing expertise in offshore construction.Rapid urbanization and rising electricity demand are further driving the need for renewable energy.
Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to favorable regulatory frameworks and ambitious clean energy goals. The United States and Canada are investing heavily in offshore wind to diversify their energy mix and reduce emissions. Federal and state-level initiatives, including lease auctions and tax credits, are attracting major developers. Additionally, public support for renewable energy is growing amid concerns about climate change and energy security.
Key players in the market
Some of the key players profiled in the Offshore Wind Energy Market include Orsted, Iberdrola, RWE, Ocean Winds, NextEra Energy Resources, Siemens Gamesa Renewable Energy, Equinor, Vestas, Vattenfall, GE Renewable Energy, EDF Renewables, Mingyang Smart Energy, Northland Power, Goldwind, and SSE Renewables.
In June 2025, Iberdrola launches niba, its own 100% digital corporate start-up, with a proposal focused on agility, artificial intelligence and customer orientation. The project was created with the aim of continuing to respond to new market needs.
In May 2023, Siemens Gamesa and Repsol have strengthened their commercial ties with the signing of two new contracts for the supply of 40 SG 5.0-145 onshore turbines for six wind farms in Spain, totaling 200 MW. Following this agreement, Repsol will have eight wind farms employing Siemens Gamesa technology, reaching a total of 324 MW.